LV-Archiv: Wintersemester 2015/2016 - Ausgewählte Kataloganzeige
Gesamtübersicht
Institut für Wissenschaftliches Rechnen
• • • 1. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba PROG: Programmieren für Mathematiker (Teil 1) |
3+2+0 |
F01/611 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Einführung in das strukturierte und modulare Programmieren, mit integriertem Computerpraktikum; praxisrelevante Grundlagen der Informatik, der Programmiersprachen, der Algorithmik und des Wissenschaftlichen Rechnens |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 8 |
Dozent/Zeit/Ort |
Walter |
V |
Mo |
2. DS |
WIL A317 |
|
|
|
|
Walter |
V |
Do |
4. DS |
WIL B321 |
|
|
|
|
Tutor |
Ü |
Mi |
3. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
2. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
3. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
4. DS |
WIL B221/P |
|
|
|
• • • 3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MOSIM Modellierung und Simulation |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
Gegenstand der Vorlesung sind die Modellierung von Anwendungsproblemen aus Naturwissenschaft und Technik mittels gewöhnlicher
Differentialgleichungen, numerische Verfahren zur Lösung dieser Differentialgleichungen sowie Techniken zur qualitativen Analyse.
Wir beschäftigen uns mit Einschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren, linear implizite Verfahren) und Mehrschrittverfahren (Adams-Verfahren, BDF-Methoden). Die Begriffe Konsistenz, Konvergenz und Stabilität spielen dabei eine tragende Rolle. Konkrete Anwendungen sind Populationsdynamik, mechanische Mehrkörpersysteme, chemische Reaktionen und elektronische Schaltkreise.
Auf den Einsatz der Zeitintegrationsverfahren im Rahmen komplexer Algorithmen bei typischen Problemstellungen des Wissenschaftlichen Rechnens wird gesondert eingegangen. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
Dozent/Zeit/Ort |
Wensch |
V |
Di |
3. DS |
WIL C133 |
|
|
|
|
Wensch |
V |
Do |
5. DS |
WIL C133 |
gerade Woche |
|
05.10.2015: Änderung Vorlesungszeit |
|
Wensch |
Ü |
Do |
5. DS |
WIL C133; WIL B221/P |
ungerade Woche |
|
05.10.2015: Änderung Übungszeit |
Dozent/Zeit/Ort |
Padberg-Gehle |
S |
Mo |
4. DS |
WIL C129 |
|
|
14.09.2015: Änderung der Zeit |
• • • 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma FEM: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen |
3+1+0 |
F01/641 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
V |
Mi |
5. DS |
WIL C102; WIL B221/P; |
gerade Woche |
|
14.09.2015: Änderung für Zeit+Raum eingetragen |
|
Voigt, A. |
V |
Fr |
2. DS |
WIL C307 |
|
|
|
|
Ludwig, L. |
Ü |
Mi |
5. DS |
WIL C102; WIL B221/P; |
ungerade Woche |
|
|
| |
Modul Math Ma MKMECH - Mathematische Kontinuumsmechanik: Mehrskalenanalysis |
3+1+0 |
F01/646 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, sowie Studierende Physik, Maschinenbau |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Empfohlen sind Grundkenntnisse zu partiellen Differentialgleichungen und zur Funktionalanalysis. |
Inhalt |
Die Vorlesung beinhaltet eine Einführung in die Analysis und Modellierung von Mehrskalenproblemen mittels partieller Differentialgleichungen und Methoden der Funktionalanalysis.
Für weitere Informationen zur Vorlesung siehe nachstehend genannte Webseite. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
http://www.math.tu-dresden.de/~sneukamm/teaching/MKMECH-WS15/ |
Dozent/Zeit/Ort |
Neukamm |
V |
Do |
3. DS |
WIL A221 |
|
|
20.10.2015: Vorlesungszeit geändert |
|
Neukamm |
V |
Fr |
1. DS |
WIL A120 |
|
Übung integriert |
21.10.2015: Vorlesungszeit geändert (wieder alte Zeit) |
| |
Modul Math Ma SCPROG: Scientific Programming – Fortgeschrittene Aspekte |
3+1+0 |
F01/643 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma WIA: Tipping-Points und Extremereignisse in komplexen Systemen (Seminar) |
2+0+0 |
F01/640 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
Manchmal können lediglich kleine Änderungen in den äußeren Einflüssen extreme und irreversible Ereignisse hervorrufen.
Dies ist dann der Fall, wenn sich das betrachtete System nahe eines kritischen Punktes, eines sogenannten Tipping-Points, befindet.
Beispielsweise reißt ein Gummiband ab einer bestimmten Beanspruchung oder ein Ökosystem „kippt um“, wenn bestimmte Schwellwerte (z.B. Algenanteil in einem See) überschritten sind. Solche kritischen Phänomene beobachtet man in vielen unterschiedlichen realen Systemen (Klima, Finanzwirtschaft, Medizin, Biologie, etc.).
Im Rahmen dieses Seminars sollen die Teilnehmer entsprechende mathematische Konzepte aus der Theorie dynamischer Systeme und der Zeitreihenanalyse vorstellen, mit denen solche Extremereignisse beschrieben, analysiert und ggf. sogar vorhersagt werden können. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Padberg-Gehle |
S |
Mi |
3. DS |
WIL A120 |
|
|
14.09.2015: Änderung Modul-Umfang |
| |
Modul Math Ma MODSEM: Modellierungsseminar (WR) |
0+4+0 |
F01/644 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Vorkenntnisse |
Es werden Kompetenzen aus den Modulen Math-Ma-PDEANA, Math-Ma-FEM, Math-Ma-PDENM vorausgesetzt. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
| |
Modul Math Ma Projekt: Projektarbeit |
0+0+2 |
F01/645 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math MaL-VERT-G/B: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation Gegenstand der Vorlesung sind die Modellierung von Anwendungsproblemen aus Naturwissenschaft und Technik mittels gewöhnlicher
Differentialgleichungen, numerische Verfahren zur Lösung dieser Differentialgleichungen sowie Techniken zur qualitativen Analyse.
Wir beschäftigen uns mit Einschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren, linear implizite Verfahren) und Mehrschrittverfahren (Adams-Verfahren, BDF-Methoden). Die Begriffe Konsistenz, Konvergenz und Stabilität spielen dabei eine tragende Rolle. Konkrete Anwendungen sind Populationsdynamik, mechanische Mehrkörpersysteme, chemische Reaktionen und elektronische Schaltkreise.
Auf den Einsatz der Zeitintegrationsverfahren im Rahmen komplexer Algorithmen bei typischen Problemstellungen des Wissenschaftlichen Rechnens wird gesondert eingegangen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
Dozent/Zeit/Ort |
Wensch |
V |
Di |
3. DS |
WIL C133 |
|
|
|
|
Wensch |
V |
Do |
5. DS |
WIL C133 |
gerade Woche |
|
05.10.2015: Änderung Vorlesungszeit |
|
Wensch |
Ü |
Do |
5. DS |
WIL C133; WIL B221/P |
ungerade Woche |
|
05.10.2015: Änderung Übungszeit |
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Forschungsseminar des Institutes für Wissenschaftliches Rechnen |
0+2+0 |
F01/655 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge |
Inhalt |
Vorträge eingeladener Wissenschaftler zu ausgewählten Themen aus Gebieten des Wissenschaftlichen Rechnens. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Voigt, A. |
S |
Mo |
3. DS |
WIL A120 |
|
|
|
| |
Seminar zur numerischen Lösung von Differentialgleichungen |
0+2+0 |
F01/658 |
Zielgruppe |
Masterstudenten und Doktoranden |
Inhalt |
Aktuelle Themenstellungen der Arbeitsgruppe werden vorgestellt und diskutiert. |
Dozent/Zeit/Ort |
Wensch |
S |
Di |
5. DS |
WIL C204 |
|
|
|
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Mathematik III - BIW1-06: Lineare Differentialgleichungen und Stochastik (Bauingenieurwesen) |
2+2+0 |
F01/283-1 |
Zielgruppe |
Studierende Bauingenieurwesen (gemeinsam mit Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Mathematik III - BSc GG 03: Mathematik – Differentialgleichungen und Stochastik (Geodäsie und Geoinformation) |
2+2+0 |
F01/283-2 |
Zielgruppe |
Studierende Geodäsie und Geoinformation (gemeinsam mit Bauingenieurwesen) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Mathematik III - BHYWI11: Lineare Differentialgleichungen und Stochastik (Hydrowissenschaften) |
2+2+0 |
F01/283-3 |
Zielgruppe |
BA-Studiengang Hydrowissenschaften (gemeinsam mit Bauingenieurwesen und Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/687 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/687+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/687* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/687++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul MA-CSE-35: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen (= Math Ma FEM) |
3+1+0 |
F01/641* |
Zielgruppe |
Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
V |
Mi |
5. DS |
WIL C102; WIL B221/P; |
gerade Woche |
|
14.09.2015: Änderung für Zeit+Raum eingetragen |
|
Voigt, A. |
V |
Fr |
2. DS |
WIL C307 |
|
|
|
|
Ludwig, L. |
Ü |
Mi |
5. DS |
WIL C102; WIL B221/P; |
ungerade Woche |
|
|
| |
Modul MA-CSE-35: Scientific Programming – Fortgeschrittene Aspekte (= Math Ma SCPROG) |
3+1+0 |
F01/643* |
Zielgruppe |
Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs