LV-Archiv: Sommersemester 2017 - Ausgewählte Kataloganzeige
Gesamtübersicht
Institut für Numerische Mathematik
• • • 2. Studienjahr • • •
| |
Modul Math Ba NUM: Numerische Mathematik |
3+1+0 |
F01/522 |
Zielgruppe |
Bachelor-Studiengang Mathematik (4. Sem.), Master Physik - Nebenfach Mathematik |
Vorkenntnisse |
laut Modulbeschreibung |
Inhalt |
laut Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit Einschreibung |
Dozent/Zeit/Ort |
Sander |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Sander |
V |
Do |
2. DS |
WIL C307 |
ungerade Woche |
|
|
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba OPTINUM Optimierung und Numerik |
3+1+0 |
F01/531 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.) |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sander |
V |
Mo |
3. DS |
WIL A124 |
|
|
|
|
Sander |
V |
Do |
4. DS |
WIL C129 |
|
Übung integriert |
|
• • • 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma DISOPT: Diskrete Optimierung |
3+1+0 |
F01/541 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Master Physik - Nebenfach Mathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der Optimierung auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Beispiele und Grundbegriffe, Branch and Bound, Branch and Cut, Polyedertheorie, ganzzahlige Polyeder und totale Unimodularität, ganzzahlige Gitter, Schnittebenenverfahren, Dynamische Optimierung, Flüsse in Graphen, Greedy-Algorithmen und Matroide, Komplexität von Problemen und Algorithmen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
| |
Modul Math Ma PDENMW: Numerik mit partiellen Differentialgleichungen – weiterführende Konzepte |
3+1+0 |
F01/545 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ma-PDENM. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache / Language |
Deutsch |
Dozent/Zeit/Ort |
Matthies |
V |
Mo |
5. DS |
WIL C204 |
|
|
|
|
Matthies |
V |
Do |
3. DS |
WIL A120 |
|
Übung integriert |
|
| |
Modul Math Ma WIA: Ausblicke aus der Riemannschen Geometrie |
2+2+0 |
F01/540 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Analysis 1 bis 3; Hintergrundwissen in
Differentialgeometrie und Funktionalanalysis sind wünschenswert |
Inhalt |
Das Ziel der Veranstaltung ist es, die Riemannsche Geometrie aus
verschiedenen Blickwinkeln kennenzulernen und insbesondere über die
Grenzen der Standardeinführungskurse hinaus einen Einblick in
Anwendungen und Erweiterungen dieser zu bekommen.
In der ersten Hälfte des Semesters werden in Vorlesungsform einige
Grundlagen, die bereits aus der Analysis bekannt sind, wiederholt, sowie
in ausgewählten Bereichen erweitert, um alle auf denselben Wissenstand
zu bringen. In der zweiten Hälfte werden in Vorträgen der Studierenden
Themen erarbeitet, die einen Ausblick über diese Themen hinaus geben
werden. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Sprache / Language |
English on request |
| |
Modul MN-SEMS-MAT-ELNUM: Elementare Numerik |
2+2+0 |
F01/473 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 8. Sem. |
Vorkenntnisse |
Kompetenzen auf Niveau der Module MN-SEMS-MAT-GLAAG, MN-SEMS-MAT-EANA und MN-SEMS-MAT-COMPM |
Inhalt |
Interpolation, numerische Integration, lineare Gleichungssysteme und Ausgleichsrechnung, nichtlineare Gleichungen |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Herrich |
V |
Di |
2. DS |
WIL C203 |
|
|
|
|
Friedow |
Ü |
Di |
4. DS |
WIL C203 |
|
|
|
| |
Modul MN-SEGY/SEBS-MAT-SEM: Mathematisches Seminar |
0+0+2 |
F01/549 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen (Zusatzangebot) |
Vorkenntnisse |
Modul MN-SEGY/SEBS-MAT-NUM |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Eppler |
S |
Mi |
4. DS |
WIL C104 |
|
|
|
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar Optimierung und optimale Steuerung |
0+2+0 |
F01/557 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorträge zu den Themengebieten Optimierung und optimale Steuerung sowie verwandten Gebieten, siehe auch: www.math.tu-dresden.de/num/body/nlgl_opt.html |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Eppler |
S |
Di |
3. DS |
WIL C307 |
|
|
|
| |
Seminar Differentialgleichungen |
0+2+0 |
F01/556 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik (Spezialisierung Numerische Mathematik) |
Vorkenntnisse |
Numerik partieller Differentialgleichungen |
Inhalt |
Aktuelle Forschungsergebnisse im Fachgebiet |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Matthies |
S |
Di |
3. DS |
WIL C203 |
|
|
|
| |
Seminar des Institutes für Numerische Mathematik |
0+2+0 |
F01/555 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorstellung aktueller Ergebnisse zur Numerischen Mathematik, Gastvorträge |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul Ingenieurmathematik (Maschinenwesen) |
4+2+0 |
F01/592 |
Zielgruppe |
Studierende Maschinenwesen (2. Sem., Module MB-05, VNT_02, WW-A02) |
Vorkenntnisse |
Module MB-02, VNT_01, WW-A01 |
Inhalt |
Anwendung der Differential- und Integralrechnung in Geometrie und Mechanik, gewöhnliche Differentialgleichungen und Systeme, Differentialrechnung für Funktionen mit mehreren Veränderlichen |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Eppler |
VO |
Mi |
3. DS |
HSZ AUDI |
|
|
|
|
Eppler |
VO |
Fr |
1. DS |
HSZ AUDI |
|
|
|
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul VW-VI-101: Differentialgleichungen und Differentialrechnung für Funktionen mehrerer Variabler (Verkehrsingenieurwesen) |
4+3+0 |
F01/595 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (2. Sem.) |
Vorkenntnisse |
Modul VW-VI-100 |
Inhalt |
Anwendung der Differential- und Integralrechnung in Geometrie und Mechanik, gewöhnliche Differentialgleichungen und Systeme, Differentialrechnung für Funktionen mit mehreren Veränderlichen |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fischer, A. |
V |
Mi |
1. DS |
WIL B321 |
|
|
|
|
Fischer, A. |
V |
Do |
3. DS |
POT/361/H |
|
|
|
|
Schönefeld |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul Spezielle Kapitel der Mathematik, Teil 2 (Maschinenwesen) |
2+2+0 |
F01/594 |
Zielgruppe |
Studierende Maschinenwesen (4. Sem., Module MB-06, VNT_03, WW-A03) |
Vorkenntnisse |
Module MB-02 und 05, VNT_01 und _02, WW-A01 und -A02 |
Inhalt |
Partielle Differentialgleichungen, Wahrscheinlichkeitsrechnung, Elemente der Mathematischen Statistik |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Matthies |
VO |
Di |
1. DS |
HSZ AUDI |
|
|
|
|
Scheithauer |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul BA-CH-Ma: Mathematik II (Chemie) |
2+2+0 |
F01/582 |
Zielgruppe |
Studierende Chemie, Lebensmittelchemie |
Inhalt |
Lineare Algebra, Integralrechnung für Funktionen mehrerer Veränderlicher, Differentialgleichungen |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
Dozent/Zeit/Ort |
Eppler |
V |
Di |
2. DS |
HSZ/04/H |
|
|
|
|
Herrich |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs