LV-Archiv: Wintersemester 2016/2017 - Ausgewählte Kataloganzeige
Gesamtübersicht
Institut für Wissenschaftliches Rechnen
• • • 1. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba PROG: Programmieren für Mathematiker (Teil 1) |
3+2+0 |
F01/611 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Einführung in das strukturierte und modulare Programmieren, mit integriertem Computerpraktikum; praxisrelevante Grundlagen der Informatik, der Programmiersprachen, der Algorithmik und des Wissenschaftlichen Rechnens |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Walter |
V |
Mo |
2. DS |
WIL A317 |
|
|
|
|
Walter |
V |
Do |
4. DS |
WIL B321 |
|
|
|
|
Tutor |
Ü |
Di |
2. DS |
WIL B221/P |
|
|
11.10.2016: Übungszeit neu eingetragen |
|
Tutor |
Ü |
Mi |
3. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Mi |
4. DS |
WIL B221/P |
|
|
11.10.2016: geänderte Übungszeit eingetragen |
|
Tutor |
Ü |
Fr |
3. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
4. DS |
WIL B221/P |
|
|
|
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MOSIM Modellierung und Simulation |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.); Staatsexamen: Höheres Lehramt an Gymnasien (9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung); Studierende Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
Bachelor-Modul MOSIM:
WiSe: Computerarithmetik und Ergebnisverifikation (W. Walter)
SoSe: Modellierung und Simulation mit partiellen Differentialgleichungen (S. Neukamm, A.Voigt)
Inhalt der LV im WiSe 2016/17:
Die Computerarithmetik bildet die Grundlage des numerischen und wissenschaftlichen Rechnens. Sowohl algebraische und algorithmische Aspekte einer Arithmetik als auch logische und technische Aspekte des Entwurfs von Rechenwerken und Prozessoren, welche die arithmetischen Grundoperationen in Hardware realisieren, werden behandelt. Dabei spielen verschiedene Techniken der Beschleunigung der Grundrechenarten sowie die Rundungs- und Genauigkeitsproblematik in der Gleitkommarechnung eine zentrale Rolle.
Eine sogenannte Intervallarithmetik schafft die Voraussetzungen für eine automatisierte numerische Ergebnisverifikation auf dem Computer, deren Ziel die Berechnung garantierter Unter- und Oberschranken für die Lösung bzw. die Lösungsmenge eines numerischen Problems ist. Zusätzliche Hilfsmittel (z.B. Automatische Differentiation, Fixpunktsätze aus der Analysis) ermöglichen es dem Rechner, im Zuge der Berechnung einer Einschließung den Nachweis der Existenz (und oft auch der Eindeutigkeit) der Lösung im berechneten Intervall selbsttätig zu erbringen.
Es werden verifizierende Algorithmen für verschiedene Grundaufgaben der Numerik vorgestellt und im Computerpraktikum teilweise programmiert, z.B. zur Einschließung des Wertebereichs einer Funktion, Nullstellensuche, Lösung linearer Gleichungssysteme, Quadratur, globalen Optimierung, ...
Die Vorlesung wird im Wintersemester auf Wunsch auf ENGLISCH gehalten.
Details der Vorlesung im Sommersemester 2017 werden rechtzeitig bekanntgegeben. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache |
English on request |
Dozent/Zeit/Ort |
Walter |
V |
Di |
3. DS |
WIL C133 |
ungerade Woche |
|
|
|
Walter |
V |
Do |
5. DS |
WIL C133 |
|
|
|
|
Walter |
Ü |
Mo |
3. DS |
WIL C206 od. B221 |
gerade Woche |
|
|
|
Walter |
Ü |
Di |
3. DS |
WIL C133 od. B221 |
gerade Woche |
|
|
• • • 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma FEM: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen |
3+1+0 |
F01/641 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
V |
Mi |
2. DS |
WIL C102 od. B221 |
gerade Woche |
|
|
|
Voigt, A. |
V |
Fr |
1. DS |
WIL C129 |
|
|
19.10.2016: Verlegung eingetragen |
|
Voigt, A. |
Ü |
Mi |
2. DS |
WIL C102 od. B221 |
ungerade Woche |
|
|
| |
Modul Math Ma PDEANA: Partielle Differentialgleichungen – Analytische Grundlagen |
3+1+0 |
F01/247 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Analysis-Veranstaltungen des Bachelor-Studiengangs |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-MODSEM. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Sprache |
English on request |
Dozent/Zeit/Ort |
Neukamm |
V |
Mo |
4. DS |
WIL A124 |
|
|
|
|
Neukamm |
V |
Do |
4. DS |
WIL C129 |
|
Übung integriert |
|
| |
Modul Math Ma SCPROG: Scientific Programming – Fortgeschrittene Aspekte |
3+1+0 |
F01/643 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse. |
Inhalt |
Dieses Modul befasst sich mit Grundlagen und fortgeschrittenen Konzepten der Programmierung mit C++, u.A.
- Generisches Programmieren
- Meta-Programming
- Expressiontemplates
und deren Anwendung in mathematischen und naturwissenschaftlichen Fragestellungen.
Des Weiteren werden Kompetenzen in der Arbeit mit Programmierwerkzeugen (z.B. Kompiler, Buildsysteme, Versionskontrollsysteme, Debugger, Testsysteme) vermittelt und die Verwendung komplexer Software-Bibliotheken angeleitet. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Sprache |
English on request |
| |
Modul Math Ma MODSEM: Modellierungsseminar (WR) |
0+4+0 |
F01/644 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Vorkenntnisse |
Es werden Kompetenzen aus den Modulen Math-Ma-PDEANA, Math-Ma-FEM, Math-Ma-PDENM vorausgesetzt. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
| |
Modul Math Ma Projekt: Projektarbeit |
0+0+2 |
F01/645 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
P |
|
|
Zeit nach Vereinbarung |
|
|
|
| |
Modul MN-SEGY-MAT-MVERT: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, 9. Sem., Angebot für Modul Modul MN-SEGY-MAT-MVERT: Mathematische Vertiefung |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Sprache |
English on request |
Dozent/Zeit/Ort |
Walter |
V |
Di |
3. DS |
WIL C133 |
ungerade Woche |
|
|
|
Walter |
V |
Do |
5. DS |
WIL C133 |
|
|
|
|
Walter |
Ü |
Mo |
3. DS |
WIL C206 od. B221 |
gerade Woche |
|
|
|
Walter |
Ü |
Di |
3. DS |
WIL C133 od. B221 |
gerade Woche |
|
|
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Forschungsseminar des Institutes für Wissenschaftliches Rechnen |
0+2+0 |
F01/655 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge |
Inhalt |
Vorträge eingeladener Wissenschaftler zu ausgewählten Themen aus Gebieten des Wissenschaftlichen Rechnens. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Voigt, A. |
S |
Mo |
3. DS |
WIL C102 |
|
|
|
| |
Seminar zur numerischen Lösung von Differentialgleichungen |
0+2+0 |
F01/658 |
Zielgruppe |
Masterstudenten und Doktoranden |
Inhalt |
Aktuelle Themenstellungen der Arbeitsgruppe werden vorgestellt und diskutiert. |
Dozent/Zeit/Ort |
Wensch |
S |
Mi |
4. DS |
WIL C204 |
|
|
|
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Elektrotechnik) |
6+4+0 |
F01/685 |
Zielgruppe |
Studiengang Elektrotechnik (1. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
Abitur |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Informationssystemtechnik) |
6+4+0 |
F01/685* |
Zielgruppe |
Studiengang Informationssystemtechnik (1. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul MT-01 04 01: Algebraische und analytische Grundlagen (Mechatronik) |
6+4+0 |
F01/685+ |
Zielgruppe |
Studiengang Mechatronik (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul RES-G01: Algebraische und analytische Grundlagen (Regenerative Energiesysteme) |
6+4+0 |
F01/685++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Wensch |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Feldmann |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul MA-CSE-35: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen (= Math Ma FEM) |
3+1+0 |
F01/641* |
Zielgruppe |
Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
V |
Mi |
2. DS |
WIL C102 od. B221 |
gerade Woche |
|
|
|
Voigt, A. |
V |
Fr |
1. DS |
WIL C129 |
|
|
19.10.2016: Verlegung eingetragen |
|
Voigt, A. |
Ü |
Mi |
2. DS |
WIL C102 od. B221 |
ungerade Woche |
|
|
| |
Modul MA-CSE-35: Scientific Programming – Fortgeschrittene Aspekte (= Math Ma SCPROG) |
3+1+0 |
F01/643* |
Zielgruppe |
Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse. |
Inhalt |
Dieses Modul befasst sich mit Grundlagen und fortgeschrittenen Konzepten der Programmierung mit C++, u.A.
- Generisches Programmieren
- Meta-Programming
- Expressiontemplates
und deren Anwendung in mathematischen und naturwissenschaftlichen Fragestellungen.
Des Weiteren werden Kompetenzen in der Arbeit mit Programmierwerkzeugen (z.B. Kompiler, Buildsysteme, Versionskontrollsysteme, Debugger, Testsysteme) vermittelt und die Verwendung komplexer Software-Bibliotheken angeleitet. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Sprache |
English on request |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs