LV-Archiv: Sommersemester 2017 - Ausgewählte Kataloganzeige



Gesamtübersicht
Institut für Analysis - ohne Professur für Didaktik der Mathematik





  •  •  •   1. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ba ANAG: Grundlagen der Analysis (Teil 2)
4+2+0 F01/211
Zielgruppe Bachelor-Studiengang Mathematik (2. Sem.) (gemeinsam mit BA-Physik, SE-Lehramt GY und BBS, Fach Mathematik)
Vorkenntnisse Modul Math Ba ANAG: Grundlagen der Analysis (Teil 1)
Inhalt
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Dozent/Zeit/Ort Chill    V    Mi    3. DS   TRE MATH            
  Chill    V    Do    3. DS   TRE MATH            
  Scheffler    Ü                Kursassistent     
  Für die Übungen siehe OPAL-Kurs, bitte beachten Sie Änderungen bis zum Semesterbeginn
  
Modul MN-SEMS-MAT-ELEGEOM: Elementargeometrie
2+1+2 F01/215
Zielgruppe Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik (gemeinsam mit Lehramt an Grundschulen)
Inhalt siehe Modulbeschreibung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Koksch    V    Do    4. DS   TRE MATH          13.03.2017: Änderung der Zeit eingetragen   
  Röder    Ü    Di    4. DS   WIL C106            
  Röder    Ü    Do    3. DS   WIL C102            
  Röder    Ü    Fr    2. DS   WIL C103            
  Päßler    S    Mo    2. DS   WIL C204       Seminar     
  Hellwig    S    Di    2. DS   WIL C205       Seminar     
  Päßler    S    Mi    5. DS   WIL C106       Seminar     
  Herrmann    S    Do    5. DS   WIL C106       Seminar     
  Für die Einschreibung in die Seminare siehe (ggf. später) OPAL-Kurs
  
Modul EW-SEGS-M-2: Geometrie für das Lehramt an Grundschulen
2+1+0 F01/215*
Zielgruppe Staatsexamen: Lehramt an Grundschulen, Fach Mathematik (gemeinsam mit Lehramt an Mittelschulen)
Inhalt siehe Modulbeschreibung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Koksch    V    Do    4. DS   TRE MATH          13.03.2017: Änderung der Zeit eingetragen   
  Röder    Ü    Di    4. DS   WIL C106            
  Röder    Ü    Do    3. DS   WIL C102            
  Röder    Ü    Fr    2. DS   WIL C103            




  •  •  •   2. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ba PROSEM: Proseminar Analysis
0+2+0 F01/225
Zielgruppe Bachelor-Studiengang Mathematik (4. Sem.)
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis   laut Modulbeschreibung
Internet  Info-Seite Seminare
OPAL  Für OPAL-Einschreibung siehe Info-Seite Seminare
Dozent/Zeit/Ort Schuricht    S    Di    6. DS   WIL C102            
  
Modul MN-SEGY/SEBS-MAT-ANA: Analysis (Teil 2)
3+2+0 F01/211*
Zielgruppe Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, Fach Mathematik, 4. Sem.
gemeinsam mit BA-Math., BA-Physik
Vorkenntnisse Modul MN-SEGY/SEBS-MAT-ANA: Analysis (Teil 1)
Inhalt
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Dozent/Zeit/Ort Chill    V    Mi    3. DS   TRE MATH            
  Chill    V    Do    3. DS   TRE MATH            
  Scheffler    Ü                Kursassistent     
  Für die Übungen siehe OPAL-Kurs, bitte beachten Sie Änderungen bis zum Semesterbeginn
  
Modul MN-SEMS-MAT-EANA: Einführung in die Analysis (Teil 2)
3+2+0 F01/228
Zielgruppe Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 4. Sem.
Vorkenntnisse Modul MN-SEMS-MAT-EANA: Einführung in die Analysis (Teil 1)
Modul MN-SEMS-MAT-GLAAG: Grundlagen der Linearen Algebra und Analytischen Geometrie
Inhalt Differential- und Integralrechnung für Funktionen einer und mehrerer Variablen; Einblick in die Theorie der Differentialgleichungen; Anwendungen
Einschreibung   in der 1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Fasangová    V    Mo    3. DS   WIL B321    ungerade Woche         
  Fasangová    V    Do    3. DS   WIL A124            
  N.N.    Ü    Do    1. DS   WIL C206            




  •  •  •   3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ba HANA Höhere Analysis
3+1+0 F01/231
Zielgruppe Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG
Inhalt Die Vorlesung hat die Theorie differenzierbarer komplexwertiger Funktionen mit komplexen Variablen zum Gegenstand. Wir besprechen die folgenden Themen: Holomorphe Funktionen, Wegintegrale, Cauchy'scher Integralsatz, Cauchy'sche Integralformel, Fundamentalsatz der Algebra, Laurent-Reihen, Residuensatz, Berechnung von Integralen mit Hilfe von Residuen, Folgen holomorpher Funktionen, Satz von Montel.
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Siegmund    V    Di    5. DS   WIL C129            
  Siegmund    V    Mi    2. DS   WIL C129       Übung integriert     
  
Modul Math Ba HANA Höhere Analysis: Partielle Differentialgleichungen
3+1+0 F01/232
Zielgruppe Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik
Vorkenntnisse Kompetenzen aus der Analysis I und der linearen Algebra (Module Math-Ba-ANAG und Math-Ba-LAAG oder äquivalentes)
Inhalt Viele Phänomene und Prozesse in der Natur und in physikalischen Systemen können durch Größen beschrieben werden, deren räumliche und zeitliche Veränderungen bestimmten Gesetzmäßigkeiten folgen. In der Sprache der Mathematik lassen sich solche Vorgänge durch partielle Differentialgleichungen beschreiben. Die Vorlesung beinhaltet eine Einführung in die Theorie linearer partieller Differentialgleichung. Im Mittelpunkt stehen hierbei die Diffusionsgleichung, die stationäre Wärmeleitungsgleichung, die Wellengleichung und die Transportgleichung. In der Vorlesung werden wir uns auf die klassische, lineare Theorie konzentrieren und insbesondere folgende Konzepte kennenlernen:
  • Maximumsprinzip, Mittelwerteigenschaft, Perronmethode
  • Greensche Funktion und Wärmeleitungskern
  • Fouriermethode
  • Distributionen
Die Theorie partieller Differentialgleichungen bietet vielfältige Anknüpfungspunkte zu verschiedenen Bereichen der Mathematik und den Naturwissenschaften. In der Vorlesung werden wir diese interessanten Querverbindungen an verschiedenen Beispielen thematisieren. Nicht Gegenstand der Vorlesung sind: Regularitätstheorie, Sobolevräume, Energiemethoden. Die Vorlesung richtet sich an Studenten im Studiengang Mathematik (Bachelor und Lehramt) sowie Studenten der Physik (ab 6. Fachsemester)
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Neukamm    V    Di    3. DS   WIL C129            
  Neukamm    V    Do    3. DS   WIL C129       Übung integriert     
  
Modul MN-SEGY-MAT-PROSEM: Mathematisches Proseminar Analysis
0+0+2 F01/236
Zielgruppe Staatsexamen: Höheres Lehramt an Gymnasien, Fach Mathematik, 6. Sem.
Vorkenntnisse -
Inhalt siehe PDF (unten verlinkt)
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis   laut Modulbeschreibung
Internet  Webseite zum Seminar
OPAL  Für OPAL-Einschreibung siehe Info-Seite Seminare
Dozent/Zeit/Ort Chill    S    Do    2. DS   WIL C203            
  
Modul MN-SEBS-MAT-PROSEMB: Mathematisches Proseminar BBS - Analysis
0+0+2 F01/236*
Zielgruppe Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik
Vorkenntnisse -
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis   laut Modulbeschreibung
Internet  Webseite zum Seminar
OPAL  Für OPAL-Einschreibung siehe Info-Seite Seminare
Dozent/Zeit/Ort Chill    S    Do    2. DS   WIL C203            




  •  •  •   4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ma DYSYSG: Dynamische Systeme – Grundlagen
3+1+0 F01/241
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Master Physik - Nebenfach Mathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'.
Vorkenntnisse -
Inhalt Schwerpunkte der LV sind grundsätzliche Konzepte der Theorie dynamischer Systeme, der linearen und nichtlinearen Theorie, wie z.B. Stabilitätstheorie und Bifurkationstheorie, Chaos und symbolische Dynamik.
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Sprache / Language  English on request
Dozent/Zeit/Ort Siegmund    V    Di    4. DS   WIL C133            
  Siegmund    V    Do    2. DS   WIL B122       Übung integriert     
  
Modul Math Ma MANA: Methoden der Analysis
3+1+0 F01/244
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen'
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen'
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'.
Vorkenntnisse laut Modulbeschreibung
Inhalt Wir behandeln eine Auswahl von Themen aus der geometrischen Analysis, d.h. der Analysis 'auf' und 'mit' Mannigfaltigkeiten. Nach Einführung der nötigen Grundlagen konzentrieren wir uns auf Fragestellungen, die sich über die Methoden der Variationsrechnung untersuchen lassen, wie Flächen konstanter mittlerer Krümmung ('Warum sind Seifenblasen rund?'), Minimalflächen und Geodäten und geben einen Überblick über verschiedene geometrische Flüsse. Die Tiefe und auch die Auswahl der behandelten Themen richtet sich auch nach den Interessen und dem Wissensstand der Zuhörerschaft.
Einschreibung   in der Vorlesung
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Sprache / Language  English on request
Dozent/Zeit/Ort Hornung / Jachan    V    Di    5. DS   WIL A221            
  Hornung / Jachan    V    Mi    3. DS   WIL A221       Übung integriert     
  
Modul Math Ma NLANA: Nichtlineare Analysis
3+1+0 F01/246
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'.
Vorkenntnisse Kompetenzen aus den Gebieten Funktionalanalysis und Analysis partieller Differentialgleichungen auf Bachelor-Niveau.
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Schuricht    V    Di    3. DS   HSZ/204/U            
  Schuricht    V    Do    4. DS   WIL B321       Übung integriert     
  
Modul Math Ma WIA: (Analysis)
F01/240
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten
Klassifizierung Master Math: Pflichtmodul.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich.
Master WMath: Pflichtmodul.
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis   laut Modulbeschreibung
Internet  Info-Seite Seminare
OPAL  Für OPAL-Einschreibung siehe Info-Seite Seminare
Dozent/Zeit/Ort Schuricht    V/S    Do    2. DS   WIL C133            
  2 SWS Vorlesung oder Seminar - wird noch präzisiert
  
Modul Math Ma MMRM bzw. MMAM: Strukturen und Operatoren in geordneten Vektorräumen
3+1+0 F01/250
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik u.a. Interessenten
Klassifizierung Master Math: Pflichtmodul.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich.
Master WMath: Pflichtmodul.
Inhalt Grundlegende Eigenschaften von Vektorverbänden und halbgeordneten Vektorräumen, Ordnungsdual, Rieszsche Zerlegungseigenschaft und die Riesz-Kantorovich-Formeln für Operatoren, Archimedische Räume und die Dedekind-Vervollständigung, Prä-Riesz-Räume und die Riesz-Vervollständigung, Riesz*-Homomorphismen, Räume mit Ordnungseinheit und deren Funktionaldarstellung, Ideale und Bänder in Prä-Riesz-Räumen, reguläre Normen auf Prä-Riesz-Räumen, lokale und disjunktheitserhaltende Operatoren (und ggf. Operatorhalbgruppen)
Einschreibung   -
Leistungsnachweis   laut Modulbeschreibung
OPAL  Für OPAL-Einschreibung siehe Info-Seite Seminare
Sprache / Language  English on request
Dozent/Zeit/Ort Kalauch    V    Mo    3. DS   WIL C129            
  Kalauch    V    Di    2. DS   WIL C129       Übung integriert     
  
Modul MN-SEGY/SEBS-MAT-DGL: Gewöhnliche Differentialgleichungen
2+2+0 F01/471
Zielgruppe Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik (8. Sem. )
Vorkenntnisse Kompetenzen aus den Modulen "Analysis" und "Lineare Algebra und Analytische Geometrie"
Inhalt In der LV werden vertiefte analytische Fertigkeiten und Verständnis für mathematische Zusammenhänge auf dem Gebiet der gewöhnlichen Differentialgleichungen vermittelt. Dazu gehören Aussagen zur Existenz und Eindeutigkeit der Lösungen und ihrer stetigen Abhängigkeit von den Anfangsbedingungen sowie explizite Lösungsmethoden. Vermittelt werden außerdem grundl. Fähigkeiten zur eigenständigen Erarbeitung begrenzter Sachverhalte des Gebiets.
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Trostorff    V    Fr    2. DS   WIL A317            
  Trostorff    Ü    Di    2. DS   WIL C204            
  Mildner    Ü    Mi    4. DS   WIL C129            
  
Positive Matrizen
(fakultativ, 2+0+0) F01/273
Zielgruppe Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen (insbesondere Ergänzungsbereich: EGS-SEGY-3, EGS-SEBS-3)
Dozent/Zeit/Ort    V                   13.03.2017   
  Die Vorlesung kann leider nicht stattfinden.




  •  •  •   Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten   •  •  •  
  
Oberseminar Analysis
0+2+0 F01/255
Zielgruppe Mathematische Masterstudiengänge, Studierende Physik
Vorkenntnisse Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen
Inhalt Lose Folge von Vorträgen zu ausgewählten Themen der Analysis.
Einschreibung   -
Leistungsnachweis   -
Internet  Aktuelle Vorträge
Dozent/Zeit/Ort Chill    S    Do    5. DS   WIL C129            
  
Seminar: Themen der Mathematischen Physik
0+2+0 F01/257
Zielgruppe Studierende Physik mit Nebenfach Mathematik, Studierende in den Math. Masterstudiengängen
Inhalt Es werden ausgewählte Themen der mathematischen Physik behandelt: Semiklassische Analysis - Übergang zwischen klassischer Mechanik und Quantenmechanik; Pseudodifferentialoperatoren, Weylsche Gesetze, WKB-Näherung
Einschreibung   siehe eigene Internetseite des Seminars
Leistungsnachweis   Schein möglich (für math. Diplom-Studiengänge)
Internet  Webseite zum Seminar
Dozent/Zeit/Ort Kalauch/Timmermann    S    Di    5. DS   GER 51          26.04.2017: Änderung für Zeit und Raum eingetragen   




  •  •  •   Für Studiengänge anderer Fachrichtungen und Fakultäten   •  •  •  
  
Modul Phy-Ba-Ma-Ana-Grund: Grundlagen der Analysis (Teil 2) (Physik)
4+2+0 F01/211+
Zielgruppe Bachelor-Studiengang Physik (2. Sem.) (gemeinsam mit BA-Mathematik, SE-Lehramt GY und BBS, Fach Mathematik)
Vorkenntnisse Modul Ma-I: Analysis (Teil 1) (Physik)
Inhalt siehe Modulbeschreibung
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Dozent/Zeit/Ort Chill    V    Mi    3. DS   TRE MATH            
  Chill    V    Do    3. DS   TRE MATH            
  Scheffler    Ü                Kursassistent     
  Für die Übungen siehe OPAL-Kurs, bitte beachten Sie Änderungen bis zum Semesterbeginn
  
Mathematik II - BIW1-05: Lineare Algebra und Analysis (Bauingenieurwesen)
4+2+0 F01/282
Zielgruppe Studierende Bauingenieurwesen (gemeinsam mit Geo- und Hydrowissenschaften)
Vorkenntnisse Mathematik I
Inhalt Lineare Algebra, Differential- und Integralrechnung für Funktionen mehrerer Veränderlicher, spezielle Differentialgleichungen erster und zweiter Ordnung, Funktionenreihen
Einschreibung   -
Leistungsnachweis   Klausur Mathematik 2
Dozent/Zeit/Ort Koksch    V    Di    2. DS   TRE MATH            
  Koksch    V    Do    1. DS   TRE MATH            
  Koksch    Ü                Kursassistent     
  Für die Übungen siehe Webseite beim Dozenten.
  
Mathematik II - BWW01: Mathematik (Wasserwirtschaft, Hydrologie, Abfallwirtschaft und Altlasten)
4+2+0 F01/282*
Zielgruppe Studierende Wasserwirtschaft, Hydrologie, Abfallwirtschaft und Altlasten (gemeinsam mit Bauingenieurwesen und Geowissenschaften)
Vorkenntnisse Mathematik I
Inhalt Lineare Algebra, Differential- und Integralrechnung für Funktionen mehrerer Veränderlicher, spezielle Differentialgleichungen erster und zweiter Ordnung, Funktionenreihen
Einschreibung   -
Leistungsnachweis   Klausur Mathematik 2
Dozent/Zeit/Ort Koksch    V    Di    2. DS   TRE MATH            
  Koksch    V    Do    1. DS   TRE MATH            
  Koksch    Ü                Kursassistent     
  Für die Übungen siehe Webseite beim Dozenten.
  
Mathematik II - BSc GG 02: Mathematik - Lineare Algebra und Analysis (Geodäsie und Geoinformation)
4+2+0 F01/282+
Zielgruppe Studierende Geodäsie und Geoinformation (gemeinsam mit Bauingenieurwesen und Hydrowissenschaften)
Vorkenntnisse Mathematik I
Inhalt Lineare Algebra, Differential- und Integralrechnung für Funktionen mehrerer Veränderlicher, spezielle Differentialgleichungen erster und zweiter Ordnung, Funktionenreihen
Einschreibung   -
Leistungsnachweis   Klausur Mathematik 2
Dozent/Zeit/Ort Koksch    V    Di    2. DS   TRE MATH            
  Koksch    V    Do    1. DS   TRE MATH            
  Koksch    Ü                Kursassistent     
  Für die Übungen siehe Webseite beim Dozenten.
  
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure
2+1+0 F01/274
Zielgruppe Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens
Vorkenntnisse Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums, Teil 1 des Moduls
Inhalt Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw.
Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung.
Einschreibung   -
Leistungsnachweis   lt. Prüfungsordnung
Dozent/Zeit/Ort Trostorff    V    Mi    3. DS   WIL C102            
  Trostorff    Ü    Do    2. DS   WIL C105    gerade Woche       07.04.2017: Änderung für die Zeit eingetragen   






 Autor: Lehrveranstaltungsmanagement Mathematik
 Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs