LV-Archiv: Wintersemester 2015/2016 - Ausgewählte Kataloganzeige



Für die Fakultät Informatik

  
Modul INF B110: Einführung in die Mathematik für Informatiker: Diskrete Strukturen und Lineare Algebra
6+4+0 F01/184
Zielgruppe BA-Studiengänge Informatik und Medieninformatik (1. Sem.)
Vorkenntnisse -
Inhalt Diskrete Strukturen:
Es werden der Umgang mit mathematischer Methodik, grundlegende mathematische Begriffe, Schreibweisen, Argumentationsformen und Fertigkeiten am Beispiel der Mengen- und Formelsprache und an Elementen der Diskreten Mathematik behandelt. Im Einzelnen: Graphen, Relationen, Abbildungen und Morphismen, Ordnungen und Verbände, Symmetrien, modulare Arithmetik.
Lineare Algebra und Geometrie:
Es werden der systematische Theorieaufbau, der darauf gründende abstrakte Strukturbegriff und seine Anwendungen betont. Im Einzelnen: Vektorraum, Basis, Dimensionen, lineare Gleichungssysteme, Bestapproximation, eometrische Interpretationen, Eigenwerte sowie der Umgang mit komplexen Zahlen.
Einschreibung   -
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Baumann    V    Mo    3. DS   TRE MATH       Vorlesung: Lineare Algebra     
  Bodirsky    V    Mi    3. DS   HSZ 02       Vorlesung: Diskrete Strukturen     
  Bodirsky    V    Fr    3. DS   HSZ 03       Vorlesung: Diskrete Strukturen     
  Noack    Ü                Kursassistentin     
  Reichard    Ü                Kursassistent     
  Für die Übungen siehe Webseite der Kursassistenten.
  
Modul INF B120: Mathematische Methoden für Informatiker (Teil 2)
3+2+0 F01/187
Zielgruppe BA-Studiengänge Informatik und Medieninformatik (3. Sem.)
Vorkenntnisse Einführung in die Mathematik für Informatiker, Modul INF B120: Mathematische Methoden für Informatiker (Teil 1)
Inhalt Algebra, Analysis, Numerische Mathematik, Wahrscheinlichkeitsrechnung
Einschreibung   -
Leistungsnachweis   Prüfung
Dozent/Zeit/Ort Baumann    V    Di    3. DS   HSZ 02    ungerade Woche         
  Baumann    V    Do    3. DS   HSZ 03            
  Noack    Ü                Kursassistentin     
  Für die Übungen siehe Webseite der Kursassistentin.
  
Modul INF-D9-20: Permutationsgruppen (= Math Ba ALGSTR)
4+0+0 F01/131-2
Zielgruppe für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach'
Inhalt 1. Semester des Moduls Math Ba ALGSTR - Permutationsgruppen: Die Vorlesung behandelt u.a. Permutationsdarstellungen, den Satz von Cayley, Bahnen und invariante Relationen (Sätze von Krasner), (mehrfach)-transitive, reguläre, primitive Permutationsgruppen, Symmetriegruppen, Kranzprodukte, das Lemma von Cauchy-Frobenius-Burnside und Anwendungen (Polyasche Abzähltheorie), Automorphismusgruppen (speziell von Graphen), sowie Permutationsgruppenalgorithmen.
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Schneider, F. M.    V    Mo    5. DS   WIL C133          aktualisiert am 25.09.2015   
  Schneider, F. M.    V    Fr    2. DS   WIL C133            
  
Modul INF-D9-20: Methoden der angewandten Algebra (= Math Ba ALGSTR)
4+0+0 F01/132-2
Zielgruppe für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach'
Inhalt 1. Semester des Moduls Math Ba ALGSTR - Algebraische Strukturen
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Schmidt, St.    V    Mo    5. DS   WIL A221       1. Vorlesung am Mo, 19.10.2015   05.10.2015: Änderung Vorlesungszeit   
  Schmidt, St.    V    Mi    2. DS   WIL C133            
  
Modul INF-SEGY/BS/MS-INF-03: Mathematik für das Lehramt Informatik
4+2+0 F01/216+
Zielgruppe Staatsexamen: Lehramt Informatik (GY, BS, MS); gemeinsam mit Lehramt Mittelschule und Grundschule, Fach Mathematik, 1. Sem.
Inhalt Logik und Mengenlehre, algebraische Strukturen; lineare Gleichungssysteme; endlichdimensionale Vektorräume; Matrizen; Determinanten; euklidische Vektorräume
Einschreibung   in der 1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Fasangová    V    Di    3. DS   WIL A317            
  Fasangová    V    Fr    2. DS   WIL A317            
  Röder    Ü    Mo    2. DS   WIL C205            
  N.N.    Ü    Mi    3. DS   WIL B122            
  N.N.    Ü    Mo    3. DS   WIL C206            
  Röder    Ü    Fr    3. DS   WIL C206            
  
Modul MN-SEGY/SEBS/SEMS-STOCH: Elementare Stochastik (Informatik)
4+2+0 F01/437*
Zielgruppe Diplom-Studiengang Informatik für Nebenfach Mathematik Numerik /Optimierung /Stochastik: Elementare Stochastik (gemeinsam mit SE-Lehramtsstudiengängen GYM, BBS, MS)
Vorkenntnisse Modul Analysis
Inhalt siehe Modulbeschreibung
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Böttcher    V    Mo    3. DS   WIL B321            
  Böttcher    V    Mi    4. DS   WIL B321            
  Kühn    Ü    Mo    4. DS   WIL A221            
  Berschneider    Ü    Mi    5. DS   WIL C204            
  Böttcher    Ü    Do    3. DS   WIL C204            
  Für die Übungen siehe Webseite des Dozenten.
  
Modul Math Ba OPTINUM: Optimierung und Numerik
3+1+0 F01/531
Zielgruppe Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-510 'Grundlagen des Nebenfachs'
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-ANAA und Math-Ba-MINT
Einschreibung   1. Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Internet  Modulbeschreibung: Studienordnung - Seite 23
Dozent/Zeit/Ort Eppler    V    Mi    5. DS   WIL C133    gerade Woche         
  Eppler    V    Do    6. DS   WIL C133            
  Buchwald    Ü    Mi    5. DS   WIL C133    ungerade Woche         
  
Modul Math Ba MOSIM Modellierung und Simulation
3+1+0 F01/631
Zielgruppe Bachelor-Studiengang Mathematik (5. Sem.), Studierende Physik, Informatik
Vorkenntnisse Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG.
Inhalt Gegenstand der Vorlesung sind die Modellierung von Anwendungsproblemen aus Naturwissenschaft und Technik mittels gewöhnlicher Differentialgleichungen, numerische Verfahren zur Lösung dieser Differentialgleichungen sowie Techniken zur qualitativen Analyse. Wir beschäftigen uns mit Einschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren, linear implizite Verfahren) und Mehrschrittverfahren (Adams-Verfahren, BDF-Methoden). Die Begriffe Konsistenz, Konvergenz und Stabilität spielen dabei eine tragende Rolle. Konkrete Anwendungen sind Populationsdynamik, mechanische Mehrkörpersysteme, chemische Reaktionen und elektronische Schaltkreise. Auf den Einsatz der Zeitintegrationsverfahren im Rahmen komplexer Algorithmen bei typischen Problemstellungen des Wissenschaftlichen Rechnens wird gesondert eingegangen.
Einschreibung   1. Lehrveranstaltung
Leistungsnachweis   laut Modulbeschreibung
Internet  Modulbeschreibung: Studienordnung - Seite 22
Dozent/Zeit/Ort Wensch    V    Di    3. DS   WIL C133            
  Wensch    V    Do    5. DS   WIL C133    gerade Woche       05.10.2015: Änderung Vorlesungszeit   
  Wensch    Ü    Do    5. DS   WIL C133; WIL B221/P    ungerade Woche       05.10.2015: Änderung Übungszeit   
  
Modul MA-CSE-35: Finite-Elemente-Methode – Theorie, Implementierung und Anwendungen (= Math Ma FEM)
3+1+0 F01/641*
Zielgruppe Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg)
Vorkenntnisse Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt.
Einschreibung   in der Vorlesung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Voigt, A.    V    Mi    5. DS   WIL C102; WIL B221/P;    gerade Woche       14.09.2015: Änderung für Zeit+Raum eingetragen   
  Voigt, A.    V    Fr    2. DS   WIL C307            
  Ludwig, L.    Ü    Mi    5. DS   WIL C102; WIL B221/P;    ungerade Woche         
  
Modul MA-CSE-35: Scientific Programming – Fortgeschrittene Aspekte (= Math Ma SCPROG)
3+1+0 F01/643*
Zielgruppe Master-Studiengang Computational Science and Engineering (TU Dresden gemeinsam mit der TU Bergakademie Freiberg)
Vorkenntnisse Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse.
Einschreibung   1. Lehrveranstaltung
Leistungsnachweis   laut Modulbeschreibung
Dozent/Zeit/Ort Voigt, A. / Praetorius    V    Mi    2. DS   WIL A124            
  Voigt, A. / Praetorius    V    Do    5. DS   WIL C203       Übung integriert     






 Autor: Lehrveranstaltungsmanagement Mathematik
 Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs