LV-Archiv: Wintersemester 2015/2016 - Ausgewählte Kataloganzeige
Für die Fakultät Bauingenieurwesen
| |
Mathematik I - BIW1-05: Lineare Algebra und Analysis (Bauingenieurwesen) |
4+2+0 |
F01/281-1 |
Zielgruppe |
BA-Studiengang Bauingenieurwesen (gemeinsam mit Geo- und Hydrowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
OPAL |
OPAL-Kurs zur Vorlesung |
Dozent/Zeit/Ort |
Koksch |
VO |
Di |
1. DS |
TRE MATH |
|
|
|
|
Koksch |
VO |
Fr |
2. DS |
TRE MATH |
|
|
|
|
|
Ü |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite des Dozenten. |
| |
Modul BIW1-09 Technische Grundlagen: Konstruktive Geometrie (Bauingenieurwesen) |
1+1+0 |
F01/385 |
Zielgruppe |
Studierende Bauingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Die Lehrveranstaltung vermittelt Grundkenntnisse und praktische Anwendungen von konstruktiv geometrischen Verfahren. Sie dient der Entwicklung eines strukturierten räumlichen Vorstellungsvermögens und befähigt zur Herstellung und sachgerechten Interpretation von technischen Zeichnungen und CAD-Repräsentationen. Räumliche Objekte und Aufgaben werden anschaulich dargestellt und konstruktiv gelöst. |
Einschreibung |
- |
Leistungsnachweis |
Zwei Belege, Klausur |
| |
Mathematik III - BIW1-06: Lineare Differentialgleichungen und Stochastik (Bauingenieurwesen) |
2+2+0 |
F01/283-1 |
Zielgruppe |
Studierende Bauingenieurwesen (gemeinsam mit Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
OPAL |
OPAL-Kurs zur Vorlesung |
| |
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure |
2+1+0 |
F01/284 |
Zielgruppe |
Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens |
Vorkenntnisse |
Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums |
Inhalt |
Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw. Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung. |
Einschreibung |
- |
Leistungsnachweis |
lt. Prüfungsordnung |
Dozent/Zeit/Ort |
Trostorff |
V |
Fr |
4. DS |
WIL A 221 |
|
|
28.10.2015: Änderung für Zeit und Ort eingetragen |
|
Trostorff |
Ü |
Di |
3. DS |
WIL C206 |
gerade Woche |
|
|
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs