LV-Archiv: Wintersemester 2015/2016 - Ausgewählte Kataloganzeige



Gesamtübersicht
Institut für Mathematische Stochastik





  •  •  •   2. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ba MINT: Maß und Integral
3+1+0 F01/421
Zielgruppe Bachelor-Studiengang Mathematik (3. Sem.)
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAG und Math-Ba-LAAG
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Internet  Modulbeschreibung: Studienordnung - Seite 11
Dozent/Zeit/Ort Böttcher    V    Di    2. DS   WIL B321    gerade Woche         
  Böttcher    V    Fr    3. DS   WIL B321          15.10.2015: V/Ü geändert   
  Böttcher    Ü    Di    2. DS   WIL B321    ungerade Woche         
  Kühn    Ü    Fr    2. DS   WIL B321    gerade Woche    Kursassistentin   15.10.2015: V/Ü und Raum geändert   
  Kühn    Ü    Fr    2. DS   WIL B321    ungerade Woche       15.10.2015: V/Ü und Raum geändert   
  Für die Übungen siehe Webseite bei der Kursassistentin.




  •  •  •   3. Studienjahr (Ba-Studiengang, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ba STOCHV: Vertiefung Stochastik - Statistik
2+0+0 F01/431
Zielgruppe Bachelor-Studiengang Mathematik (5. Sem.)
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH.
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Internet  Modulbeschreibung: Studienordnung - Seite 24
Dozent/Zeit/Ort Ferger    V    Di    2. DS   WIL C133            
  
Modul Math Ba STOCHV: Vertiefung Stochastik - Versicherungsmathematik
2+0+0 F01/432
Zielgruppe Bachelor-Studiengang Mathematik (5. Sem.)
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH.
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Internet  Modulbeschreibung: Studienordnung - Seite 24
Dozent/Zeit/Ort Schmidt, K.D.    V    Mo    2. DS   WIL C133            
  
Modul MN-SEGY/SEBS/SEMS-MAT-STOCH: Stochastik
4+2+0 F01/437
Zielgruppe Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 5. Sem.; Lehramt an Mittelschulen, Fach Mathematik, 5. Sem.
Vorkenntnisse Modul Analysis
Inhalt siehe Modulbeschreibung
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Internet  Modulbeschreibung: Studienordnung ABS - Seite 11
Dozent/Zeit/Ort Böttcher    V    Mo    3. DS   WIL B321            
  Böttcher    V    Mi    4. DS   WIL B321            
  Kühn    Ü    Mo    4. DS   WIL A221            
  Berschneider    Ü    Mi    5. DS   WIL C204            
  Böttcher    Ü    Fr    4. DS   WIL C103          20.10.2015: Änderung der Übungszeit eingetragen   
  Für die Übungen siehe Webseite des Dozenten.




  •  •  •   4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt)   •  •  •  
  
Modul Math Ma MSTAT: Mathematische Statistik
3+1+0 F01/442
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'.
Master WMath: Pflichtmodul.
Vorkenntnisse Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil.
Einschreibung   in der Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Ferger    V    Di    6. DS   WIL B321            
  Ferger    V    Do    2. DS   WIL C203       Übung integriert     
  
Modul Math Ma WTHM: Wahrscheinlichkeitstheorie mit Martingalen
3+1+0 F01/447
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik.
Vorkenntnisse Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil.
Inhalt laut Modulbeschreibung
Hinweis: Das Modul schafft Voraussetzungen für die Module Math-Ma-STOCAL, Math-Ma-STOCHP und Math-Ma-MAFIN.
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Keller-Ressel / Di Tella    V    Mo    5. DS   WIL A120            
  Keller-Ressel / Di Tella    V    Di    5. DS   WIL B321       Übung integriert     
  
Modul Math Ma VMRM: Versicherungsmathematik - Risikomodelle
3+1+0 F01/446
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'.
Master WMath: Pflichtmodul.
Vorkenntnisse Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil.
Inhalt Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-VMPV.

Gegenstand des Moduls sind Risikomodelle der Versicherungsmathematik, insbesondere
- das kollektive Modell (univariat, multivariat, dynamisch) und
- der Poisson-Prozess (homogen, inhomogen, gemischt, bedingt).
Die Studenten besitzen ein systematisches Wissen und Verständnis von Risikomodellen und sind in der Lage, sie auf die Prämienkalkulation und das Ruin-Problem anzuwenden.
Einschreibung   in der Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Schmidt, K.D.    V    Di    3. DS   WIL A221            
  Schmidt, K.D.    V    Do    3. DS   WIL C129       Übung integriert     
  
Modul Math Ma WIA: Seminar Ausgewählte Themen aus Finanzmathematik und Stochastischer Analysis
0+0+2 F01/440
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math: Pflichtmodul.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich.
Master WMath: Pflichtmodul.
Inhalt In der Lehrveranstaltung werden in Abstimmung mit den Teilnehmern ausgewählte Themen aus Finanzmathematik und Stochastischer Analysis in Seminarform bearbeitet.
Das Verfassen einer Abschlussarbeit ist im Anschluss an die Lehrveranstaltung möglich.
Mögliche Themen aus dem Gebiet der Finanzmathematik:
– Zinsstrukturmodelle
– Die Fläche der impliziten Volatilitäten
– Unvollständige Marktmodelle
– Optionen auf realisierte Varianz
Aus der Stochastischen Analysis:
– Skorokhodsche Einbettungen von Verteilungen in die Brownsche Bewegung
– Lokalzeiten und die Ito-Tanaka-Formel
– Bessel-Prozesse und Anwendungen in der Finanzmathematik
– Theorie schwacher Lösungen eindimensionaler stochastischer Differentialgleichungen
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis   laut Modulbeschreibung
OPAL  Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare und Seminar-Module'
Dozent/Zeit/Ort Keller-Ressel    V/S    Fr    3. DS   WIL C129            
  
Modul Math Ma MMMA: Grundlagen der Copula-Theorie
2+0+0 F01/450
Zielgruppe Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik
Klassifizierung Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich
Inhalt Bemerkung: Teilmodul 2 SWS, kann mit einem anderen MMMA-Teilmodul aus dem Angebot kombiniert werden.
Copulas sind multivariate Verteilungsfunktionen mit uniformen Rändern und damit ein Objekt der Wahrscheinlichkeitstheorie. Mit Hilfe von Copulas lässt sich die Abhängigkeitsstruktur einer beliebigen multivariaten Verteilungsfunktion losgelöst von deren Rändern untersuchen. Copulas sind daher insbesondere geeignet, die wechselseitige Beziehung zwischen Zufallsvariablen zu beschreiben. Neben grundlegenden Aussagen wie dem Satz von Sklar umfasst diese Vorlesung die Konstruktion von Copulas, die Untersuchung spezieller Familien von Copulas und die Verwendung von Copulas zur Modellierung stochastischer Zusammenhänge.
Diese Vorlesung orientiert sich an der kürzlich erschienenen Monographie von Durante und Sempi 'Principles of Copula Theory', Chapman & Hall [2015].
Einschreibung   in der 1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Schmidt, K.D. / Fuchs    V    Di    2. DS   WIL A124            




  •  •  •   Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten   •  •  •  
  
Arbeitsgemeinschaft Analysis & Stochastik
0+2+0 F01/460
Zielgruppe Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik
Vorkenntnisse Stochastics, Analysis
Inhalt Selected topics from real and stochastic Analysis.
Einschreibung   -
Leistungsnachweis   -
Internet  Aktuelle Vorträge
Dozent/Zeit/Ort Keller-Ressel / Sasvári / Schilling / Schuricht    AG    Do    14-16 Uhr   WIL A124            
  
Arbeitsgemeinschaft Mathematische Statistik
0+2+0 F01/464
Zielgruppe Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik
Vorkenntnisse Wahrscheinlichkeitstheorie, Statistik
Inhalt Ausgewählte Probleme der Mathematischen Statistik.
Einschreibung   -
Leistungsnachweis   -
Dozent/Zeit/Ort Ferger    AG    Do    7. DS   WIL A124            
  
Dresdner Kolloquium zur Versicherungsmathematik
0+2+0 F01/462
Zielgruppe Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik, Wirtschaftswissenschaftler (ab 6. Sem.)
Vorkenntnisse Wahrscheinlichkeitstheorie
Inhalt Gastvorträge zu ausgewählten Problemen der Versicherungsmathematik.
Einschreibung   -
Leistungsnachweis   -
Internet  Aktuelle Vorträge
Dozent/Zeit/Ort Schmidt, K.D.    AG    Fr    3. DS   WIL A124            




  •  •  •   Für Studiengänge anderer Fachrichtungen und Fakultäten   •  •  •  
  
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Elektrotechnik)
6+4+0 F01/485
Zielgruppe Studiengang Elektrotechnik (1. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme)
Vorkenntnisse -
Inhalt Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie
Einschreibung   -
Leistungsnachweis   Prüfungsklausur
Dozent/Zeit/Ort Schilling    V    Mo    5. DS   TRE MATH            
  Schilling    V    Di    5. DS   TRE MATH            
  Schilling    V    Mi    1. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin     
  Für die Übungen siehe Webseite bei der Kursassistentin.
  
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Informationssystemtechnik)
6+4+0 F01/485*
Zielgruppe Studiengang Informationssystemtechnik (1. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme)
Vorkenntnisse -
Inhalt Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie
Einschreibung   -
Leistungsnachweis   Prüfungsklausur
Dozent/Zeit/Ort Schilling    V    Mo    5. DS   TRE MATH            
  Schilling    V    Di    5. DS   TRE MATH            
  Schilling    V    Mi    1. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin     
  Für die Übungen siehe Webseite bei der Kursassistentin.
  
Modul MT-01 04 01: Algebraische und analytische Grundlagen (Mechatronik)
6+4+0 F01/485+
Zielgruppe Studiengang Mechatronik (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme)
Vorkenntnisse -
Inhalt Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie
Einschreibung   -
Leistungsnachweis   Prüfungsklausur
Dozent/Zeit/Ort Schilling    V    Mo    5. DS   TRE MATH            
  Schilling    V    Di    5. DS   TRE MATH            
  Schilling    V    Mi    1. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin     
  Für die Übungen siehe Webseite bei der Kursassistentin.
  
Modul RES-G01: Algebraische und analytische Grundlagen (Regenerative Energiesysteme)
6+4+0 F01/485++
Zielgruppe Studiengang Regenerative Energiesysteme (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik)
Vorkenntnisse -
Inhalt Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie
Einschreibung   -
Leistungsnachweis   Prüfungsklausur
Dozent/Zeit/Ort Schilling    V    Mo    5. DS   TRE MATH            
  Schilling    V    Di    5. DS   TRE MATH            
  Schilling    V    Mi    1. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin     
  Für die Übungen siehe Webseite bei der Kursassistentin.
  
Mathematik I: Lineare Algebra (Wirtschaftswissenschaften und Verkehrswirtschaft)
2+2+0 F01/481
Zielgruppe Studierende an der Fak. Wirtschaftswissenschaften und Studierende Verkehrswirtschaft: Module BA-WW-MLA, D-WW-MLA, BA-VWI-PF1
Inhalt Zahlen (natürliche Zahlen, reelle und komplexe Zahlen), Vektorräume (lineare Unabhängigkeit, Dimension, Unterräume), Lineare Gleichungssysteme (Lösbarkeit), Lineare Optimierung (Simplexverfahren).
Einschreibung   -
Leistungsnachweis   Schein mit Note (Klausur)
Internet  Informationen zum Kurs auf der Webseite der Kursassistentin
Dozent/Zeit/Ort Ferger    V    Mi    4. DS   HSZ AUDI            
  Röder    Ü                Kursassistentin     
  Für die Übungen siehe Webseite bei der Kursassistentin.
  
Modul Ch Ma: Mathematik für Chemiker (Chemie+Lebensmittelchemie) // Mathematik (Lehramt Fach Chemie)
2+2+0 F01/581*
Zielgruppe Studierende Chemie, Lebensmittelchemie, Lehramt Chemie (1. Sem.)
gemeinsam mit Studierenden Biologie und Molekulare Biotechnologie (1. Sem.), Lehramt BBS Bautechnik und Holztechnik
Vorkenntnisse -
Inhalt Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung
Einschreibung   -
Leistungsnachweis   laut Modulbeschreibung
Internet  Webseite zur Vorlesung und Übungen
Dozent/Zeit/Ort Kuhlisch    V    Mo    2. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin Bio + Lehramt (Ch, BBS BT und HT)     
  Morherr    Ü                Kursassistent Chemie + Lebensmittelchemie     
  Für die Übungen siehe Webseite bei der Dozentin.
  
Mathematik (EW-SEBS-BT-M 01: Staatsexamen Lehramt BBS Bautechnik, EW-SEBS-HT-M 01: Staatsexamen Lehramt BBS Holztechnik)
2+2+0 F01/581+
Zielgruppe Höheres Lehramt an berufsbildenden Schulen, Fächer Bautechnik und Holztechnik
gemeinsam mit Studierenden der FR Chemie, Biologie, Lehramt Chemie
Vorkenntnisse -
Inhalt Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung
Einschreibung   -
Leistungsnachweis   laut Modulbeschreibung
Internet  Webseite zur Vorlesung und Übungen
Dozent/Zeit/Ort Kuhlisch    V    Mo    2. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin Bio + Lehramt (Ch, BBS BT und HT)     
  Morherr    Ü                Kursassistent Chemie + Lebensmittelchemie     
  Für die Übungen siehe Webseite bei der Dozentin.
  
Modul BIO-BA 1100: Mathematik/Biostatistik (Biologie) // Modul BIO-BA 1100: Mathematik und Biostatistik (Molekulare Biotechnologie)
2+1+0 F01/581
Zielgruppe Studierende Biologie und Molekulare Biotechnologie (1. Sem.)
gemeinsam mit Studierenden Chemie + Lebensmittelchemie, Lehramt Chemie (1. Sem.), BBS Bautechnik und Holztechnik
Vorkenntnisse -
Inhalt Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung, Wahrscheinlichkeitstheorie
Einschreibung   -
Leistungsnachweis   laut Modulbeschreibung
Internet  Webseite zur Vorlesung und Übungen
Dozent/Zeit/Ort Kuhlisch    V    Mo    2. DS   TRE MATH            
  Kuhlisch    Ü                Kursassistentin Bio + Lehramt (Ch, BBS BT und HT)     
  Morherr    Ü                Kursassistent Chemie + Lebensmittelchemie     
  Für die Übungen siehe Webseite bei der Dozentin.
  
Statistik I (Sozialwissenschaften, Geographie, ZIS)
2+2+0 F01/492
Zielgruppe Studierende Sozialwissenschaften (Haupt- und Nebenfach), Geographie
Inhalt Einführung in SPSS, Deskriptive Statistik (Skalenniveaus, Datentypen, uni- und bivariate Verteilungen, grafische Darstellung / Kenngrößen von Verteilungen, Abhängigkeitsmaße), Wahrscheinlichkeiten, Grundprinzipien der schließenden Statistik, Signifikanztests für Ein- und Zweistichprobenproblemen und ihre Realisierung in SPSS
Einschreibung   1. Vorlesung
Leistungsnachweis   Teilnahme, Klausur
Internet  Internetangebot zur Vorlesung
Dozent/Zeit/Ort Rudl    V    Mi    3. DS   HSZ 03            
  Rudl    Ü                     
  Für die Übungen siehe Webseite beim Dozenten.
  
Modul MN-SEGY/SEBS/SEMS-STOCH: Elementare Stochastik (Informatik)
4+2+0 F01/437*
Zielgruppe Diplom-Studiengang Informatik für Nebenfach Mathematik Numerik /Optimierung /Stochastik: Elementare Stochastik (gemeinsam mit SE-Lehramtsstudiengängen GYM, BBS, MS)
Vorkenntnisse Modul Analysis
Inhalt siehe Modulbeschreibung
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Böttcher    V    Mo    3. DS   WIL B321            
  Böttcher    V    Mi    4. DS   WIL B321            
  Kühn    Ü    Mo    4. DS   WIL A221            
  Berschneider    Ü    Mi    5. DS   WIL C204            
  Böttcher    Ü    Do    3. DS   WIL C204            
  Für die Übungen siehe Webseite des Dozenten.






 Autor: Lehrveranstaltungsmanagement Mathematik
 Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs