LV-Archiv: Wintersemester 2016/2017 - Ausgewählte Kataloganzeige
Gesamtübersicht
Institut für Mathematische Stochastik
• • • 2. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MINT: Maß und Integral |
3+1+0 |
F01/421 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.), Studiengänge Physik im Nebenfach Mathematik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG und Math-Ba-LAAG |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Di |
2. DS |
WIL B321 |
ungerade Woche |
|
24.08.2016: Zuordnung gerade/ungerade geändert |
|
Sasvári |
V |
Fr |
3. DS |
WIL B321 |
|
|
|
|
Sasvári |
Ü |
Di |
2. DS |
WIL C203 |
gerade Woche |
|
24.08.2016: Zuordnung gerade/ungerade geändert |
|
Kühn |
Ü |
Fr |
2. DS |
WIL C204 |
ungerade Woche |
|
|
|
Kühn |
Ü |
Fr |
2. DS |
WIL C204 |
gerade Woche |
|
|
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba STOCHV: Vertiefung Stochastik - Statistik, Versicherungsmathematik |
3+1+0 |
F01/431 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fuchs |
V |
Mo |
3. DS |
WIL C133 |
|
Übung integriert |
|
|
Fuchs |
V |
Fr |
3. DS |
WIL C129 |
|
|
|
| |
Modul Math Ba SEM- Seminar: Ungleichungen in der Wahrscheinlichkeitstheorie |
0+2+0 |
F01/435 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-PROSEM sowie ggf. weiterer Module des Pflichtbereiches abhängig von der Thematik des Seminars (hier Math-Ba-STOCH). |
Inhalt |
Behandelt werden verschiedene Themen aus dem Buch O. Pons: Inequalities in Analysis and Probability |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Sasvári |
S |
Di |
5. DS |
WIL C129 |
|
|
|
| |
Modul MN-SEGY/SEBS/SEMS-MAT-STOCH: Stochastik |
4+2+0 |
F01/437 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen, 5. Sem.; Lehramt an Mittelschulen, Fach Mathematik, 5. Sem. |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
• • • 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma MSTAT: Mathematische Statistik |
3+1+0 |
F01/442 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Ferger |
V |
Di |
6. DS |
WIL B321 |
|
|
|
|
Ferger |
V |
Do |
2. DS |
WIL C203 |
|
Übung integriert |
|
| |
Modul Math Ma STOCHP: Stochastische Prozesse |
3+1+0 |
F01/444 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik |
Vorkenntnisse |
Kompetenzen aus dem Modul Math-Ma-WTHM. |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Di Tella |
V |
Di |
4. DS |
WIL C133 |
|
|
|
|
Di Tella |
V |
Mi |
5. DS |
WIL A124 |
|
Übung integriert |
|
| |
Modul Math Ma WTHM: Wahrscheinlichkeitstheorie mit Martingalen |
3+1+0 |
F01/447 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung Hinweis: Das Modul schafft Voraussetzungen für die Module Math-Ma-STOCAL, Math-Ma-STOCHP und Math-Ma-MAFIN. |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma VMRM: Versicherungsmathematik - Risikomodelle |
3+1+0 |
F01/446 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-VMPV.
Gegenstand des Moduls sind Risikomodelle der Versicherungsmathematik, insbesondere
- das kollektive Modell (univariat, multivariat, dynamisch) und
- der Poisson-Prozess (homogen, inhomogen, gemischt, bedingt).
Die Studenten besitzen ein systematisches Wissen und Verständnis von Risikomodellen und sind in der Lage, sie auf die Prämienkalkulation und das Ruin-Problem anzuwenden. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fuchs |
V |
Di |
3. DS |
WIL A221 |
|
|
|
|
Fuchs |
V |
Do |
3. DS |
WIL A120 |
|
Übung integriert |
|
| |
Modul Math Ma MMAM: Lineare Modelle |
2+0+0 |
F01/451 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Inhalt |
Bemerkung: Teilmodul 2 SWS, kann mit einem anderen MMMA-Teilmodul aus dem Angebot kombiniert werden. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Ferger |
V |
Mi |
2. DS |
WIL A124 |
|
|
|
| |
Modul Math Ma MMAM bzw. MMRM: Random Graphs and Networks |
2+0+0 |
F01/452 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Vorkenntnisse |
Grundkenntnisse in Wahrscheinlichkeitstheorie |
Inhalt |
Bemerkung: Teilmodul 2 SWS, kann mit einem anderen MMMA-Teilmodul aus dem Angebot kombiniert werden. In this lecture we will discuss the mathematical foundations for the analysis of random graphs and networks.
We will follow to a large extend the book 'Complex Graphs and Networks' by Fan Chung and Linyuan Lu. (See also: http://www.math.ucsd.edu/~fan/complex/) and cover the topics:
- Random graphs generated by preferential attachment and duplication
- Appearance of power laws for the degree distribution
- Concentration inequalities for martingales
- The Erdös-Renyi model and extensions
- The Graph Laplacian and its spectral analysis |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Sprache |
English |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Selected topics from real and stochastic Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft Mathematische Statistik |
0+2+0 |
F01/464 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Wahrscheinlichkeitstheorie, Statistik |
Inhalt |
Ausgewählte Probleme der Mathematischen Statistik. |
Einschreibung |
- |
Leistungsnachweis |
- |
Dozent/Zeit/Ort |
Ferger |
AG |
Do |
7. DS |
WIL A124 |
|
|
|
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Mathematik I: Lineare Algebra (Wirtschaftswissenschaften und Verkehrswirtschaft) |
2+2+0 |
F01/481 |
Zielgruppe |
Studierende an der Fak. Wirtschaftswissenschaften und Studierende Verkehrswirtschaft: Module BA-WW-MLA, D-WW-MLA, BA-VWI-PF1 |
Inhalt |
Zahlen (natürliche Zahlen, reelle und komplexe Zahlen), Vektorräume (lineare Unabhängigkeit, Dimension, Unterräume), Lineare Gleichungssysteme (Lösbarkeit), Lineare Optimierung (Simplexverfahren). |
Einschreibung |
- |
Leistungsnachweis |
Schein mit Note (Klausur) |
Internet |
Informationen zum Kurs auf der Webseite der Kursassistentin |
Dozent/Zeit/Ort |
Ferger |
V |
Mi |
4. DS |
HSZ/AUDI |
|
|
|
|
Röder |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin bzw. OPAL-Kurs |
| |
Modul D-WW-MV: Mathematik Vertiefung (Wirtschaftsingenieurwesen) |
2+2+0 |
F01/483 |
Zielgruppe |
Studierende Wirtschaftsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
mehrdimensionale Integration, komplexe Potenzreihen, Funktionenräume, gewöhnliche Differentialgleichungen |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Berschneider |
V |
Mi |
6. DS |
TRE MATH |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe OPAL-Kurs |
| |
Modul BIO-BA 1100: Mathematik/Biostatistik (Biologie) // Modul BIO-BA 1100: Mathematik und Biostatistik (Molekulare Biotechnologie) |
2+1+0 |
F01/581 |
Zielgruppe |
Studierende Biologie und Molekulare Biotechnologie (1. Sem.) gemeinsam mit Studierenden Chemie + Lebensmittelchemie, Lehramt Chemie (1. Sem.), BBS Bautechnik und Holztechnik |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung, Wahrscheinlichkeitstheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin Bio + Lehramt (Ch, BBS BT und HT) |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistent Chemie + Lebensmittelchemie |
|
|
Für die Übungen siehe Webseite bei der Dozentin |
| |
Modul Ch Ma: Mathematik für Chemiker (Chemie+Lebensmittelchemie) // Mathematik (Lehramt Fach Chemie) |
2+2+0 |
F01/581* |
Zielgruppe |
Studierende Chemie, Lebensmittelchemie, Lehramt Chemie (1. Sem.) gemeinsam mit Studierenden Biologie und Molekulare Biotechnologie (1. Sem.), Lehramt BBS Bautechnik und Holztechnik |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin Bio + Lehramt (Ch, BBS BT und HT) |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistent Chemie + Lebensmittelchemie |
|
|
Für die Übungen siehe Webseite bei der Dozentin |
| |
Mathematik (EW-SEBS-BT-M 01: Staatsexamen Lehramt BBS Bautechnik, EW-SEBS-HT-M 01: Staatsexamen Lehramt BBS Holztechnik) |
2+2+0 |
F01/581+ |
Zielgruppe |
Höheres Lehramt an berufsbildenden Schulen, Fächer Bautechnik und Holztechnik gemeinsam mit Studierenden der FR Chemie, Biologie, Lehramt Chemie |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin Bio + Lehramt (Ch, BBS BT und HT) |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistent Chemie + Lebensmittelchemie |
|
|
Für die Übungen siehe Webseite bei der Dozentin |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/487 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/487* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/487+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/487++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Statistik I (Sozialwissenschaften, Geographie, ZIS) |
2+2+0 |
F01/492 |
Zielgruppe |
Studierende Soziologie, Medienforschung/Medienpraxis, Politikwissenschaften, Internationale Beziehungen, Geographie |
Inhalt |
Einführung in SPSS, Deskriptive Statistik (Skalenniveaus, Datentypen, uni- und bivariate Verteilungen, grafische Darstellung / Kenngrößen von Verteilungen, Abhängigkeitsmaße), Wahrscheinlichkeiten, Grundprinzipien der schließenden Statistik, Signifikanztests für Ein- und Zweistichprobenproblemen und ihre Realisierung in SPSS |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Teilnahme, Klausur |
Internet |
Internetangebot zur Vorlesung |
Dozent/Zeit/Ort |
Rudl |
V |
Mi |
3. DS |
HSZ/03/H |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite / OPAL-Kurs |
| |
Modul MN-SEGY/SEBS/SEMS-STOCH: Elementare Stochastik (Informatik) |
4+2+0 |
F01/437+ |
Zielgruppe |
Diplom-Studiengang Informatik für Nebenfach Mathematik Numerik /Optimierung /Stochastik: Elementare Stochastik (gemeinsam mit SE-Lehramtsstudiengängen GYM, BBS, MS) |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs