LV-Archiv: Wintersemester 2015/2016 - Ausgewählte Kataloganzeige
Gesamtübersicht für die Fachrichtung Mathematik
sortiert nach Instituten, mit den Rubriken
1. Studienjahr / 2.Studienjahr / 3. Studienjahr / Hauptstudium, Master / Für Studiengänge an anderen Fachrichtungen und Fakultäten
• • • Institut für Algebra - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba LAAG: Lineare Algebra und Analytische Geometrie (Teil 1) |
4+2+0 |
F01/111 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.) (gemeinsam mit Lehramt GY und BBS - Staatsexamen, 1. Sem.) |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 7 |
Dozent/Zeit/Ort |
Bodirsky |
V |
Mi |
2. DS |
TRE MATH |
|
|
|
|
Bodirsky |
V |
Do |
2. DS |
TRE MATH |
|
|
|
|
|
Ü |
Mo |
3. DS |
WIL C104 |
|
|
|
|
|
Ü |
Di |
2. DS |
WIL C106 |
|
|
|
|
|
Ü |
Di |
2. DS |
WIL C104 |
|
|
|
|
|
Ü |
Di |
4. DS |
WIL C102 |
|
|
|
|
Erkko Lehtonen |
Ü |
Do |
6. DS |
WIL C103 |
|
(in engl. Sprache) |
09.10.2015 eingetragen |
|
|
Ü |
Fr |
1. DS |
WIL C206 |
|
|
|
|
|
Ü |
Fr |
2. DS |
WIL C205 |
|
|
|
|
|
Ü |
Fr |
3. DS |
WIL C106 |
|
|
|
|
Zschalig |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Informationen zu den Übungen/ Übungsleitern siehe die Webseite beim Kursassistenten |
| |
Modul MN-SEGY/SEBS-MAT-LAAG: Lineare Algebra und Analytische Geometrie (Teil 1) |
4+2+0 |
F01/111* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 1. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Bodirsky |
V |
Mi |
2. DS |
TRE MATH |
|
|
|
|
Bodirsky |
V |
Do |
2. DS |
TRE MATH |
|
|
|
|
|
Ü |
Mo |
3. DS |
WIL C104 |
|
|
|
|
|
Ü |
Di |
2. DS |
WIL C106 |
|
|
|
|
|
Ü |
Di |
2. DS |
WIL C104 |
|
|
|
|
|
Ü |
Di |
4. DS |
WIL C102 |
|
|
|
|
Erkko Lehtonen |
Ü |
Do |
6. DS |
WIL C103 |
|
(in engl. Sprache) |
09.10.2015 eingetragen |
|
|
Ü |
Fr |
1. DS |
WIL C206 |
|
|
|
|
|
Ü |
Fr |
2. DS |
WIL C205 |
|
|
|
|
|
Ü |
Fr |
3. DS |
WIL C106 |
|
|
|
|
Zschalig |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Informationen zu den Übungen/ Übungsleitern siehe die Webseite beim Kursassistenten |
• • • Institut für Algebra - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Permutationsgruppen |
4+0+0 |
F01/131 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) und für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
Die Vorlesung behandelt u.a. Permutationsdarstellungen, den Satz von Cayley, Bahnen und invariante Relationen (Sätze von Krasner), (mehrfach)-transitive, reguläre, primitive Permutationsgruppen, Symmetriegruppen, Kranzprodukte, das Lemma von Cauchy-Frobenius-Burnside und Anwendungen (Polyasche Abzähltheorie), Automorphismusgruppen (speziell von Graphen), sowie Permutationsgruppenalgorithmen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 19 |
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Methoden der angewandten Algebra |
4+0+0 |
F01/132 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), für Master Höheres Lehramt an Gymnasien = Angebot für Modul Math-MaL-VERT-G im 2. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 19 |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
5. DS |
WIL A221 |
|
1. Vorlesung am Mo, 19.10.2015 |
05.10.2015: Änderung Vorlesungszeit |
|
Schmidt, St. |
V |
Mi |
2. DS |
WIL C133 |
|
|
|
Dozent/Zeit/Ort |
Baumann |
S |
Di |
5. DS |
WIL A221 |
|
|
|
• • • Institut für Algebra - 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma ANGALG: Angewandte Algebra |
3+1+0 |
F01/142 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
3. DS |
WIL C129 |
|
1. Vorlesung am Mo, 19.10.2015 |
|
|
Schmidt, St. |
V |
Di |
4. DS |
WIL A120 |
|
Übung integriert |
|
| |
Modul Math Ma ORDSTR: Topologie |
4+0+0 |
F01/144 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen',
im WS 2015/2016 auch zum Schwerpunkt 'Analysis und Stochastik'
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen',
im WS 2015/2016 auch zum Schwerpunkt 'Analysis und Stochastik'
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Die Vorlesung bietet eine Einführung in die mengentheoretische Topologie und behandelt u.a. Trennungsaxiome, Kompaktheitsbegriffe, Abzählbarkeitseigenschaften, Zusammenhang, sowie klassische Sätze und Konstruktionen wie den Satz von Tychonoff, den Metrisationssatz von Urysohn, den Fortsetzungssatz von Tietze und die Stone-Cech-Kompaktifizierung. Weitere Inhalte (wie z.B. uniforme Räume, topologische Gruppen) werden nach Absprache mit den Teilnehmern festgelegt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math MaL-VERT-G: Methoden der angewandten Algebra |
4+0+0 |
F01/132-1 |
Zielgruppe |
Master Höheres Lehramt an Gymnasien: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Modul Math BaL ALGZTH: Elemente der Algebra und Zahlentheorie |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
5. DS |
WIL A221 |
|
1. Vorlesung am Mo, 19.10.2015 |
05.10.2015: Änderung Vorlesungszeit |
|
Schmidt, St. |
V |
Mi |
2. DS |
WIL C133 |
|
|
|
• • • Institut für Algebra - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Kategorientheorie |
2+0+0 |
F01/148 |
Zielgruppe |
Studierende Mathematik (Diplom und Master) |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der algebraischen Strukturen auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
In der Kategorientheorie werden algebraische (und auch andere) Strukturen und strukturerhaltende Abbildungen aus einer allgemeinen Perspektive behandelt. Die Vorlesung gibt eine Einführung in die grundlegenden Begriffe und Konstruktionen sowie zahlreiche Anwendungen. |
Leistungsnachweis |
in Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Pöschel |
V |
Di |
6. DS |
WIL A124 |
|
(voraussichtlich 6. DS) |
24.08.2015: Vorlesungstitel und Zeit geändert |
| |
Seminar Algebra, Geometrie und Kombinatorik |
0+2+0 |
F01/155 |
Zielgruppe |
Diplom- und Masterstudiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
| |
Algebra: International Seminar |
0+2+0 |
F01/156 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, Studierende Computational Logic, Doktoranden, Gäste |
Inhalt |
Im Seminar kommen bevorzugt aktuelle Forschungsergebnisse zur Diskussion, insbesondere solche, die von Mitgliedern und Gästen des Instituts für Algebra erarbeitet werden. Weil meist ausländische Wissenschaftler teilnehmen, ist die Arbeitssprache Englisch. |
Einschreibung |
- |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
| |
Seminar: Musik, Mathematik, Kognition |
0+2+0 |
F01/157 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, Studierende an den Fachbereichen Musikwissenschaft, Informatik und Psychologie und alle Interessenten |
Inhalt |
Veranstalter des Seminars sind Prof. Dr. Stefan Schmidt vom Institut für Algebra an der Fachrichtung Mathematik und Prof. Dr. Martin Rohrmeier, neuer OTT-Professor für Systematische Musikwissenschaft an der Philosophischen Fakultät.
Das Seminar ist ein kritischer Streifzug durch die interdisziplinären Verbindungen von Musik, Mathematik, Psychologie, Informatik, Linguistik und verwandten Disziplinen. Den Schwerpunkt stellt das Spannungsverhältnis von Musik als Hörerfahrung und Musik als formaler Struktur dar. Das Seminar widmet sich der Diskussion aktueller Studien im Bereich der Musikkognition sowie gegenwärtigen formalen und mathematischen Ansätze in Musiktheorie unter dem Aspekt der Entwicklung einer extensionalen Standardsprache. Ziel des Seminars ist die kritische Reflexion des aktuellen Forschungsstands und die Diskussion neuer wissenschaftlicher Initiativen.
Ggf. besteht für Studierende anderer Fachrichtungen und Fakultäten die Möglichkeit, sich die Seminarteilnahme im Bereich Aqua anerkennen zu lassen. Bitte erkundigen Sie sich in Ihrem Prüfungsamt. |
Internet |
Webseite: Prof. Dr. Martin Rohrmeier |
Dozent/Zeit/Ort |
Schmidt, St. / Rohrmeier |
S |
Di |
6. DS |
|
|
1. Veranstaltung am Di, 20.10.2015 |
|
|
Die Veranstaltungen finden abwechselnd im WIL C 102 (Mathematik) und in der August-Bebel-Str. (Institute of Art and Music) statt.
Bitte informieren Sie sich auf den Veranstaltungswebseiten. |
• • • Institut für Algebra - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul INF B110: Einführung in die Mathematik für Informatiker: Diskrete Strukturen und Lineare Algebra |
6+4+0 |
F01/184 |
Zielgruppe |
BA-Studiengänge Informatik und Medieninformatik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Diskrete Strukturen: Es werden der Umgang mit mathematischer Methodik, grundlegende mathematische Begriffe, Schreibweisen, Argumentationsformen und Fertigkeiten am Beispiel der Mengen- und Formelsprache und an Elementen der Diskreten Mathematik behandelt. Im Einzelnen: Graphen, Relationen, Abbildungen und Morphismen, Ordnungen und Verbände, Symmetrien, modulare Arithmetik. Lineare Algebra und Geometrie: Es werden der systematische Theorieaufbau, der darauf gründende abstrakte Strukturbegriff und seine Anwendungen betont. Im Einzelnen: Vektorraum, Basis, Dimensionen, lineare Gleichungssysteme, Bestapproximation, eometrische Interpretationen, Eigenwerte sowie der Umgang mit komplexen Zahlen. |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Baumann |
V |
Mo |
3. DS |
TRE MATH |
|
Vorlesung: Lineare Algebra |
|
|
Bodirsky |
V |
Mi |
3. DS |
HSZ 02 |
|
Vorlesung: Diskrete Strukturen |
|
|
Bodirsky |
V |
Fr |
3. DS |
HSZ 03 |
|
Vorlesung: Diskrete Strukturen |
|
|
Noack |
Ü |
|
|
|
|
Kursassistentin |
|
|
Reichard |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite der Kursassistenten. |
| |
Modul ET-01 04 04: Algebra (Teil 1, Informationssystemtechnik) |
1+1+0 |
F01/181 |
Zielgruppe |
Studierende Informationssystemtechnik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Ausgewählte Kapitel der Angewandten Algebra, Methoden der algebraischen Modellierung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Baumann |
V |
Mi |
2. DS |
TOE 317 |
gerade Woche |
|
|
|
Zschalig |
Ü |
Mo |
4. DS |
WIL C102 |
gerade Woche |
|
|
|
Zschalig |
Ü |
Mo |
4. DS |
WIL C102 |
ungerade Woche |
|
|
| |
Modul INF B120: Mathematische Methoden für Informatiker (Teil 2) |
3+2+0 |
F01/187 |
Zielgruppe |
BA-Studiengänge Informatik und Medieninformatik (3. Sem.) |
Vorkenntnisse |
Einführung in die Mathematik für Informatiker, Modul INF B120: Mathematische Methoden für Informatiker (Teil 1) |
Inhalt |
Algebra, Analysis, Numerische Mathematik, Wahrscheinlichkeitsrechnung |
Einschreibung |
- |
Leistungsnachweis |
Prüfung |
Dozent/Zeit/Ort |
Baumann |
V |
Di |
3. DS |
HSZ 02 |
ungerade Woche |
|
|
|
Baumann |
V |
Do |
3. DS |
HSZ 03 |
|
|
|
|
Noack |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite der Kursassistentin. |
| |
Modul INF-D9-20: Methoden der angewandten Algebra (= Math Ba ALGSTR) |
4+0+0 |
F01/132-2 |
Zielgruppe |
für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
5. DS |
WIL A221 |
|
1. Vorlesung am Mo, 19.10.2015 |
05.10.2015: Änderung Vorlesungszeit |
|
Schmidt, St. |
V |
Mi |
2. DS |
WIL C133 |
|
|
|
| |
Modul INF-D9-20: Permutationsgruppen (= Math Ba ALGSTR) |
4+0+0 |
F01/131-2 |
Zielgruppe |
für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Inhalt |
1. Semester des Moduls Math Ba ALGSTR - Permutationsgruppen: Die Vorlesung behandelt u.a. Permutationsdarstellungen, den Satz von Cayley, Bahnen und invariante Relationen (Sätze von Krasner), (mehrfach)-transitive, reguläre, primitive Permutationsgruppen, Symmetriegruppen, Kranzprodukte, das Lemma von Cauchy-Frobenius-Burnside und Anwendungen (Polyasche Abzähltheorie), Automorphismusgruppen (speziell von Graphen), sowie Permutationsgruppenalgorithmen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Analysis - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul MN-SEMS-MAT-GLAAG: Grundlagen der Linearen Algebra und Analytischen Geometrie (Teil 1) |
4+2+0 |
F01/216 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 1. Sem., (gemeinsam mit Lehramt an Grundschulen; gemeinsam mit SE-Lehramt GY, BS, MS, studiertes Fach Informatik) |
Inhalt |
Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fasangová |
V |
Di |
3. DS |
WIL A317 |
|
|
|
|
Fasangová |
V |
Fr |
2. DS |
WIL A317 |
|
|
|
|
Röder |
Ü |
Mo |
2. DS |
WIL C205 |
|
|
|
|
N.N. |
Ü |
Mi |
3. DS |
WIL B122 |
|
|
|
|
N.N. |
Ü |
Mo |
3. DS |
WIL C206 |
|
|
|
|
Röder |
Ü |
Fr |
3. DS |
WIL C307 |
|
|
16.10.2015: Raumänderung eingetragen |
| |
Modul MN-SEMS-MAT-ELEGEOM: Elementargeometrie |
2+2+0 |
F01/215 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 1. Sem., (gemeinsam mit Lehramt an Grundschulen) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Koksch |
V |
Di |
4. DS |
WIL C107 |
|
|
|
|
Röder |
Ü |
Mo |
4. DS |
WIL C103 |
|
|
|
|
Röder |
Ü |
Di |
2. DS |
WIL C206 |
|
|
|
|
Röder |
Ü |
Mi |
3. DS |
WIL C203 |
|
|
|
| |
Modul EW-SEGS-M-1: Lineare Algebra und Analytische Geometrie für das Lehramt an Grundschulen |
4+2+0 |
F01/216* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 1. Sem., (gemeinsam mit Lehramt an Mittelschulen; gemeinsam mit SE-Lehramt GY, BS, MS, studiertes Fach Informatik) |
Inhalt |
Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Fasangová |
V |
Di |
3. DS |
WIL A317 |
|
|
|
|
Fasangová |
V |
Fr |
2. DS |
WIL A317 |
|
|
|
|
Röder |
Ü |
Mo |
2. DS |
WIL C205 |
|
|
|
|
N.N. |
Ü |
Mi |
3. DS |
WIL B122 |
|
|
|
|
N.N. |
Ü |
Mo |
3. DS |
WIL C206 |
|
|
|
|
Röder |
Ü |
Fr |
3. DS |
WIL C307 |
|
|
16.10.2015: Raumänderung eingetragen |
| |
Modul EW-SEGS-M-2: Geometrie für das Lehramt an Grundschulen |
2+2+0 |
F01/215* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 1. Sem., (gemeinsam mit Lehramt an Mittelschulen) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Koksch |
V |
Di |
4. DS |
WIL C107 |
|
|
|
|
Röder |
Ü |
Mo |
4. DS |
WIL C103 |
|
|
|
|
Röder |
Ü |
Di |
2. DS |
WIL C206 |
|
|
|
|
Röder |
Ü |
Mi |
3. DS |
WIL C203 |
|
|
|
• • • Institut für Analysis - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba ANAA: Analysis Aufbaumodul |
3+1+0 |
F01/221 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.) |
Vorkenntnisse |
Analysis I, II |
Inhalt |
Die Vorlesung beschäftigt sich u.a. mit den Themen
Integration auf Untermannigfaltigkeiten des Rn, gewöhnlichen
Differentialgleichungen |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 9 |
Dozent/Zeit/Ort |
Siegmund |
V |
Di |
3. DS |
WIL B321 |
ungerade Woche |
|
21.09.2015: ungerade Wo eingetragen |
|
Siegmund |
V |
Do |
6. DS |
WIL B321 |
|
|
|
|
Tutor |
Ü |
Di |
3. DS |
WIL B321 |
gerade Woche |
|
21.09.2015: gerade Wo eingetragen |
|
Trostorff |
Ü |
Do |
3. DS |
WIL C133 |
gerade Woche |
|
|
|
Trostorff |
Ü |
Do |
3. DS |
WIL C133 |
ungerade Woche |
|
|
|
Die Lehrveranstaltung beginnt mit der Vorlesung Do 6. DS am 15.10.2015. |
| |
Modul MN-SEMS-MAT-EANA: Einführung in die Analysis (Teil 1) |
3+2+0 |
F01/228 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 3. Sem., (gemeinsam mit Lehramt an Grundschulen) |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Chill |
V |
Mo |
3. DS |
WIL A317 |
|
|
|
|
Chill |
V |
Mi |
2. DS |
WIL B122 |
|
|
|
|
N.N. |
Ü |
Mo |
4. DS |
WIL C204 |
|
|
|
|
Weigel |
Ü |
Do |
3. DS |
WIL C205 |
|
|
|
| |
Modul EW-SEGS-M-4: Analysis für das Lehramt an Grundschulen |
3+2+0 |
F01/228* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 3. Sem., (gemeinsam mit Lehramt an Mittelschulen) |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Chill |
V |
Mo |
3. DS |
WIL A317 |
|
|
|
|
Chill |
V |
Mi |
2. DS |
WIL B122 |
|
|
|
|
N.N. |
Ü |
Mo |
4. DS |
WIL C204 |
|
|
|
|
Weigel |
Ü |
Do |
3. DS |
WIL C205 |
|
|
|
• • • Institut für Analysis - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul MN-SEMS-MAT-ELZTH: Elementare Zahlentheorie |
2+2+0 |
F01/237 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 5. Sem. (gemeinsam mit Lehramt Grundschule) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul EW-SEGS-M-7: Elementare Zahlentheorie für das Lehramt an Grundschulen |
2+2+0 |
F01/237* |
Zielgruppe |
Staatsexamen: Lehramt an Grundschulen, Fach Mathematik, 5. Sem. (gemeinsam mit Lehramt Mittelschule) |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Analysis - 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma DYSYSG: Dynamische Systeme – Grundlagen |
3+1+0 |
F01/241 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Vorkenntnisse |
- |
Inhalt |
Themen der LV sind grundsätzliche Konzepte der
Theorie dynamischer Systeme, der linearen und nichtlinearen Theorie, wie
z.B. Stabilitätstheorie, Linearisierungstechniken, Bifurkationsszenarien,
Chaos |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Siegmund |
V |
Di |
5. DS |
WIL A124 |
|
|
|
|
Siegmund |
V |
Do |
2. DS |
WIL C133 |
|
Übung integriert |
|
| |
Modul Math Ma PDEANA: Partielle Differentialgleichungen – Analytische Grundlagen |
3+1+0 |
F01/231 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Analysis-Veranstaltungen des Bachelor-Studiengangs |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-MODSEM. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Chill |
V |
Di |
4. DS |
WIL A124 |
|
|
|
|
Chill |
V |
Mo |
4. DS |
WIL B321 |
|
Übung integriert |
14.09.2015: Änderung für die Zeit eingetragen |
| |
Modul Math Ma MKMECH - Mathematische Kontinuumsmechanik: Mehrskalenanalysis |
3+1+0 |
F01/646* |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, sowie Studierende Physik, Maschinenbau |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Empfohlen sind Grundkenntnisse zu partiellen Differentialgleichungen und zur Funktionalanalysis. |
Inhalt |
Die Vorlesung beinhaltet eine Einführung in die Analysis und Modellierung von Mehrskalenproblemen mittels partieller Differentialgleichungen und Methoden der Funktionalanalysis.
Für weitere Informationen zur Vorlesung siehe nachstehend genannte Webseite. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
http://www.math.tu-dresden.de/~sneukamm/teaching/MKMECH-WS15/ |
Dozent/Zeit/Ort |
Neukamm |
V |
Do |
3. DS |
WIL A221 |
|
|
20.10.2015: Vorlesungszeit geändert |
|
Neukamm |
V |
Fr |
1. DS |
WIL A120 |
|
Übung integriert |
21.10.2015: Vorlesungszeit geändert (wieder alte Zeit) |
| |
Modul Math Ma WIA: Seminar 'Infinite dimensional analysis' |
0+2+0 |
F01/240 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge u.a. Interessenten |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
Im WS 2015 /16 (und im darauffolgenden SS 2016) findet wieder das internationale Internetseminar über Evolutionsgleichungen statt. Titel des diesjährigen Internetseminars ist 'Infinite dimensional analysis'.
We consider separable infinite dimensional Banach spaces endowed with Gaussian measures and we describe their main properties; in particular we are interested
in integration by parts formulae that allow the definition of gradient and divergence operators. Once these tools are introduced, we study Sobolev spaces.
In the context of Gaussian analysis the role of the Laplacian (?=divgrad) is played by the Ornstein-Uhlenbeck operator. We study the realisation of the
Ornstein-Uhlenbeck operator and of the Ornstein-Uhlenbeck semigroup in spaces of continuous functions and in Lp spaces. In particular, for p=2 the Ornstein-Uhlenbeck
operator is self-adjoint and we show that there exists an orthogonal basis consisting of explicit eigenfunctions (the Hermite polynomials) that give raise to the 'Wiener Chaos Decomposition'.
We expect from the participants basic knowledge in functional analysis, foundations of Hilbert spaces, and some familiarity with partial differential equations and measure theory. Knowledge of probability theory and stochastic analysis may be of help but it is not essential.
Das Internetseminar besteht aus drei Phasen: die Vorlesungsphase (Oktober - Februar), die wir an der TU Dresden durch ein wöchentliches Seminar begleiten, die Projektphase (März - Mai) und ein Workshop in Casalmaggiore (Italien). Wer nur an der ersten Phase teilnimmt, bekommt das WIA-Seminar mit zwei Stunden angerechnet; wer an allen drei Phasen teilnimmt, bekommt vier Stunden angerechnet.
Für weitere Informationen, bitte Prof. Chill kontaktieren. Siehe auch: dmi.unife.it/isem19 |
Einschreibung |
Einschreibung über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Chill |
S |
Do |
4. DS |
WIL A120 |
|
|
|
| |
Modul Math MaL-VERT-G/B: Dynamische Systeme – Grundlagen |
3+1+0 |
F01/241* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Themen der LV sind grundsätzliche Konzepte der
Theorie dynamischer Systeme, der linearen und nichtlinearen Theorie, wie
z.B. Stabilitätstheorie, Linearisierungstechniken, Bifurkationsszenarien,
Chaos |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Siegmund |
V |
Di |
5. DS |
WIL A124 |
|
|
|
|
Siegmund |
V |
Do |
2. DS |
WIL C133 |
|
Übung integriert |
|
| |
Modul MN-SEMS MAT SEMMS: Mathematisches Seminar Mittelschule - Analysis |
0+0+2 |
F01/272 |
Zielgruppe |
Staatsexamen: Mittelschule (4. Studienjahr) |
Vorkenntnisse |
Kompetenzen aus dem Modul MN-SEMS-MAT-EANA |
Inhalt |
Vertiefung der Analysiskenntnisse (fachliche Begründung von elementaren Funktionen mittels Reihen) |
Einschreibung |
über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Weigel |
S |
Mi |
4. DS |
WIL C203 |
|
|
|
• • • Institut für Analysis -Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Oberseminar Analysis |
0+2+0 |
F01/255 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, Studierende Physik |
Vorkenntnisse |
Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen |
Inhalt |
Lose Folge von Vorträgen zu ausgewählten Themen der Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Seminar: Themen der Mathematischen Physik |
0+2+0 |
F01/257 |
Zielgruppe |
Bachelor-Studiengang Physik mit Nebenfach Mathematik, Bachelor-Studiengang Mathematik (ab 4. Fachsem.), math. Diplom- und Masterstudiengänge |
Inhalt |
Mathematische Konzepte der Quantenmechanik |
Einschreibung |
siehe eigene Internetseite des Seminars |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Webseite zum Seminar |
• • • Institut für Analysis - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul PHY Ma-II: Mathematik II / 1 (Physik) |
4+2+0 |
F01/291 |
Zielgruppe |
Bachelor-Studiengang Physik (3. Sem.) |
Vorkenntnisse |
Modul Mathematik I |
Inhalt |
Untermannigfaltigkeiten des Rn, Integralsätze, gewöhnliche Differentialgleichungen, partielle Differentialgleichungen |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Webseite zur Vorlesung |
Dozent/Zeit/Ort |
Kalauch |
V |
Di |
2. DS |
WIL A317 |
|
|
|
|
Kalauch |
V |
Fr |
3. DS |
WIL A317 |
|
|
|
|
Tutor |
Ü |
Di |
6. DS |
WIL C205 |
|
HA-Abgabe / Tutorium / Helpdesk: Frau Unger |
14.09.2015: Übungen aktualisiert |
|
Kalauch |
Ü |
Mi |
3. DS |
WIL C104 |
|
|
|
|
Tutor |
Ü |
Do |
1. DS |
WIL C203 |
|
|
|
|
Kalauch |
Ü |
Do |
4. DS |
WIL C206 |
|
|
|
|
Tutor |
Ü |
Do |
4. DS |
WIL C102 |
|
|
30.09.2015: Üb.-Räume aktualisiert |
|
Für die Übungen siehe Webseite bei der Dozentin. |
| |
Modul INF-SEGY/BS/MS-INF-03: Mathematik für das Lehramt Informatik |
4+2+0 |
F01/216+ |
Zielgruppe |
Staatsexamen: Lehramt Informatik (GY, BS, MS); gemeinsam mit Lehramt Mittelschule und Grundschule, Fach Mathematik, 1. Sem. |
Inhalt |
Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Mathematik I - BIW1-05: Lineare Algebra und Analysis (Bauingenieurwesen) |
4+2+0 |
F01/281-1 |
Zielgruppe |
BA-Studiengang Bauingenieurwesen (gemeinsam mit Geo- und Hydrowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Koksch |
VO |
Di |
1. DS |
TRE MATH |
|
|
|
|
Koksch |
VO |
Fr |
2. DS |
TRE MATH |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite des Dozenten. |
| |
Mathematik I - BSc GG 02: Mathematik - Lineare Algebra und Analysis (Geodäsie und Geoinformation) |
4+2+0 |
F01/281-2 |
Zielgruppe |
BA-Studiengang Geodäsie und Geoinformation (gemeinsam mit Bauingenieurwesen und Hydrowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Koksch |
VO |
Di |
1. DS |
TRE MATH |
|
|
|
|
Koksch |
VO |
Fr |
2. DS |
TRE MATH |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite des Dozenten. |
| |
Mathematik I - BHYWI01: Mathematik (Hydrowissenschaften), BWW01: Mathematik (Abfallwirtschaft und Altlasten, Hydrologie, Wasserwirtschaft) |
4+2+0 |
F01/281-3 |
Zielgruppe |
BA-Studiengang Wasserwirtschaft, Hydrologie, Abfallwirtschaft und Altlasten (gemeinsam mit Bauingenieurwesen und Geowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Koksch |
VO |
Di |
1. DS |
TRE MATH |
|
|
|
|
Koksch |
VO |
Fr |
2. DS |
TRE MATH |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite des Dozenten. |
| |
Modul D-WW-MV: Mathematik Vertiefung (Wirtschaftsingenieurwesen) |
2+2+0 |
F01/483 |
Zielgruppe |
Studierende Wirtschaftsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
In der Vorlesung werden mathematische Grundlagen
zu den Themen komplexe Potenzreihen, Funktionenräumen, mehrdimensionaler
Integration und Differentialgleichungen vermittelt |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Siegmund |
V |
Mi |
6. DS |
TRE MATH |
|
|
|
|
Weigel |
Ü |
Mi |
2. DS |
SE2 103 |
|
|
15.10.2015: Zeit und Raum geändert !! |
|
Weigel |
Ü |
Di |
4. DS |
WIL B122 |
|
|
|
|
Berschneider |
Ü |
Fr |
3. DS |
WIL C104 |
|
Kursassistent |
15.10.2015: Zeit geändert !! |
|
Tutor |
Ü |
Mo |
2. DS |
POT 13 |
|
|
15.10.2015: Zeit und Raum geändert !! |
|
Tutor |
Ü |
Do |
5. DS |
WIL C104 |
|
|
|
|
Für die Übungen siehe Webseite/ OPAL-Kurs beim Kursassistenten. |
| |
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure |
2+1+0 |
F01/284 |
Zielgruppe |
Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens |
Vorkenntnisse |
Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums |
Inhalt |
Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw. Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung. |
Einschreibung |
- |
Leistungsnachweis |
lt. Prüfungsordnung |
Dozent/Zeit/Ort |
Trostorff |
V |
Fr |
4. DS |
WIL A 221 |
|
|
28.10.2015: Änderung für Zeit und Ort eingetragen |
|
Trostorff |
Ü |
Di |
3. DS |
WIL C206 |
gerade Woche |
|
|
• • • Institut für Geometrie - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba ANAG: Grundlagen der Analysis (Teil 1) |
4+2+0 |
F01/211 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.) (gemeinsam mit BA-Physik, Lehramt GY und BBS - Staatsexamen, 3. Sem.) |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 6 |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY/SEBS-MAT-GEOVIS: Geometrie und computergestütztes Visualisieren |
2+1+0 |
F01/318 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 1. Sem. |
Vorkenntnisse |
- |
Inhalt |
siehe Modulbeschreibung |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
• • • Institut für Geometrie - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba GEO: Geometrie |
3+1+0 |
F01/321 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.) |
Vorkenntnisse |
Lineare Algebra und Analytische Geometrie I und II |
Inhalt |
Quadriken (insbesondere in der Ebene und im Raum), projektive Geometrie, sphärische Geometrie, Möbiusgruppe, Modelle der nichteuklidischen Geometrie, erste Grundbegriffe aus ausgewählten weiteren Gebieten der Geometrie. |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Brehm |
V |
Di |
4. DS |
WIL B321 |
|
|
|
|
Brehm |
V |
Mi |
4. DS |
WIL A317 |
gerade Woche |
|
28.09.2015: gerade Wo. eingetragen |
|
Brodaczewska |
Ü |
Mo |
5. DS |
WIL B321 |
gerade Woche |
|
|
|
Brodaczewska |
Ü |
Mo |
5. DS |
WIL B321 |
ungerade Woche |
|
14.09.2015: Änderung der Zeiten für Vorlesung und Übung |
| |
Modul MN-SEGY/SEBS-MAT-ANA: Analysis (Teil 1) |
4+2+0 |
F01/211* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul MN-SEGY/SEBS-MAT GEOVIS (Projekt): Geometrie und computergestütztes Visualisieren |
Projektarbeit |
F01/328 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Visualisierung und Modellierung geometrisch-mathematischer Sachverhalte mittels dynamischer Geometriesoftware und CAD-Programmen. Erarbeitung von Projekten aus verschiedenen Gebieten der Geometrie
in kleinen Arbeitsgruppen, die Vorstellung der Projekte und die Einteilung
dazu erfolgen in der 1. Veranstaltung, die Ausarbeitung bis Semesterende |
Einschreibung |
1. Veranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Brehm |
P |
Do |
6. DS |
WIL B221/P |
|
|
|
• • • Institut für Geometrie - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba DGEO: Differentialgeometrie |
3+1+0 |
F01/331 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
Klassische Theorie der Kurven und Hyperflächen im euklidischen Raum |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 20 |
Dozent/Zeit/Ort |
Brehm |
V |
Do |
1. DS |
WIL A124 |
|
|
|
|
Brehm |
V |
Fr |
3. DS |
WIL C133 |
gerade Woche |
|
|
|
Tutor |
Ü |
Fr |
3. DS |
WIL C133 |
ungerade Woche |
|
|
| |
Modul Math Ba HANA Höhere Analysis: Funktionalanalysis |
3+1+0 |
F01/299 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 21 |
Dozent/Zeit/Ort |
Schuricht |
V |
Di |
4. DS |
WIL A317 |
gerade Woche |
|
|
|
Schuricht |
V |
Do |
3. DS |
WIL B321 |
|
|
|
|
Tutor |
Ü |
Di |
4. DS |
WIL A317 |
ungerade Woche |
|
|
Dozent/Zeit/Ort |
Schuricht |
S |
Di |
5. DS |
WIL C133 |
|
|
|
| |
Modul Math Ba SEM - Seminar (Angebot des Institutes für Geometrie) |
0+2+0 |
F01/335 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Lineare Algebra, Geometrie, Analysis |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Netzer |
S |
Fr |
4. DS |
WIL C133 |
|
|
|
• • • Institut für Geometrie - 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma ALGTOP: Algebraische Topologie |
3+1+0 |
F01/341 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Thom |
V |
Mo |
4. DS |
WIL A124 |
|
|
|
|
Thom |
V |
Mi |
3. DS |
WIL C133 |
|
Übung integriert |
20.10.2015: Zeit und Raum geändert |
| |
Modul Math Ma AMGEO: Algebraische Methoden in der Geometrie |
3+1+0 |
F01/342 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
laut Modulbeschreibung |
Inhalt |
In dieser Vorlesung werden wir die Verbindung zwischen geometrischen Objekten (topologischen Räumen, Mannigfaltigkeiten usw.)
von einer Seite und algebraischen Objekten (Algebren von (algebraischen, stetigen, glatten) Funktionen auf den zugehörigen Räumen) herstellen und sehen,
wie Algebra und Geometrie sich dabei gegenseitig helfen.
Die Geometrie profitiert dadurch, dass man die Methoden der Algebra benutzen kann, um Räume besser zu verstehen;
die Algebra profitiert dadurch, dass man geometrische Intuition benutzen kann, um interessante algebraische Konstruktionen aufzustellen.
Der Kurs wird die Einführung in algebraische und nichtkommutative Geometrie enthalten. Wir werden die Begriffe des Spektrums
einer Algebra in verschiedenen Kontexten (rein algebraisch – als Teil der Ringtheorie und funktionalanalytisch – als Teil der Theorie von
Operatoralgebren) kennenlernen und sehen, wie Algebra, Geometrie und Funktionalanalysis interagieren und wie Dualität zwischen
Räumen und Funktionen in verschiedenen Kontexten zustande kommt. Weiter werden wir Verbindungen dieser Ideen zur Darstellungstheorie
der Algebren entwickeln sowie einige Invarianten von Räumen studieren (K-Theorie), die algebraische Interpretation zulassen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Alekseev |
V |
Mi |
2. DS |
WIL A120 |
|
|
15.09.2015: Zeit geändert |
|
Alekseev |
V |
Di |
3. DS |
WIL A120 |
|
Übung integriert |
|
| |
Modul Math Ma GEOGT: Geometrische Gruppentheorie |
3+1+0 |
F01/343 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Algebra, Geometrie und diskrete Strukturen'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Dozent/Zeit/Ort |
|
V |
|
|
|
|
Die Vorlesung findet nicht statt. |
14.08.2015: Korrektur |
| |
Modul Math Ma MANA: Methoden der Analysis |
3+1+0 |
F01/244 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Algebra, Geometrie und diskrete Strukturen' Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich'. |
Vorkenntnisse |
laut Modulbeschreibung |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math MaL-VERT-G/B: Differentialgeometrie |
3+1+0 |
F01/331* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba DGEO: Differentialgeometrie |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 20 |
Dozent/Zeit/Ort |
Brehm |
V |
Do |
1. DS |
WIL A124 |
|
|
|
|
Brehm |
V |
Fr |
3. DS |
WIL C133 |
gerade Woche |
|
|
|
Tutor |
Ü |
Fr |
3. DS |
WIL C133 |
ungerade Woche |
|
|
| |
Modul Math MaL-VERT-G/B: Funktionalanalysis |
3+1+0 |
F01/299* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 21 |
Dozent/Zeit/Ort |
Schuricht |
V |
Di |
4. DS |
WIL A317 |
gerade Woche |
|
|
|
Schuricht |
V |
Do |
3. DS |
WIL B321 |
|
|
|
|
Tutor |
Ü |
Di |
4. DS |
WIL A317 |
ungerade Woche |
|
|
| |
Modul Math MaL SEM-G/B Mathematisches Seminar: Analysis |
0+0+2 |
F01/772 |
Zielgruppe |
Master-Studiengänge Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen (2. Sem.) |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Schuricht |
S |
Do |
5. DS |
WIL C102 |
|
|
|
| |
Modul Math MaL SEM-G/B Mathematisches Seminar: Geometrie |
0+0+2 |
F01/773 |
Zielgruppe |
Master-Studiengänge Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen (Zusatzangebot im 3. Sem.) |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Alekseev |
S |
Di |
6. DS |
WIL C204 |
|
|
|
| |
Modul Math MaL PROFIL: Schreiben mathematischer Texte (Wahlpflichtmodul) |
0+3+0 |
F01/370 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Sem. Wahlpflichtmodul - Das Fach Mathematik muss studiertes Fach sein. |
Vorkenntnisse |
Es sind vertiefte Kenntnisse des Fachs Mathematik erforderlich. |
Inhalt |
Die Studierenden sind in der Lage, wissenschaftliche Texte fortgeschrittenen mathematischen Inhalts professionell zu verfassen. Sie wissen, welche Regeln dafür zu beachten sind und haben Erfahrung mit kooperativer Autorenschaft und einem mathematischen Textsatzsystem. Die Studierenden haben Erfahrungen, sich einen Überblick über den wissenschaftlichen Diskussionsstand zu einer mathematischen Thematik zu verschaffen und sich fachliche und interdisziplinäre Bezüge zu erschließen. Sie können eigenständig wissenschaftliche Informationen zu gegebenen Fragestellungen recherchieren und die Ergebnisse in eigene Texte einarbeiten. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Alekseev |
S |
Mi |
4. DS |
WIL C204 |
|
|
|
• • • Institut für Geometrie - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Institutsseminar Geometrie / Graduate Lectures in Mathematics |
0+2+0 |
F01/355 |
Zielgruppe |
Math. Diplom- und Masterstudiengänge u.a. Interessenten |
Inhalt |
Institutsseminar Geometrie: Vorträge zur Geometrie und ihren Anwendungen Graduate Lectures in Mathematics: This series of lectures aims at Master's and PhD students in mathematics and offers a first glimpse into topics which are not routinely taught in our MSc/PhD programme. The emphasis is to introduce new concepts and techniques, and not to present full mathematical details. Bekanntgabe der Themen durch Aushang und Internet (siehe Link) |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Seminar Algebra, Geometrie und Kombinatorik |
0+2+0 |
F01/155* |
Zielgruppe |
Diplom- und Masterstudiengang Mathematik |
Inhalt |
Vorträge zu aktuellen Forschungsthemen der Institute für Algebra und für Geometrie sowie eingeladener Gäste. Alle Interessenten sind herzlich eingeladen. Die Themen werden im Aushang und im Internet bekannt gegeben. |
Einschreibung |
- |
Leistungsnachweis |
nach Vereinbarung |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460* |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Real and Stochastic Analysis. Dynamical Systems. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
• • • Institut für Geometrie - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Darstellende Geometrie und CAD (Architektur) |
1+1+0 |
F01/381 |
Zielgruppe |
Studierende Architektur |
Vorkenntnisse |
- |
Inhalt |
Das Modul Darstellende Geometrie und CAD vermittelt Abbildungsmethoden und Lösungsstrategien zur konstruktiven Bewältigung räumlicher Fragestellungen im architektonischen Kontext. Die Studierenden verfügen nach Abschluss des Moduls über ein strukturiertes räumliches Vorstellungsvermögen und beherrschen die Grundlagen für die maßgenaue und anschauliche Darstellung von Architektur in Axonometrien und Perspektiven. Sie sind in der Lage, das erworbene Wissen auch auf Freihandskizzen und CAD-Repräsentationen zu übertragen und somit entwerfend in Architekturdarstellungen einzugreifen. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
Dozent/Zeit/Ort |
Lordick |
V |
Mo |
4. DS |
ASB 120 |
gerade Woche |
|
|
|
Lordick |
Ü |
Mo |
5. DS |
WIL B122 |
gerade Woche |
|
|
|
Lordick |
Ü |
Mo |
5. DS |
WIL B122 |
ungerade Woche |
|
|
|
Lordick |
Ü |
Mi |
5. DS |
WIL B122 |
gerade Woche |
|
|
|
Lordick |
Ü |
Mi |
5. DS |
WIL B122 |
ungerade Woche |
|
|
| |
Modul PHY Ma-I: Mathematik I / 1 (Physik) |
4+2+0 |
F01/211+ |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.) (gemeinsam mit BA-Mathematik, Lehramt GY und BBS - Staatsexamen, 1. Sem.) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs |
| |
Modul PHY Ma-I: Lineare Algebra (Physik) |
4+2+0 |
F01/390 |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.) |
Vorkenntnisse |
Abitur |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul BIW1-09 Technische Grundlagen: Konstruktive Geometrie (Bauingenieurwesen) |
1+1+0 |
F01/385 |
Zielgruppe |
Studierende Bauingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Die Lehrveranstaltung vermittelt Grundkenntnisse und praktische Anwendungen von konstruktiv geometrischen Verfahren. Sie dient der Entwicklung eines strukturierten räumlichen Vorstellungsvermögens und befähigt zur Herstellung und sachgerechten Interpretation von technischen Zeichnungen und CAD-Repräsentationen. Räumliche Objekte und Aufgaben werden anschaulich dargestellt und konstruktiv gelöst. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
• • • Institut für Mathematische Stochastik - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MINT: Maß und Integral |
3+1+0 |
F01/421 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG und Math-Ba-LAAG |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 11 |
Dozent/Zeit/Ort |
Böttcher |
V |
Di |
2. DS |
WIL B321 |
gerade Woche |
|
|
|
Böttcher |
V |
Fr |
3. DS |
WIL B321 |
|
|
15.10.2015: V/Ü geändert |
|
Böttcher |
Ü |
Di |
2. DS |
WIL B321 |
ungerade Woche |
|
|
|
Kühn |
Ü |
Fr |
2. DS |
WIL B321 |
gerade Woche |
Kursassistentin |
15.10.2015: V/Ü und Raum geändert |
|
Kühn |
Ü |
Fr |
2. DS |
WIL B321 |
ungerade Woche |
|
15.10.2015: V/Ü und Raum geändert |
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
• • • Institut für Mathematische Stochastik - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba STOCHV: Vertiefung Stochastik - Statistik |
2+0+0 |
F01/431 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 24 |
Dozent/Zeit/Ort |
Ferger |
V |
Di |
2. DS |
WIL C133 |
|
|
|
| |
Modul Math Ba STOCHV: Vertiefung Stochastik - Versicherungsmathematik |
2+0+0 |
F01/432 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 24 |
| |
Modul MN-SEGY/SEBS/SEMS-MAT-STOCH: Stochastik |
4+2+0 |
F01/437 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 5. Sem.; Lehramt an Mittelschulen, Fach Mathematik, 5. Sem. |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung ABS - Seite 11 |
Dozent/Zeit/Ort |
Böttcher |
V |
Mo |
3. DS |
WIL B321 |
|
|
|
|
Böttcher |
V |
Mi |
4. DS |
WIL B321 |
|
|
|
|
Kühn |
Ü |
Mo |
4. DS |
WIL A221 |
|
|
|
|
Berschneider |
Ü |
Mi |
5. DS |
WIL C204 |
|
|
|
|
Böttcher |
Ü |
Fr |
4. DS |
WIL C103 |
|
|
20.10.2015: Änderung der Übungszeit eingetragen |
|
Für die Übungen siehe Webseite des Dozenten. |
• • • Institut für Mathematische Stochastik - 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma MSTAT: Mathematische Statistik |
3+1+0 |
F01/442 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Ferger |
V |
Di |
6. DS |
WIL B321 |
|
|
|
|
Ferger |
V |
Do |
2. DS |
WIL C203 |
|
Übung integriert |
|
| |
Modul Math Ma WTHM: Wahrscheinlichkeitstheorie mit Martingalen |
3+1+0 |
F01/447 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung Hinweis: Das Modul schafft Voraussetzungen für die Module Math-Ma-STOCAL, Math-Ma-STOCHP und Math-Ma-MAFIN. |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma VMRM: Versicherungsmathematik - Risikomodelle |
3+1+0 |
F01/446 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-VMPV.
Gegenstand des Moduls sind Risikomodelle der Versicherungsmathematik, insbesondere
- das kollektive Modell (univariat, multivariat, dynamisch) und
- der Poisson-Prozess (homogen, inhomogen, gemischt, bedingt).
Die Studenten besitzen ein systematisches Wissen und Verständnis von Risikomodellen und sind in der Lage, sie auf die Prämienkalkulation und das Ruin-Problem anzuwenden. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma WIA: Seminar Ausgewählte Themen aus Finanzmathematik und Stochastischer Analysis |
0+0+2 |
F01/440 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
In der Lehrveranstaltung werden in Abstimmung mit den Teilnehmern ausgewählte Themen aus Finanzmathematik und Stochastischer Analysis in Seminarform bearbeitet.
Das Verfassen einer Abschlussarbeit ist im Anschluss an die Lehrveranstaltung möglich.
Mögliche Themen aus dem Gebiet der Finanzmathematik:
– Zinsstrukturmodelle
– Die Fläche der impliziten Volatilitäten
– Unvollständige Marktmodelle
– Optionen auf realisierte Varianz
Aus der Stochastischen Analysis:
– Skorokhodsche Einbettungen von Verteilungen in die Brownsche Bewegung
– Lokalzeiten und die Ito-Tanaka-Formel
– Bessel-Prozesse und Anwendungen in der Finanzmathematik
– Theorie schwacher Lösungen eindimensionaler stochastischer Differentialgleichungen |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare und Seminar-Module' |
| |
Modul Math Ma MMMA: Grundlagen der Copula-Theorie |
2+0+0 |
F01/450 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Inhalt |
Bemerkung: Teilmodul 2 SWS, kann mit einem anderen MMMA-Teilmodul aus dem Angebot kombiniert werden.
Copulas sind multivariate Verteilungsfunktionen mit uniformen Rändern und damit ein Objekt der Wahrscheinlichkeitstheorie.
Mit Hilfe von Copulas lässt sich die Abhängigkeitsstruktur einer beliebigen multivariaten Verteilungsfunktion losgelöst
von deren Rändern untersuchen. Copulas sind daher insbesondere geeignet, die wechselseitige Beziehung zwischen Zufallsvariablen zu beschreiben.
Neben grundlegenden Aussagen wie dem Satz von Sklar umfasst diese Vorlesung die Konstruktion von Copulas, die Untersuchung
spezieller Familien von Copulas und die Verwendung von Copulas zur Modellierung stochastischer Zusammenhänge.
Diese Vorlesung orientiert sich an der kürzlich erschienenen Monographie von Durante und Sempi 'Principles of Copula Theory', Chapman & Hall [2015]. |
Einschreibung |
in der 1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Institut für Mathematische Stochastik - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Selected topics from real and stochastic Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft Mathematische Statistik |
0+2+0 |
F01/464 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Wahrscheinlichkeitstheorie, Statistik |
Inhalt |
Ausgewählte Probleme der Mathematischen Statistik. |
Einschreibung |
- |
Leistungsnachweis |
- |
Dozent/Zeit/Ort |
Ferger |
AG |
Do |
7. DS |
WIL A124 |
|
|
|
| |
Dresdner Kolloquium zur Versicherungsmathematik |
0+2+0 |
F01/462 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik, Wirtschaftswissenschaftler (ab 6. Sem.) |
Vorkenntnisse |
Wahrscheinlichkeitstheorie |
Inhalt |
Gastvorträge zu ausgewählten Problemen der Versicherungsmathematik. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
• • • Institut für Mathematische Stochastik - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Elektrotechnik) |
6+4+0 |
F01/485 |
Zielgruppe |
Studiengang Elektrotechnik (1. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Schilling |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul ET-01 04 01: Algebraische und analytische Grundlagen (Informationssystemtechnik) |
6+4+0 |
F01/485* |
Zielgruppe |
Studiengang Informationssystemtechnik (1. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Schilling |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul MT-01 04 01: Algebraische und analytische Grundlagen (Mechatronik) |
6+4+0 |
F01/485+ |
Zielgruppe |
Studiengang Mechatronik (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Regenerative Energiesysteme) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Schilling |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul RES-G01: Algebraische und analytische Grundlagen (Regenerative Energiesysteme) |
6+4+0 |
F01/485++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (1. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
- |
Inhalt |
Grundlagen der Mathematischen Logik und Mengenlehre; Aufbau der Zahlenbereiche; Reelle Funktionen einer Variablen; Differential- und Integralrechnung für Funktionen einer reellen Variablen; Lineare Algebra; Analytische Geometrie |
Einschreibung |
- |
Leistungsnachweis |
Prüfungsklausur |
Dozent/Zeit/Ort |
Schilling |
V |
Mo |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Di |
5. DS |
TRE MATH |
|
|
|
|
Schilling |
V |
Mi |
1. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Mathematik I: Lineare Algebra (Wirtschaftswissenschaften und Verkehrswirtschaft) |
2+2+0 |
F01/481 |
Zielgruppe |
Studierende an der Fak. Wirtschaftswissenschaften und Studierende Verkehrswirtschaft: Module BA-WW-MLA, D-WW-MLA, BA-VWI-PF1 |
Inhalt |
Zahlen (natürliche Zahlen, reelle und komplexe Zahlen), Vektorräume (lineare Unabhängigkeit, Dimension, Unterräume), Lineare Gleichungssysteme (Lösbarkeit), Lineare Optimierung (Simplexverfahren). |
Einschreibung |
- |
Leistungsnachweis |
Schein mit Note (Klausur) |
Internet |
Informationen zum Kurs auf der Webseite der Kursassistentin |
Dozent/Zeit/Ort |
Ferger |
V |
Mi |
4. DS |
HSZ AUDI |
|
|
|
|
Röder |
Ü |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul Ch Ma: Mathematik für Chemiker (Chemie+Lebensmittelchemie) // Mathematik (Lehramt Fach Chemie) |
2+2+0 |
F01/581* |
Zielgruppe |
Studierende Chemie, Lebensmittelchemie, Lehramt Chemie (1. Sem.) gemeinsam mit Studierenden Biologie und Molekulare Biotechnologie (1. Sem.), Lehramt BBS Bautechnik und Holztechnik |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin Bio + Lehramt (Ch, BBS BT und HT) |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistent Chemie + Lebensmittelchemie |
|
|
Für die Übungen siehe Webseite bei der Dozentin. |
| |
Mathematik (EW-SEBS-BT-M 01: Staatsexamen Lehramt BBS Bautechnik, EW-SEBS-HT-M 01: Staatsexamen Lehramt BBS Holztechnik) |
2+2+0 |
F01/581+ |
Zielgruppe |
Höheres Lehramt an berufsbildenden Schulen, Fächer Bautechnik und Holztechnik gemeinsam mit Studierenden der FR Chemie, Biologie, Lehramt Chemie |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin Bio + Lehramt (Ch, BBS BT und HT) |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistent Chemie + Lebensmittelchemie |
|
|
Für die Übungen siehe Webseite bei der Dozentin. |
| |
Modul BIO-BA 1100: Mathematik/Biostatistik (Biologie) // Modul BIO-BA 1100: Mathematik und Biostatistik (Molekulare Biotechnologie) |
2+1+0 |
F01/581 |
Zielgruppe |
Studierende Biologie und Molekulare Biotechnologie (1. Sem.) gemeinsam mit Studierenden Chemie + Lebensmittelchemie, Lehramt Chemie (1. Sem.), BBS Bautechnik und Holztechnik |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung, Wahrscheinlichkeitstheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
Ü |
|
|
|
|
Kursassistentin Bio + Lehramt (Ch, BBS BT und HT) |
|
|
Morherr |
Ü |
|
|
|
|
Kursassistent Chemie + Lebensmittelchemie |
|
|
Für die Übungen siehe Webseite bei der Dozentin. |
| |
Statistik I (Sozialwissenschaften, Geographie, ZIS) |
2+2+0 |
F01/492 |
Zielgruppe |
Studierende Sozialwissenschaften (Haupt- und Nebenfach), Geographie |
Inhalt |
Einführung in SPSS, Deskriptive Statistik (Skalenniveaus, Datentypen, uni- und bivariate Verteilungen, grafische Darstellung / Kenngrößen von Verteilungen, Abhängigkeitsmaße), Wahrscheinlichkeiten, Grundprinzipien der schließenden Statistik, Signifikanztests für Ein- und Zweistichprobenproblemen und ihre Realisierung in SPSS |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Teilnahme, Klausur |
Internet |
Internetangebot zur Vorlesung |
Dozent/Zeit/Ort |
Rudl |
V |
Mi |
3. DS |
HSZ 03 |
|
|
|
|
Rudl |
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul MN-SEGY/SEBS/SEMS-STOCH: Elementare Stochastik (Informatik) |
4+2+0 |
F01/437* |
Zielgruppe |
Diplom-Studiengang Informatik für Nebenfach Mathematik Numerik /Optimierung /Stochastik: Elementare Stochastik (gemeinsam mit SE-Lehramtsstudiengängen GYM, BBS, MS) |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Böttcher |
V |
Mo |
3. DS |
WIL B321 |
|
|
|
|
Böttcher |
V |
Mi |
4. DS |
WIL B321 |
|
|
|
|
Kühn |
Ü |
Mo |
4. DS |
WIL A221 |
|
|
|
|
Berschneider |
Ü |
Mi |
5. DS |
WIL C204 |
|
|
|
|
Böttcher |
Ü |
Do |
3. DS |
WIL C204 |
|
|
|
|
Für die Übungen siehe Webseite des Dozenten. |
• • • Institut für Numerische Mathematik - 2. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
Dozent/Zeit/Ort |
Sander |
V |
Mo |
4. DS |
WIL A317 |
gerade Woche |
|
|
|
Sander |
V |
Do |
5. DS |
WIL C 307 |
|
|
14.10.2015: Änderung für die Zeit eingetragen !!!! |
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten bzw. OPAL-Kurs. |
• • • Institut für Numerische Mathematik - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba OPTINUM: Optimierung und Numerik |
3+1+0 |
F01/531 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-510 'Grundlagen des Nebenfachs' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-ANAA und Math-Ba-MINT |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 23 |
Dozent/Zeit/Ort |
Eppler |
V |
Mi |
5. DS |
WIL C133 |
gerade Woche |
|
|
|
Eppler |
V |
Do |
6. DS |
WIL C133 |
|
|
|
|
Buchwald |
Ü |
Mi |
5. DS |
WIL C133 |
ungerade Woche |
|
|
Dozent/Zeit/Ort |
Matthies |
S |
Mo |
6. DS |
WIL A221 |
|
|
|
| |
Modul MN-SEGY-MAT-NUM: Numerische Mathematik |
3+2+0 |
F01/570 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, Fach Mathematik (7. Sem. ) |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Franz |
V |
Mi |
5. DS |
WIL A120 |
|
|
|
|
Franz |
V |
Fr |
4. DS |
WIL A120 |
gerade Woche |
|
|
|
Herrich |
Ü |
Di |
2. DS |
WIL C205 |
|
|
|
|
Höhne |
Ü |
Fr |
3. DS |
WIL C205 |
|
|
|
• • • Institut für Numerische Mathematik - 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma KONOPT: Kontinuierliche Optimierung |
3+1+0 |
F01/542 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Kompetenzen aus dem Gebiet der Optimierung auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
laut Modulbeschreibung |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma PDENM: Numerik partieller Differentialgleichungen |
3+1+0 |
F01/545 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation' und zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Matthies |
V |
Mo |
2. DS |
WIL C307; WIL B221/P |
gerade Woche |
|
|
|
Matthies |
V |
Di |
2. DS |
WIL C129 |
|
|
|
|
Becher |
Ü |
Mo |
2. DS |
WIL C307; WIL B221/P |
ungerade Woche |
|
14.09.2015: Änderung für Zeit+Raum eingetragen |
| |
Modul Math Ma MMMA: Numerik für singulär gestörte Differentialgleichungen |
4+0+0 |
F01/550 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Franz |
V |
Do |
5. DS |
WIL A120 |
|
|
|
|
Franz |
V |
Fr |
3. DS |
WIL A120 |
|
|
|
| |
Modul Math Ma WIA: Optimierung |
2+2+0 |
F01/548 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
Optimierungsprobleme im Machine Learning: Modelle und Lösungsmethoden |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Fischer, A. |
V |
Mo |
5. DS |
WIL C307 |
|
|
|
|
Fischer, A. |
V |
Do |
3. DS |
WIL A124 |
|
|
|
|
1. Veranstaltung am 12.10.2015 |
| |
Modul MN-SEMS MAT SEMMS Mathematisches Seminar Mittelschule: Lineare Optimierung und Anwendungen |
0+0+2 |
F01/572 |
Zielgruppe |
Staatsexamen: Mittelschule (4. Studienjahr) |
Inhalt |
Modellierung, graphische Lösung von linearen Optimierungsproblemen, Simplexverfahren und Transportoptimierung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Herrich |
S |
Mi |
3. DS |
WIL C204 |
|
|
|
| |
Modul Math MaL SEM-G/B Mathematisches Seminar: Optimierung |
0+0+2 |
F01/775 |
Zielgruppe |
Master-Studiengänge Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen (2. Sem.) |
Vorkenntnisse |
Modul Math-MaL-NUM |
Inhalt |
Lineare Optimierung - Modelle und Algorithmen |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Info-Seite Seminare |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Fischer, A. |
S |
Do |
5. DS |
WIL C204 |
|
|
|
|
1. Veranstaltung am 15.10.2015 |
| |
Modul Math MaL-VERT-G/B: Einführung in die Optimierung |
3+1+0 |
F01/531* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-ANAA und Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba OPTINUM - Optimierung und Numerik
Einführung in die diskrete und kontinuierliche Optimierung: Mathematische Modelle und ausgewählte grundlegende Methoden |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 23 |
Dozent/Zeit/Ort |
Eppler |
V |
Mi |
5. DS |
WIL C133 |
gerade Woche |
|
|
|
Eppler |
V |
Do |
6. DS |
WIL C133 |
|
|
|
|
Becher |
Ü |
Mi |
5. DS |
WIL C133 |
ungerade Woche |
|
|
• • • Institut für Numerische Mathematik - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Seminar des Institutes für Numerische Mathematik |
0+2+0 |
F01/555 |
Zielgruppe |
Mathematische Master- und Diplomstudiengänge (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorstellung aktueller Ergebnisse zur Numerischen Mathematik, Gastvorträge |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Seminar Optimierung und optimale Steuerung |
0+2+0 |
F01/557 |
Zielgruppe |
Mathematische Master- und Diplomstudiengänge (Spezialisierung Numerische Mathematik) |
Inhalt |
Vorträge zu den Themengebieten Optimierung und optimale Steuerung sowie verwandten Gebieten, siehe auch: www.math.tu-dresden.de/num/body/nlgl_opt.html |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Fischer, A. |
S |
Di |
3. DS |
WIL C307 |
|
|
|
|
1. Veranstaltung am 13.10.2015 |
| |
Seminar Numerik partieller Differentialgleichungen |
0+2+0 |
F01/556 |
Zielgruppe |
Mathematische Master- und Diplomstudiengänge (Spezialisierung Numerische Mathematik) |
Vorkenntnisse |
Numerik partieller Differentialgleichungen |
Inhalt |
Aktuelle Forschungsergebnisse im Fachgebiet |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
Schein möglich (für math. Diplom-Studiengänge) |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
N.N. |
S |
Di |
3. DS |
WIL C203 |
|
|
|
• • • Institut für Numerische Mathematik - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Modul Grundlagen Mathematik (Maschinenwesen) |
4+2+0 |
F01/591 |
Zielgruppe |
Studierende Maschinenwesen (1. Sem., Module MB-02, VNT_01, WW-A01) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Modulprüfung (Klausur) |
Dozent/Zeit/Ort |
Matthies |
V |
Mi |
1. DS |
HSZ AUDI |
|
|
|
|
Matthies |
V |
Do |
3. DS |
HSZ AUDI |
|
|
|
|
Scheithauer |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul VW-VI-100: Lineare Algebra und Analysis für Funktionen einer Variablen (Verkehrsingenieurwesen) |
4+3+0 |
F01/595 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
Modulprüfung (Klausur) |
Dozent/Zeit/Ort |
Sander |
V |
Mi |
1. DS |
POT 81 |
|
|
|
|
Sander |
V |
Do |
3. DS |
POT 81 |
|
|
|
|
Herrich |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul Spezielle Kapitel der Mathematik, Teil 1 (Maschinenwesen) |
2+2+0 |
F01/593 |
Zielgruppe |
Studierende Maschinenwesen (3. Sem., Module MB-06, VNT_03, WW-A03) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
entsprechend der Regelung der immatrikulierenden Fakultät |
Leistungsnachweis |
Modulprüfung am Ende von Mathematik III/2 über beide Semester |
Dozent/Zeit/Ort |
Eppler |
V |
Di |
1. DS |
HSZ AUDI |
|
|
|
|
Vanselow |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
| |
Modul VW-VI-102: Integraltransformationen, Integralrechnung für Funktionen mehrerer Variabler (Verkehrsingenieurwesen) |
3+2+0 |
F01/597 |
Zielgruppe |
Studierende Verkehrsingenieurwesen (3. Sem.) |
Vorkenntnisse |
Mathematik I, II für Verkehrsingenieure |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
Dozent/Zeit/Ort |
Eppler |
V |
Mi |
3. DS |
TRE MATH |
|
|
|
|
Eppler |
V |
Fr |
2. DS |
HSZ 04 |
gerade Woche |
|
|
|
Schönefeld |
Ü |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite beim Kursassistenten. |
• • • Institut für Wissenschaftliches Rechnen - 1. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba PROG: Programmieren für Mathematiker (Teil 1) |
3+2+0 |
F01/611 |
Zielgruppe |
Bachelor-Studiengang Mathematik (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Einführung in das strukturierte und modulare Programmieren, mit integriertem Computerpraktikum; praxisrelevante Grundlagen der Informatik, der Programmiersprachen, der Algorithmik und des Wissenschaftlichen Rechnens |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 8 |
Dozent/Zeit/Ort |
Walter |
V |
Mo |
2. DS |
WIL A317 |
|
|
|
|
Walter |
V |
Do |
4. DS |
WIL B321 |
|
|
|
|
Tutor |
Ü |
Mi |
3. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
2. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
3. DS |
WIL B221/P |
|
|
|
|
Tutor |
Ü |
Fr |
4. DS |
WIL B221/P |
|
|
|
• • • Institut für Wissenschaftliches Rechnen - 3. Studienjahr (Ba-Mathematik, Staatsexamen Lehramt) • • •
| |
Modul Math Ba MOSIM Modellierung und Simulation |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
Gegenstand der Vorlesung sind die Modellierung von Anwendungsproblemen aus Naturwissenschaft und Technik mittels gewöhnlicher
Differentialgleichungen, numerische Verfahren zur Lösung dieser Differentialgleichungen sowie Techniken zur qualitativen Analyse.
Wir beschäftigen uns mit Einschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren, linear implizite Verfahren) und Mehrschrittverfahren (Adams-Verfahren, BDF-Methoden). Die Begriffe Konsistenz, Konvergenz und Stabilität spielen dabei eine tragende Rolle. Konkrete Anwendungen sind Populationsdynamik, mechanische Mehrkörpersysteme, chemische Reaktionen und elektronische Schaltkreise.
Auf den Einsatz der Zeitintegrationsverfahren im Rahmen komplexer Algorithmen bei typischen Problemstellungen des Wissenschaftlichen Rechnens wird gesondert eingegangen. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
Dozent/Zeit/Ort |
Wensch |
V |
Di |
3. DS |
WIL C133 |
|
|
|
|
Wensch |
V |
Do |
5. DS |
WIL C133 |
gerade Woche |
|
05.10.2015: Änderung Vorlesungszeit |
|
Wensch |
Ü |
Do |
5. DS |
WIL C133; WIL B221/P |
ungerade Woche |
|
05.10.2015: Änderung Übungszeit |
Dozent/Zeit/Ort |
Padberg-Gehle |
S |
Mo |
4. DS |
WIL C129 |
|
|
14.09.2015: Änderung der Zeit |
• • • Institut für Wissenschaftliches Rechnen - 4. und 5. Studienjahr (Masterstudium, Master Lehramt, Staatsexamen Lehramt) • • •
| |
Modul Math Ma FEM: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen |
3+1+0 |
F01/641 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Pflichtmodul Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
V |
Mi |
5. DS |
WIL C102; WIL B221/P; |
gerade Woche |
|
14.09.2015: Änderung für Zeit+Raum eingetragen |
|
Voigt, A. |
V |
Fr |
2. DS |
WIL C307 |
|
|
|
|
Ludwig, L. |
Ü |
Mi |
5. DS |
WIL C102; WIL B221/P; |
ungerade Woche |
|
|
| |
Modul Math Ma MKMECH - Mathematische Kontinuumsmechanik: Mehrskalenanalysis |
3+1+0 |
F01/646 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, sowie Studierende Physik, Maschinenbau |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zu den Studienschwerpunkten 'Analysis und Stochastik' und 'Numerik, Optimierung, Modellierung und Simulation'.
Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Empfohlen sind Grundkenntnisse zu partiellen Differentialgleichungen und zur Funktionalanalysis. |
Inhalt |
Die Vorlesung beinhaltet eine Einführung in die Analysis und Modellierung von Mehrskalenproblemen mittels partieller Differentialgleichungen und Methoden der Funktionalanalysis.
Für weitere Informationen zur Vorlesung siehe nachstehend genannte Webseite. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
http://www.math.tu-dresden.de/~sneukamm/teaching/MKMECH-WS15/ |
Dozent/Zeit/Ort |
Neukamm |
V |
Do |
3. DS |
WIL A221 |
|
|
20.10.2015: Vorlesungszeit geändert |
|
Neukamm |
V |
Fr |
1. DS |
WIL A120 |
|
Übung integriert |
21.10.2015: Vorlesungszeit geändert (wieder alte Zeit) |
| |
Modul Math Ma SCPROG: Scientific Programming – Fortgeschrittene Aspekte |
3+1+0 |
F01/643 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma WIA: Tipping-Points und Extremereignisse in komplexen Systemen (Seminar) |
2+0+0 |
F01/640 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
Manchmal können lediglich kleine Änderungen in den äußeren Einflüssen extreme und irreversible Ereignisse hervorrufen.
Dies ist dann der Fall, wenn sich das betrachtete System nahe eines kritischen Punktes, eines sogenannten Tipping-Points, befindet.
Beispielsweise reißt ein Gummiband ab einer bestimmten Beanspruchung oder ein Ökosystem „kippt um“, wenn bestimmte Schwellwerte (z.B. Algenanteil in einem See) überschritten sind. Solche kritischen Phänomene beobachtet man in vielen unterschiedlichen realen Systemen (Klima, Finanzwirtschaft, Medizin, Biologie, etc.).
Im Rahmen dieses Seminars sollen die Teilnehmer entsprechende mathematische Konzepte aus der Theorie dynamischer Systeme und der Zeitreihenanalyse vorstellen, mit denen solche Extremereignisse beschrieben, analysiert und ggf. sogar vorhersagt werden können. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
Dozent/Zeit/Ort |
Padberg-Gehle |
S |
Mi |
3. DS |
WIL A120 |
|
|
14.09.2015: Änderung Modul-Umfang |
| |
Modul Math Ma MODSEM: Modellierungsseminar (WR) |
0+4+0 |
F01/644 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Vorkenntnisse |
Es werden Kompetenzen aus den Modulen Math-Ma-PDEANA, Math-Ma-FEM, Math-Ma-PDENM vorausgesetzt. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für OPAL-Einschreibung siehe Info-Seite Seminare |
| |
Modul Math Ma Projekt: Projektarbeit |
0+0+2 |
F01/645 |
Zielgruppe |
Master-Studiengang Technomathematik |
Klassifizierung |
Master TMath: Pflichtmodul |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math MaL-VERT-G/B: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation Gegenstand der Vorlesung sind die Modellierung von Anwendungsproblemen aus Naturwissenschaft und Technik mittels gewöhnlicher
Differentialgleichungen, numerische Verfahren zur Lösung dieser Differentialgleichungen sowie Techniken zur qualitativen Analyse.
Wir beschäftigen uns mit Einschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren, linear implizite Verfahren) und Mehrschrittverfahren (Adams-Verfahren, BDF-Methoden). Die Begriffe Konsistenz, Konvergenz und Stabilität spielen dabei eine tragende Rolle. Konkrete Anwendungen sind Populationsdynamik, mechanische Mehrkörpersysteme, chemische Reaktionen und elektronische Schaltkreise.
Auf den Einsatz der Zeitintegrationsverfahren im Rahmen komplexer Algorithmen bei typischen Problemstellungen des Wissenschaftlichen Rechnens wird gesondert eingegangen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
Dozent/Zeit/Ort |
Wensch |
V |
Di |
3. DS |
WIL C133 |
|
|
|
|
Wensch |
V |
Do |
5. DS |
WIL C133 |
gerade Woche |
|
05.10.2015: Änderung Vorlesungszeit |
|
Wensch |
Ü |
Do |
5. DS |
WIL C133; WIL B221/P |
ungerade Woche |
|
05.10.2015: Änderung Übungszeit |
• • • Institut für Wissenschaftliches Rechnen - Fakultativ - Für alle Interessenten:
Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Forschungsseminar des Institutes für Wissenschaftliches Rechnen |
0+2+0 |
F01/655 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge |
Inhalt |
Vorträge eingeladener Wissenschaftler zu ausgewählten Themen aus Gebieten des Wissenschaftlichen Rechnens. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Voigt, A. |
S |
Mo |
3. DS |
WIL A120 |
|
|
|
| |
Seminar zur numerischen Lösung von Differentialgleichungen |
0+2+0 |
F01/658 |
Zielgruppe |
Masterstudenten und Doktoranden |
Inhalt |
Aktuelle Themenstellungen der Arbeitsgruppe werden vorgestellt und diskutiert. |
Dozent/Zeit/Ort |
Wensch |
S |
Di |
5. DS |
WIL C204 |
|
|
|
• • • Institut für Wissenschaftliches Rechnen - Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Mathematik III - BIW1-06: Lineare Differentialgleichungen und Stochastik (Bauingenieurwesen) |
2+2+0 |
F01/283-1 |
Zielgruppe |
Studierende Bauingenieurwesen (gemeinsam mit Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Mathematik III - BSc GG 03: Mathematik – Differentialgleichungen und Stochastik (Geodäsie und Geoinformation) |
2+2+0 |
F01/283-2 |
Zielgruppe |
Studierende Geodäsie und Geoinformation (gemeinsam mit Bauingenieurwesen) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Mathematik III - BHYWI11: Lineare Differentialgleichungen und Stochastik (Hydrowissenschaften) |
2+2+0 |
F01/283-3 |
Zielgruppe |
BA-Studiengang Hydrowissenschaften (gemeinsam mit Bauingenieurwesen und Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/687 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/687+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/687* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/687++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Wensch |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul MA-CSE-35: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen (= Math Ma FEM) |
3+1+0 |
F01/641* |
Zielgruppe |
Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Voigt, A. |
V |
Mi |
5. DS |
WIL C102; WIL B221/P; |
gerade Woche |
|
14.09.2015: Änderung für Zeit+Raum eingetragen |
|
Voigt, A. |
V |
Fr |
2. DS |
WIL C307 |
|
|
|
|
Ludwig, L. |
Ü |
Mi |
5. DS |
WIL C102; WIL B221/P; |
ungerade Woche |
|
|
| |
Modul MA-CSE-35: Scientific Programming – Fortgeschrittene Aspekte (= Math Ma SCPROG) |
3+1+0 |
F01/643* |
Zielgruppe |
Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg) |
Vorkenntnisse |
Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
• • • Professur für Didaktik der Mathematik - Staatsexamen Lehramt, Master Lehramt • • •
| |
Modul MN-SEGY-MAT-EDID (Teil 1): Einführung in die Didaktik der Mathematik |
2+0+0 |
F01/720 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Behandlung ausgewählter fachdidaktischer Grundlagen des Mathematikunterrichts (z.B. lernpsychologische Voraussetzungen, Lernziele, mathematikdidaktische Prinzipien, Formen des Mathematikunterrichts, fundamentale Methoden, Hypothesen, Sätze und Beweise) |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
V |
Mi |
3. DS |
WIL B321 |
|
|
|
| |
Modul MN-SEGY-MAT-SPUE: Schulpraktische Übungen im Fach Mathematik |
|
F01/722 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien, Fach Mathematik, im 4. und 5. Sem. |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Planung, Durchführung und Auswertung von Mathematikunterricht |
Einschreibung |
Einschreibung abgeschlossen, Gruppeneinteilung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEGY-MAT-DIDHL: Blockpraktikum |
0+0+2 |
F01/735 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien (6. Sem., optional im 5. Sem. oder 7. Sem.) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
4-wöchiges Blockpraktikum an der Schule |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEGY-MAT-DIDHL: Neue Medien im Mathematikunterricht |
1+1+0 |
F01/740 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien (8. Sem., optional im 5. Sem. oder im 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung. Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert. Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung. Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
Einschreibung über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Koch |
V |
Mo |
2. DS |
WIL A222/P |
gerade Woche |
|
|
|
Koch |
V |
Mo |
4. DS |
WIL A222/P |
gerade Woche |
|
|
|
Koch |
Ü |
Mo |
2. DS |
WIL A222/P |
ungerade Woche |
|
|
|
Koch |
Ü |
Mo |
4. DS |
WIL A222/P |
ungerade Woche |
|
|
|
Vorlesung und Übung werden zweimal angeboten, es ist jeweils eine Veranstaltung zu besuchen. |
| |
Modul MN-SEGY-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien (7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
4. DS |
WIL C106 |
|
|
|
| |
Modul MN-SEGY-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien (7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Morherr |
S |
Do |
5. DS |
WIL C103 |
|
|
|
| |
Modul MN-SEGY-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien (7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Möglichkeiten für einen Lehrgang der Analytischen Geometrie in der Oberstufe sollen aufgezeigt und die typischen Themenbereiche (Vektorbegriff, lineare Abhängigkeit, Skalar- und Vektorprodukt, Geraden und Ebenen) didaktisch analysiert werden. |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
S |
Mo |
4. DS |
WIL C203 |
|
|
|
| |
Modul MN-SEBS-MAT-EDID (Teil 1): Einführung in die Didaktik der Mathematik |
2+0+0 |
F01/720* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Behandlung ausgewählter fachdidaktischer Grundlagen des Mathematikunterrichts (z.B. lernpsychologische Voraussetzungen, Lernziele, mathematikdidaktische Prinzipien, Formen des Mathematikunterrichts, fundamentale Methoden, Hypothesen, Sätze und Beweise) |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
V |
Mi |
3. DS |
WIL B321 |
|
|
|
| |
Modul MN-SEBS-MAT-SPUE: Schulpraktische Übungen im Fach Mathematik |
|
F01/722* |
Zielgruppe |
staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (6. Sem., optional schon im 5. Sem. oder 7. Sem.) |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Planung, Durchführung und Auswertung von Mathematikunterricht |
Einschreibung |
Einschreibung abgeschlossen, Gruppeneinteilung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEBS-MAT-DIDHL: Blockpraktikum |
0+0+2 |
F01/735* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (8. Sem., optional schon im 5. Sem. oder 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
4-wöchiges Blockpraktikum an der Schule |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEBS-MAT-DIDHL: Neue Medien im Mathematikunterricht |
0+0+2 |
F01/740* |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (6. Sem., optional im 5. Sem. oder im 7. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung.
Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte
vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert.
Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung.
Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Koch |
V |
Mo |
2. DS |
WIL A222/P |
gerade Woche |
|
|
|
Koch |
V |
Mo |
4. DS |
WIL A222/P |
gerade Woche |
|
|
|
Koch |
Ü |
Mo |
2. DS |
WIL A222/P |
ungerade Woche |
|
|
|
Koch |
Ü |
Mo |
4. DS |
WIL A222/P |
ungerade Woche |
|
|
|
Vorlesung und Übung werden zweimal angeboten, es ist jeweils eine Veranstaltung zu besuchen. |
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744+ |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
4. DS |
WIL C106 |
|
|
|
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742+ |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Morherr |
S |
Do |
5. DS |
WIL C103 |
|
|
|
| |
Modul MN-SEBS-MAT-DIDHL (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743+ |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Berufsbildenden Schulen (7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Möglichkeiten für einen Lehrgang der Analytischen Geometrie in der Oberstufe sollen aufgezeigt und die typischen Themenbereiche (Vektorbegriff, lineare Abhängigkeit, Skalar- und Vektorprodukt, Geraden und Ebenen) didaktisch analysiert werden. |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
S |
Mo |
4. DS |
WIL C203 |
|
|
|
| |
Modul MN-SEMS-MAT-EDID (Teil 1): Einführung in die Didaktik der Mathematik |
2+0+0 |
F01/720+ |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik, 3. Sem. |
Vorkenntnisse |
- |
Inhalt |
Behandlung ausgewählter fachdidaktischer Grundlagen des Mathematikunterrichts (z.B. lernpsychologische Voraussetzungen, Lernziele, mathematikdidaktische Prinzipien, Formen des Mathematikunterrichts, fundamentale Methoden, Hypothesen, Sätze und Beweise) |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
V |
Mi |
3. DS |
WIL B321 |
|
|
|
| |
Modul MN-SEMS-MAT-SPUE: Schulpraktische Übungen im Fach Mathematik |
|
F01/723 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik (im 4., optional im 5. Sem.) |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Planung, Durchführung und Auswertung von Mathematikunterricht |
Einschreibung |
Einschreibung abgeschlossen, Gruppeneinteilung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEMS-MAT-DIDMS: Blockpraktikum |
0+0+2 |
F01/736 |
Zielgruppe |
Staatsexamen: Lehramt an Mittelschulen, Fach Mathematik (im 7. Sem., optional im 5. Sem.) |
Vorkenntnisse |
Modul EDID |
Inhalt |
4-wöchiges Blockpraktikum an der Schule |
Einschreibung |
Einschreibung über Praktikumsportal |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul MN-SEMS-MAT-DIDMS: Seminar Didaktik Arithmetik und Algebra |
0+0+2 |
F01/731 |
Zielgruppe |
Staatsexamen: Mittelschule (im 6. Sem. oder 8. Sem., opt. im 7. Sem.), wahlweise Ergänzungsbereich EGS-SEMS-3 |
Vorkenntnisse |
Modul MN-SEMS-MAT-EDID |
Inhalt |
Behandlung ausgewählter Themen der Arithmetik und Algebra in der Sekundarstufe I.
Anhand von Aufgabenbeispielen aus aktuellen Lehrbüchern und Abschlussprüfungen
werden wesentliche unterrichtsrelevante Inhalte didaktisch vertieft. |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Koch |
S |
Di |
5. DS |
WIL C105 |
|
|
|
| |
Modul MN-SEMS-MAT-DIDMS: Seminar Didaktik der Stochastik (Mittelschule) |
0+0+2 |
F01/734 |
Zielgruppe |
Staatsexamen: Mittelschule (im 6. Sem. oder 8. Sem., opt. im 7. Sem.), wahlweise Ergänzungsbereich EGS-SEMS-3 |
Vorkenntnisse |
Modul MN-SEMS-MAT-EDID |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im Mathematikunterricht der Mittelschule
(Wahrscheinlichkeitsbegriff, mehrstufige Zufallsversuche, Bestimmung von Wahrscheinlichkeitsverteilungen von Zufallsgrößen, Simulation von Zufallsversuchen, beschreibende Statistik) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Woithe |
S |
Do |
4. DS |
WIL C106 |
|
|
|
| |
Modul Math MaL DID: Neue Medien im Mathematikunterricht |
1+1+0 |
F01/740+ |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Sem. |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung. Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert. Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung. Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
Einschreibung über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Koch |
V |
Mo |
2. DS |
WIL A222/P |
gerade Woche |
|
|
|
Koch |
V |
Mo |
4. DS |
WIL A222/P |
gerade Woche |
|
|
|
Koch |
Ü |
Mo |
2. DS |
WIL A222/P |
ungerade Woche |
|
|
|
Koch |
Ü |
Mo |
4. DS |
WIL A222/P |
ungerade Woche |
|
|
|
Vorlesung und Übung werden zweimal angeboten, es ist jeweils eine Veranstaltung zu besuchen. |
| |
Modul Math MaL DID (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Sem. |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Behandlung ausgewählter Themenkreise der Stochastik im gymnasialen Mathematikunterricht (Wahrscheinlichkeitsbegriff; Bestimmung von Wahrscheinlichkeitsverteilungen; Simulation von Zufallsversuchen; Satz von Bayes; Zufallsgrößen und ihre Verteilungen; beschreibende und beurteilende Statistik) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
4. DS |
WIL C106 |
|
|
|
| |
Modul Math MaL DID (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Sem. |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Morherr |
S |
Do |
5. DS |
WIL C103 |
|
|
|
| |
Modul Math MaL DID (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Sem. |
Vorkenntnisse |
Einführung in die Didaktik der Mathematik |
Inhalt |
Möglichkeiten für einen Lehrgang der Analytischen Geometrie in der Oberstufe sollen aufgezeigt und die typischen Themenbereiche (Vektorbegriff, lineare Abhängigkeit, Skalar- und Vektorprodukt, Geraden und Ebenen) didaktisch analysiert werden. |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
S |
Mo |
4. DS |
WIL C203 |
|
|
|
• • • Professur für Didaktik der Mathematik - Weitere Lehrveranstaltungen / Ergänzungsbereich • • •
| |
Mathematikunterricht – digital und interaktiv |
(fakultativ) |
F01/769 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3); Master MA GYM und MA BBS |
Vorkenntnisse |
Modul EDID |
Inhalt |
Kennenlernen geeigneter Anwendungen und Gestaltung interaktiver Übungen und Lernumgebungen für den Mathematikunterricht |
Einschreibung |
im OPAL-Kurs |
Leistungsnachweis |
Präsentation mit Ausarbeitung |
Dozent/Zeit/Ort |
Koch |
S |
Mo |
6. DS |
WIL A222/P |
gerade Woche |
|
|
| |
Tutorium "Einsatz interaktiver Tafeln im Mathematikunterricht" |
(fakultativ, 0+0+2) |
F01/741 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2); Master MA GYM und MA BBS |
Vorkenntnisse |
Modul EDID |
Inhalt |
Das Tutorium dient als Vorbereitung zur Nutzung der interaktiven Tafel in Studium und Schule. Neben der Vermittlung von Fertigkeiten im Umgang mit der interaktiven Tafel als Projektions- und Präsentationsfläche gibt dieses Tutorium vor allem einen Überblick über die Nutzung der Software ActiveInspire-Studio. Anhand ausgewählter Beispiele werden didaktische Einsatzmöglichkeiten der interaktiven Tafel im Mathematikunterricht gezeigt und entwickelt. |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
Entwicklung und Präsentation eines Tafelbildes (2 Basispunkte – BW 6, Ergänzungsstudien neues Staatsexamen) |
OPAL |
OPAl-Kurs |
| |
Lernwerkstatt |
(fakultativ) |
F01/766 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-3, EGS-SEGY-3, EGS-SEBS-3); Master MA GYM und MA BBS |
Vorkenntnisse |
Modul EDID |
Inhalt |
Fakultative Einzelveranstaltungen: Termine laut Aushang; Unterrichtsbeispiele für problemorientiertes und entdeckendes Lernen im Mathematikunterricht der Sek. I |
Einschreibung |
Petra.Woithe@tu-dresden.de |
Leistungsnachweis |
Präsentation mit Ausarbeitung (nur im Ergänzungsbereich für das neue Staatsexamen) |
Dozent/Zeit/Ort |
Woithe |
Ü |
Mo |
6. DS |
WIL C106 |
gerade Woche |
|
|
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs