Archiv / Archive
Lehrveranstaltungen: Wintersemester 2017 / 2018
Gesamtübersicht
Institut für Algebra
| |
Modul Math Ba LAAG: Lineare Algebra und Analytische Geometrie (Teil 1) |
4+2+0 |
F01/111 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.); gemeinsam mit Lehramt GY und BBS - Staatsexamen, 1. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fehm |
V |
Mi |
3. DS |
TRE MATH |
|
|
|
|
Fehm |
V |
Do |
3. DS |
TRE MATH |
|
|
|
|
Zschalig |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
| |
Modul MN-SEGY/SEBS-MAT-LAAG: Lineare Algebra und Analytische Geometrie (Teil 1) |
4+2+0 |
F01/111* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 1. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fehm |
V |
Mi |
3. DS |
TRE MATH |
|
|
|
|
Fehm |
V |
Do |
3. DS |
TRE MATH |
|
|
|
|
Zschalig |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Kursassistenten. |
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Diskrete Strukturen |
4+0+0 |
F01/131 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Lehtonen |
V |
Do |
3. DS |
WIL C133 |
|
|
|
|
Lehtonen |
V |
Di |
4. DS |
WIL C129 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Galoistheorie |
4+0+0 |
F01/132 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fehm |
V |
Mi |
6. DS |
WIL C129 |
|
|
11.08.2017: Änderung für die Zeit eingetragen |
|
Fehm |
V |
Fr |
2. DS |
WIL C133 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul Math Ba SEM - Seminar (Angebot des Institutes für Algebra ) |
0+2+0 |
F01/135 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Module Math-Ba-GDIM, ANAG |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Baumann |
S |
Fr |
5. DS |
WIL A221 |
|
|
|
• • • 4. und 5. Studienjahr (Masterstudium, Staatsexamen Lehramt) • • •
| |
Modul Math Ma ORDSTR: Ordnungsstrukturen |
3+1+0 |
F01/142 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
3. DS |
WIL C129 |
|
|
|
|
Schmidt, St. |
V |
Di |
3. DS |
WIL A124 |
|
|
18.09.2017: Änderung für den Modultitel eingetragen |
| |
Modul Math Ma ANGALG: Angewandte Algebra |
4+0+0 |
F01/144 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen',
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen',
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
The aim of this algebra course is to study finite groups via representation theory, that is, via the part of mathematics which examines how finite groups act on given structures. Here the focus is in particular on operations of finite groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. A concrete goal of the present course is to use these tools to prove the following classical group theoretic result, due to Burnside (1904): every finite group whose order is the product of two prime powers is solvable.
empfohlene Literatur:
- LANG, Algebra,
- GORDON and LIEBECK, Representations and Characters of Groups. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English |
Dozent/Zeit/Ort |
Legrand |
V |
Mo |
6. DS |
WIL A124 |
|
|
|
|
Legrand |
V |
Fr |
2. DS |
WIL A124 |
|
|
18.09.2017: Änderung für den Modultitel eingetragen |
| |
Modul Math Ma DISMAT: Diskrete Mathematik |
3+1+0 |
F01/143 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Verbitsky |
V |
|
|
|
|
|
|
|
Die geplante Vorlesung kann leider nicht stattfinden. |
| |
Modul Math Ma MMRM: Geordnete Mengen in Hyperebenenarrangements |
3+1+0 |
F01/150 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Inhalt |
In diesem Kurs beschäftigen wir uns mit kombinatorischen Aspekten von Hyperebenenarrangements. Dazu führen wir zunächst die notwendigen Begriffe ein und präsentieren zwei zentrale Ergebnisse: den Satz von Whitney (über die Berechnung des charakteristischen Polynoms) und den Satz von Zaslavsky (über die Abzählung von (beschränkten) Regionen). Anschließend studieren wir eine partielle Ordnung auf den Regionen eines Hyperebenenarrangements, sowie eine partielle Ordnung auf sogenannten Scherben von Hyperebenen. Als laufendes Beispiel dienen uns Hyperebenenarrangements die im Zusammenhang mit (endlichen) Coxetergruppen entstehen. Wir unterstreichen wie sich so aus dem Fall der symmetrischen Gruppe bekannte kombinatorische Objekte verallgemeinern lassen. |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
English on request |
Dozent/Zeit/Ort |
Mühle |
V |
Mi |
3. DS |
SE2/0203 |
|
|
20.10.2017: Änderung für Zeit und Raum eingetragen |
|
Mühle |
V |
Do |
2. DS |
WIL C129 |
|
Übung integriert |
20.10.2017: Änderung in Fußzeile beachten |
|
Achtung: ab 2.11. neue Zeit für Do-Vorlesung: Do 6. DS, WIL C 133 |
| |
Modul Math Ma MMRM: Kategorientheorie |
2+0+0 |
F01/148 |
Zielgruppe |
Master-Studiengang Mathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
In der Kategorientheorie werden algebraische (und auch andere) Strukturen und strukturerhaltende Abbildungen aus einer allgemeinen Perspektive behandelt. Die Vorlesung gibt eine Einführung in die grundlegenden Begriffe und Konstruktionen sowie zahlreiche Anwendungen. |
Leistungsnachweis |
in Absprache mit dem Dozenten |
Sprache / Language |
Deutsch |
Dozent/Zeit/Ort |
Pöschel |
V |
Di |
6. DS |
WIL A124 |
|
|
|
| |
Modul MN-SEGY-MAT-MVERT: Diskrete Strukturen |
4+0+0 |
F01/131* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Lehtonen |
V |
Do |
3. DS |
WIL C133 |
|
|
|
|
Lehtonen |
V |
Di |
4. DS |
WIL C129 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul MN-SEGY-MAT-MVERT: Galoistheorie |
4+0+0 |
F01/132* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ALGZTH; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Fehm |
V |
Mi |
6. DS |
WIL C129 |
|
|
11.08.2017: Änderung für die Zeit eingetragen |
|
Fehm |
V |
Fr |
2. DS |
WIL C133 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul MN-SEGY-MAT-MVERT: Ordnungsstrukturen |
3+1+0 |
F01/142* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ba-ALGZTH; ggf. Absprache mit dem Dozenten |
Inhalt |
Modul Math Ma ORDSTR: Ordnungsstrukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
3. DS |
WIL C129 |
|
|
|
|
Schmidt, St. |
V |
Di |
3. DS |
WIL A124 |
|
|
18.09.2017: Änderung für den Modultitel eingetragen |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar Algebra, Geometrie und Kombinatorik |
0+2+0 |
F01/155 |
Zielgruppe |
Master-Studiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
| |
Algebra: International Seminar |
0+2+0 |
F01/156 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende Computational Logic, Doktoranden, Gäste |
Inhalt |
Im Seminar kommen bevorzugt aktuelle Forschungsergebnisse zur Diskussion, insbesondere solche, die von Mitgliedern und Gästen des Instituts für Algebra erarbeitet werden. Weil meist ausländische Wissenschaftler teilnehmen, ist die Arbeitssprache Englisch. |
Einschreibung |
- |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Lehtonen |
S |
Fr |
4. DS |
WIL C204 |
|
|
|
| |
Seminar: Musik, Mathematik, Kognition |
0+2+0 |
F01/157 |
Zielgruppe |
Mathematische Masterstudiengänge, Studierende an den Fachbereichen Musikwissenschaft, Informatik und Psychologie und alle Interessenten |
Inhalt |
Das Seminar ist ein kritischer Streifzug durch die interdisziplinären Verbindungen von Musik, Mathematik, Psychologie, Informatik, Linguistik und verwandten Disziplinen. Den Schwerpunkt stellt das Spannungsverhältnis von Musik als Hörerfahrung und Musik als formaler Struktur dar. Das Seminar widmet sich der Diskussion aktueller Studien im Bereich der Musikkognition sowie gegenwärtigen formalen und mathematischen Ansätze in Musiktheorie unter dem Aspekt der Entwicklung einer extensionalen Standardsprache. Ziel des Seminars ist die kritische Reflexion des aktuellen Forschungsstands und die Diskussion neuer wissenschaftlicher Initiativen.
Ggf. besteht für Studierende anderer Fachrichtungen und Fakultäten die Möglichkeit, sich die Seminarteilnahme im Bereich Aqua anerkennen zu lassen. Bitte erkundigen Sie sich in Ihrem Prüfungsamt. |
Dozent/Zeit/Ort |
Schmidt, St. |
S |
Di |
6. DS |
WIL C103 |
|
|
|
|
Die erste Veranstaltung findet am Di, 17.10.2107 statt. |
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul INF B110: Einführung in die Mathematik für Informatiker: Diskrete Strukturen und Lineare Algebra |
6+4+0 |
F01/184 |
Zielgruppe |
Bachelor-Studiengänge Informatik und Medieninformatik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Diskrete Strukturen: Es werden der Umgang mit mathematischer Methodik, grundlegende mathematische Begriffe, Schreibweisen, Argumentationsformen und Fertigkeiten am Beispiel der Mengen- und Formelsprache und an Elementen der Diskreten Mathematik behandelt. Im Einzelnen: Graphen, Relationen, Abbildungen und Morphismen, Ordnungen und Verbände, Symmetrien, modulare Arithmetik. Lineare Algebra und Geometrie: Es werden der systematische Theorieaufbau, der darauf gründende abstrakte Strukturbegriff und seine Anwendungen betont. Im Einzelnen: Vektorraum, Basis, Dimensionen, lineare Gleichungssysteme, Bestapproximation, eometrische Interpretationen, Eigenwerte sowie der Umgang mit komplexen Zahlen. |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Baumann |
V |
Mo |
3. DS |
TRE MATH |
|
Lineare Algebra |
|
|
Bodirsky |
V |
Mi |
3. DS |
HSZ/02/E |
|
Diskrete Strukturen |
|
|
Bodirsky |
V |
Fr |
3. DS |
TRE MATH |
|
Diskrete Strukturen |
|
|
Noack |
Ü |
|
|
|
|
Kursassistentin: Lineare Algebra |
|
|
Reichard |
Ü |
|
|
|
|
Kursassistent: Diskrete Strukturen |
|
|
Für die Übungen siehe Webseiten der beiden Kursassistenten. |
| |
Modul ET-01 04 04: Algebra (Teil 1, Informationssystemtechnik) |
1+1+0 |
F01/181 |
Zielgruppe |
Studierende Informationssystemtechnik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Ausgewählte Kapitel der Angewandten Algebra, Methoden der algebraischen Modellierung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Baumann |
V |
Mi |
2. DS |
WIL C129 |
gerade Woche |
|
|
|
Mühle |
Ü |
Fr |
3. DS |
WIL C205 |
ungerade Woche |
Kursassistent |
16.08.2017: Änderung für Zeit und Raum eingetragen |
|
Mühle |
Ü |
Fr |
3. DS |
WIL C205 |
gerade Woche |
|
20.10.2017: Änderung für den Raum eingetragen |
| |
Modul INF B120: Mathematische Methoden für Informatiker (Teil 2) |
3+2+0 |
F01/187 |
Zielgruppe |
Bachelor-Studiengänge Informatik und Medieninformatik (3. Sem.) |
Vorkenntnisse |
Einführung in die Mathematik für Informatiker, Modul INF B120: Mathematische Methoden für Informatiker (Teil 1) |
Inhalt |
Algebra, Analysis, Numerische Mathematik, Wahrscheinlichkeitsrechnung |
Einschreibung |
- |
Leistungsnachweis |
Prüfung |
Dozent/Zeit/Ort |
Baumann |
V |
Di |
3. DS |
HSZ/02/E |
ungerade Woche |
|
|
|
Baumann |
V |
Do |
3. DS |
HSZ/02/H |
|
|
10.10.2017: Raum geändert |
|
Noack |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul INF-D9-20: Galoistheorie (= Math Ba ALGSTR) |
4+0+0 |
F01/132+ |
Zielgruppe |
für Diplom-Studiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fehm |
V |
Mi |
6. DS |
WIL C129 |
|
|
11.08.2017: Änderung für die Zeit eingetragen |
|
Fehm |
V |
Fr |
2. DS |
WIL C133 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
| |
Modul INF-D9-20: Diskrete Strukturen (= Math Ba ALGSTR) |
4+0+0 |
F01/131+ |
Zielgruppe |
für Diplom-Studiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Lehtonen |
V |
Do |
3. DS |
WIL C133 |
|
|
|
|
Lehtonen |
V |
Di |
4. DS |
WIL C129 |
|
|
14.08.2017: Änderung für Ort und Zeit eingetragen |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs