LV-Archiv: Sommersemester 2017 - Ausgewählte Kataloganzeige



Für die Fachrichtung Physik

  
Modul Phy-Ba-Ma-Ana-Grund: Grundlagen der Analysis (Teil 2) (Physik)
4+2+0 F01/211+
Zielgruppe Bachelor-Studiengang Physik (2. Sem.) (gemeinsam mit BA-Mathematik, SE-Lehramt GY und BBS, Fach Mathematik)
Vorkenntnisse Modul Ma-I: Analysis (Teil 1) (Physik)
Inhalt siehe Modulbeschreibung
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Dozent/Zeit/Ort Chill    V    Mi    3. DS   TRE MATH            
  Chill    V    Do    3. DS   TRE MATH            
  Scheffler    Ü                Kursassistent     
  Für die Übungen siehe OPAL-Kurs, bitte beachten Sie Änderungen bis zum Semesterbeginn
  
Modul Phy-Ba-Ma-AnaFort: Fortgeschrittene Analysis für Physiker (Teil 2) (Physik)
4+2+0 F01/292
Zielgruppe Bachelor-Studiengang Physik (4.Sem.)
Vorkenntnisse Mathematik I, II / 1
Inhalt Operatoren im Hilbertraum (Funktionalanalysis), Funktionentheorie
Einschreibung   -
Leistungsnachweis   -
OPAL  OPAL-Kurs zur Vorlesung
Dozent/Zeit/Ort Hornung    V    Di    6. DS   WIL B321            
  Hornung    V    Mi    4. DS   WIL B321            
  N.N.    Ü    Mi    1. DS   WIL C103            
  N.N.    Ü    Do    1. DS   WIL C103            
  N.N.    Ü    Do    2. DS   WIL C103            
  N.N.    Ü    Do    5. DS   WIL C103            
  Kursassistent: Moritz Schönherr
  
Modul Math Ba ALGZTH: Elemente der Algebra und Zahlentheorie
3+1+0 F01/122
Zielgruppe Bachelor-Studiengang Mathematik (4. Sem.) (gemeinsam mit SE Lehramt GYM, BBS); Master Physik - Nebenfach Mathematik
Vorkenntnisse Lineare Algebra
Inhalt siehe Webseite zur Vorlesung
Einschreibung   -
Leistungsnachweis   laut Modulbeschreibung
Internet  Webseite zur Vorlesung
Dozent/Zeit/Ort Fehm    V    Mi    1. DS   WIL A317    ungerade Woche       15.03.2017: Änderung für Zeit und Ort eingetragen   
  Fehm    V    Do    3. DS   WIL B321            
  Zschalig    Ü                Kursassistent     
  Für die Übungen siehe Webseite oder OPAL-Kurs, wird später verlinkt
  
Modul Math Ba HANA Höhere Analysis
3+1+0 F01/231
Zielgruppe Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG
Inhalt Die Vorlesung hat die Theorie differenzierbarer komplexwertiger Funktionen mit komplexen Variablen zum Gegenstand. Wir besprechen die folgenden Themen: Holomorphe Funktionen, Wegintegrale, Cauchy'scher Integralsatz, Cauchy'sche Integralformel, Fundamentalsatz der Algebra, Laurent-Reihen, Residuensatz, Berechnung von Integralen mit Hilfe von Residuen, Folgen holomorpher Funktionen, Satz von Montel.
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Siegmund    V    Di    5. DS   WIL C129            
  Siegmund    V    Mi    2. DS   WIL C129       Übung integriert     
  
Modul Math Ba HANA Höhere Analysis: Partielle Differentialgleichungen
3+1+0 F01/232
Zielgruppe Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik
Vorkenntnisse Kompetenzen aus der Analysis I und der linearen Algebra (Module Math-Ba-ANAG und Math-Ba-LAAG oder äquivalentes)
Inhalt Viele Phänomene und Prozesse in der Natur und in physikalischen Systemen können durch Größen beschrieben werden, deren räumliche und zeitliche Veränderungen bestimmten Gesetzmäßigkeiten folgen. In der Sprache der Mathematik lassen sich solche Vorgänge durch partielle Differentialgleichungen beschreiben. Die Vorlesung beinhaltet eine Einführung in die Theorie linearer partieller Differentialgleichung. Im Mittelpunkt stehen hierbei die Diffusionsgleichung, die stationäre Wärmeleitungsgleichung, die Wellengleichung und die Transportgleichung. In der Vorlesung werden wir uns auf die klassische, lineare Theorie konzentrieren und insbesondere folgende Konzepte kennenlernen:
  • Maximumsprinzip, Mittelwerteigenschaft, Perronmethode
  • Greensche Funktion und Wärmeleitungskern
  • Fouriermethode
  • Distributionen
Die Theorie partieller Differentialgleichungen bietet vielfältige Anknüpfungspunkte zu verschiedenen Bereichen der Mathematik und den Naturwissenschaften. In der Vorlesung werden wir diese interessanten Querverbindungen an verschiedenen Beispielen thematisieren. Nicht Gegenstand der Vorlesung sind: Regularitätstheorie, Sobolevräume, Energiemethoden. Die Vorlesung richtet sich an Studenten im Studiengang Mathematik (Bachelor und Lehramt) sowie Studenten der Physik (ab 6. Fachsemester)
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Neukamm    V    Di    3. DS   WIL C129            
  Neukamm    V    Do    3. DS   WIL C129       Übung integriert     
  
Modul Math Ba DGEO Differentialgeometrie
3+1+0 F01/331
Zielgruppe Bachelor-Studiengang Mathematik (6. Sem.), Master Physik - Nebenfach Mathematik
Vorkenntnisse Grundkenntnisse aus der Differentialgeometrie, z.B aus dem ersten Teil des Moduls
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Krähmer    V    Mi    4. DS   WIL A120            
  Krähmer    V    Do    5. DS   WIL C133       Übung integriert     
  
Modul Math Ba NUM: Numerische Mathematik
3+1+0 F01/522
Zielgruppe Bachelor-Studiengang Mathematik (4. Sem.), Master Physik - Nebenfach Mathematik
Vorkenntnisse laut Modulbeschreibung
Inhalt laut Modulbeschreibung
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs mit Einschreibung
Dozent/Zeit/Ort Sander    V    Mo    2. DS   TRE MATH            
  Sander    V    Do    2. DS   WIL C307    ungerade Woche         
  Vanselow    Ü                Kursassistent     
  Für die Übungen siehe Webseite beim Kursassistenten.
  
Modul Math Ma DYSYSG: Dynamische Systeme – Grundlagen
3+1+0 F01/241
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Master Physik - Nebenfach Mathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'.
Vorkenntnisse -
Inhalt Schwerpunkte der LV sind grundsätzliche Konzepte der Theorie dynamischer Systeme, der linearen und nichtlinearen Theorie, wie z.B. Stabilitätstheorie und Bifurkationstheorie, Chaos und symbolische Dynamik.
Leistungsnachweis   laut Modulbeschreibung
OPAL  OPAL-Kurs
Sprache / Language  English on request
Dozent/Zeit/Ort Siegmund    V    Di    4. DS   WIL C133            
  Siegmund    V    Do    2. DS   WIL B122       Übung integriert     
  
Modul Math Ma DISOPT: Diskrete Optimierung
3+1+0 F01/541
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik; Master Physik - Nebenfach Mathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Algebra, Geometrie und diskrete Strukturen' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Pflichtmodul.
Vorkenntnisse Kompetenzen aus dem Gebiet der Optimierung auf Bachelor-Niveau sind von Vorteil.
Inhalt Beispiele und Grundbegriffe, Branch and Bound, Branch and Cut, Polyedertheorie, ganzzahlige Polyeder und totale Unimodularität, ganzzahlige Gitter, Schnittebenenverfahren, Dynamische Optimierung, Flüsse in Graphen, Greedy-Algorithmen und Matroide, Komplexität von Problemen und Algorithmen.
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Sprache / Language  Deutsch
Dozent/Zeit/Ort Fischer, A.    V    Mo    2. DS   WIL C307            
  Fischer, A.    V    Do    5. DS   WIL C203       Übung integriert     




  •  •  •   Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten   •  •  •  
  
Seminar: Themen der Mathematischen Physik
0+2+0 F01/257
Zielgruppe Studierende Physik mit Nebenfach Mathematik, Studierende in den Math. Masterstudiengängen
Inhalt Es werden ausgewählte Themen der mathematischen Physik behandelt: Semiklassische Analysis - Übergang zwischen klassischer Mechanik und Quantenmechanik; Pseudodifferentialoperatoren, Weylsche Gesetze, WKB-Näherung
Einschreibung   siehe eigene Internetseite des Seminars
Leistungsnachweis   Schein möglich (für math. Diplom-Studiengänge)
Internet  Webseite zum Seminar
Dozent/Zeit/Ort Kalauch/Timmermann    S    Di    5. DS   GER 51          26.04.2017: Änderung für Zeit und Raum eingetragen   
  
Oberseminar Analysis
0+2+0 F01/255
Zielgruppe Mathematische Masterstudiengänge, Studierende Physik
Vorkenntnisse Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen
Inhalt Lose Folge von Vorträgen zu ausgewählten Themen der Analysis.
Einschreibung   -
Leistungsnachweis   -
Internet  Aktuelle Vorträge
Dozent/Zeit/Ort Chill    S    Do    5. DS   WIL C129            






 Autor: Lehrveranstaltungsmanagement Mathematik
 Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs