Archiv / Archive
Lehrveranstaltungen: Wintersemester 2017 / 2018
Gesamtübersicht
Institut für Numerische Mathematik
• • • 2. Studienjahr • • •
| |
Modul Math Ba NUME: Numerische Mathematik Einführung |
3+1+0 |
F01/521 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.), Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Module Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Matthies |
V |
Mo |
4. DS |
WIL A317 |
|
|
20.09.2017: Wochen-Zuordnung |
|
Matthies |
V |
Do |
5. DS |
WIL C307 |
ungerade Woche |
|
für die Vorlesungen geändert |
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba OPTINUM: Optimierung und Numerik |
3+1+0 |
F01/531 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); für Diplomstudiengang Informatik = MODUL INF-D-510 'Grundlagen des Nebenfachs' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-GDIM und Math-Ba-MINT |
Inhalt |
Einführung und Beispiele, Lineare Optimierung und Dualität, Optimierung auf Graphen, Grundlagen der kontinuierlichen Optimierung, Prinzipien der diskreten Optimierung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ba SEM - Seminar (Angebot des Institutes für Numerik) |
0+2+0 |
F01/535 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenz aus den Modulen Math-Ba-NUME und Math-Ba-NUM |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Sander |
S |
Do |
4. DS |
WIL A221 |
|
|
|
| |
Modul MN-SEGY-MAT-NUM: Numerik |
3+2+0 |
F01/570 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 7. Sem. |
Vorkenntnisse |
Kompetenzen auf Niveau der Module MN-SEGY-MAT-LAAG, MN-SEGY-MAT-ANA
und MN-SEGY-MAT-COMP |
Inhalt |
Interpolation, numerische Integration, lineare Gleichungssysteme und Ausgleichsrechnung, nichtlineare Gleichungen und Gleichungssysteme, lineare Optimierung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEBS-MAT-NUM: Numerik |
3+2+0 |
F01/570* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, 9. Sem. |
Vorkenntnisse |
Kompetenzen auf Niveau der Module MN-SEBS-MAT-LAAG, MN-SEBS-MAT-ANA
und MN-SEBS-MAT-COMP |
Inhalt |
Interpolation, numerische Integration, lineare Gleichungssysteme und Ausgleichsrechnung, nichtlineare Gleichungen und Gleichungssysteme, lineare Optimierung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
• • • 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma KONOPT: Kontinuierliche Optimierung |
3+1+0 |
F01/542 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik, Studiengänge Physik im Nebenfach Mathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der Optimierung auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Eppler |
V |
Do |
4. DS |
WIL C307 |
|
|
|
|
Eppler |
V |
Fr |
3. DS |
WIL C307 |
|
Übung integriert |
|
| |
Modul Math Ma PDENM: Numerik partieller Differentialgleichungen |
3+1+0 |
F01/543 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation' und zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
| |
Modul MN-SEGY/SEBS-MAT-SEM Mathematisches Seminar: Lineare Optimierung und Anwendungen |
0+0+2 |
F01/775 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 9. Sem. |
Inhalt |
Modellierung, graphische Lösung linearer Optimierungsprobleme, Simplexverfahren, Transportoptimierung |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Herrich |
S |
Do |
5. DS |
WIL C104 |
|
|
|
| |
Modul MN-SEGY-MAT-MVERT: Optimierung und Numerik |
3+1+0 |
F01/531* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-GDIM und Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba OPTINUM - Optimierung und Numerik: Einführung und Beispiele, Lineare Optimierung und Dualität, Optimierung auf Graphen, Grundlagen der kontinuierlichen Optimierung |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar des Institutes für Numerische Mathematik |
0+2+0 |
F01/555 |
Zielgruppe |
Mathematische Masterstudiengänge (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorstellung aktueller Ergebnisse zur Numerischen Mathematik, Gastvorträge |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Seminar Optimierung und optimale Steuerung |
0+2+0 |
F01/557 |
Zielgruppe |
Mathematische Masterstudiengänge (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorträge zu den Themengebieten Optimierung und optimale Steuerung sowie verwandten Gebieten |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
| |
Seminar Numerik partieller Differentialgleichungen |
0+2+0 |
F01/556 |
Zielgruppe |
Mathematische Masterstudiengänge (Spezialisierung Numerische Mathematik) |
Vorkenntnisse |
Numerik partieller Differentialgleichungen |
Inhalt |
Aktuelle Forschungsergebnisse im Fachgebiet |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul Grundlagen Mathematik (Maschinenwesen) |
4+2+0 |
F01/591 |
Zielgruppe |
Studierende Maschinenwesen (1. Sem., Module MB-02, VNT_01, WW-A01) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Modulprüfung (Klausur) |
Dozent/Zeit/Ort |
Sander |
V |
Mi |
1. DS |
HSZ AUDI |
|
|
|
|
Sander |
V |
Do |
3. DS |
HSZ AUDI |
|
|
|
|
Scheithauer |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
| |
Modul VW-VI-100: Lineare Algebra und Analysis für Funktionen einer Variablen (Verkehrsingenieurwesen) |
4+3+0 |
F01/595 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Modulprüfung (Klausur) |
Dozent/Zeit/Ort |
Matthies |
V |
Mi |
1. DS |
POT/81/H |
|
|
|
|
Matthies |
V |
Do |
3. DS |
POT/81/H |
|
|
|
|
Herrich |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
| |
Modul Spezielle Kapitel der Mathematik, Teil 1 (Maschinenwesen) |
2+2+0 |
F01/593 |
Zielgruppe |
Studierende Maschinenwesen (3. Sem., Module MB-06, VNT_03, WW-A03) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
entsprechend der Regelung der immatrikulierenden Fakultät |
Leistungsnachweis |
Modulprüfung am Ende von Mathematik III/2 über beide Semester |
Dozent/Zeit/Ort |
Eppler |
V |
Di |
1. DS |
HSZ AUDI |
|
|
|
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
| |
Modul VW-VI-102: Integraltransformationen, Integralrechnung für Funktionen mehrerer Variabler (Verkehrsingenieurwesen) |
3+2+0 |
F01/597 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I, II für Verkehrsingenieure |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
Dozent/Zeit/Ort |
Eppler |
V |
Mi |
3. DS |
WIL A317 |
|
|
|
|
Eppler |
V |
Fr |
2. DS |
WIL A317 |
gerade Woche |
|
|
|
Schönefeld |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs