LV-Archiv: Wintersemester 2014/2015 - Ausgewählte Kataloganzeige
Master-Studiengang Höheres Lehramt an Gymnasien
2. Studienjahr
• • • Katalog für Modul Math MaL Vert-G: Vertiefung Mathematik für Gymnasium • • •
Das Modul umfasst 2 Semester und umfasst Vorlesungen und integrierte Übungen im Umfang von 8 SWS.
Das Modul setzt sich aus maximal 3 Vorlesungen zusammen, die aus dem folgenden Katalog gewählt werden können.
Die Modulnote ergibt sich als gewichtetes Mittel entsprechend der SWS-Zahl aus den Noten der Einzelprüfungen.
Die Art und Dauer der Einzelprüfung wird vom Vorlesenden festgelegt.
Bitte beachten Sie ggf. Änderungen / Ergänzungen im Katalogangebot .
|
| |
Modul Math-MaL-VERT-G: Diskrete Strukturen |
3+1+0 |
F01/131-1 |
Zielgruppe |
Master Höheres Lehramt an Gymnasien: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 19 |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Bodirsky |
V |
Mo |
5. DS |
WIL A221 |
|
|
|
|
Bodirsky |
V |
Fr |
1. DS |
WIL C133 |
|
Übung integriert |
18.09.2014: Änderung für Zeit und Ort eingetragen |
| |
Modul Math MaL-VERT-G: Methoden der angewandten Algebra |
3+1+0 |
F01/132-1 |
Zielgruppe |
Master Höheres Lehramt an Gymnasien: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Modul Math BaL ALGZTH: Elemente der Algebra und Zahlentheorie |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Dozent/Zeit/Ort |
Schmidt, St. |
V |
Mo |
5. DS |
WIL C133 |
|
|
|
|
Schmidt, St. |
V |
Do |
5. DS |
WIL C133 |
|
Übung integriert |
13.10.2014: Beginn eingetragen |
|
Beginn der Vorlesungen: Do 16.10.2014 |
| |
Modul Math MaL-VERT-G/B: Funktionalanalysis |
3+1+0 |
F01/231* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G/B im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
Grundlegende Eigenschaften von metrischen Räumen, normierten Räumen und stetigen Operatoren. Anfänge der Hilbertraumtheorie. Banachräume und Dualität; Satz von Hahn-Banach. Stetige lineare Operatoren: Satz vom abgeschlossenen Graphen, Satz von Banach-Steinhaus. Anwendungen. (Für eine ausführlichere Beschreibung siehe Aushang im Institut für Analysis.) |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 21 |
Dozent/Zeit/Ort |
Chill |
V |
Do |
3. DS |
WIL B321 |
|
|
|
|
Chill |
V |
Fr |
2. DS |
WIL B321 |
gerade Woche |
|
|
|
Chill |
U |
Fr |
2. DS |
WIL B321 |
ungerade Woche |
|
|
|
N.N. |
U |
Fr |
2. DS |
WIL C106 |
ungerade Woche |
|
|
| |
Modul Math MaL-VERT-G/B: Differentialgeometrie |
3+1+0 |
F01/331* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba DGEO: Differentialgeometrie |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 20 |
Dozent/Zeit/Ort |
Brehm |
V |
Di |
4. DS |
WIL C129 |
|
|
|
|
Brehm |
V |
Fr |
3. DS |
WIL C129 |
|
Übung integriert |
|
| |
Modul Math MaL-VERT-G/B: Einführung in die Optimierung |
3+1+0 |
F01/531* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-ANAA und Math-Ba-MINT; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba OPTINUM - Optimierung und Numerik
Einführung in die diskrete und kontinuierliche Optimierung: Mathematische Modelle und ausgewählte grundlegende Methoden |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 23 |
| |
Modul Math MaL-VERT-G/B: Modellierung und Simulation |
3+1+0 |
F01/631* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
• • • Katalog für das Modul SEM - Seminar (Zusatzangebot) • • •
| |
Modul Math MaL SEM-G/B: Mathematisches Seminar Geometrie |
0+0+2 |
F01/371 |
Zielgruppe |
Master-Studiengänge Höheres Lehramt an Gymnasien bzw. an Berufsbildenden Schulen (Zusatzangebot im 3. Sem.) |
Inhalt |
Es werden Themen aus dem Bereich der diskreten Geometrie
(Elementargeometrie, Parkettierungen/Ornamente) und Knotentheorie
angeboten. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Informationen zum Seminar |
OPAL |
Für OPAL-Einschreibung siehe Webseite 'Seminare und Seminar-Module' |
Dozent/Zeit/Ort |
Große |
U |
Di |
1. DS |
WIL C106 |
|
|
|
• • • Katalog für das Modul Ma-PROFIL • • •
| |
Modul Math MaL PROFIL: Schreiben mathematischer Texte (Wahlpflichtmodul) |
0+3+0 |
F01/370 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Semester Wahlpflichtmodul - Das Fach Mathematik muss studiertes Fach sein. |
Vorkenntnisse |
Es sind vertiefte Kenntnisse des Fachs Mathematik erforderlich. |
Inhalt |
Die Studierenden sind in der Lage, wissenschaftliche Texte fortgeschrittenen mathematischen Inhalts professionell zu verfassen. Sie wissen, welche Regeln dafür zu beachten sind und haben Erfahrung mit kooperativer Autorenschaft und einem mathematischen Textsatzsystem. Die Studierenden haben Erfahrungen, sich einen Überblick über den wissenschaftlichen Diskussionsstand zu einer mathematischen Thematik zu verschaffen und sich fachliche und interdisziplinäre Bezüge zu erschließen. Sie können eigenständig wissenschaftliche Informationen zu gegebenen Fragestellungen recherchieren und die Ergebnisse in eigene Texte einarbeiten. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Informationen zum Seminar |
OPAL |
Für OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Große |
S |
Mi |
4. DS |
WIL C206 |
|
|
|
• • • Didaktik spezieller Gebiete • • •
| |
Modul Math MaL DID: Neue Medien im Mathematikunterricht |
1+1+0 |
F01/740 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Semester (optional schon im 1. Semester) |
Inhalt |
Der Einsatz elektronischer Medien, sogenannter 'Neuer Medien', im Mathematikunterricht ist Gegenstand der Lehrveranstaltung. Exemplarisch werden mathematische und geometrische Software für das Simulieren, Modellieren und Visualisieren mathematischer Schulstoffe und Inhalte vorgestellt sowie deren Einsatzmöglichkeiten im Mathematikunterricht diskutiert. Der graphikfähige und programmierbare Taschenrechner sowie Tabellenkalkulationssoftware finden Beachtung. Die Studenten bekommen einen Einblick in die didaktisch-methodische Nutzung der interaktiven Tafel. |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung (nur für GYM verlinkt): Studienordnung GYM - Seite 10 |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Koch |
V |
Mo |
3. DS |
WIL A222 |
gerade Woche |
|
|
|
Koch |
V |
Mo |
4. DS |
WIL A222 |
gerade Woche |
|
|
|
Koch |
U |
Mo |
3. DS |
WIL A222 |
ungerade Woche |
|
|
|
Koch |
U |
Mo |
4. DS |
WIL A222 |
ungerade Woche |
|
|
|
Vorlesung und Übung werden zweimal angeboten, es ist jeweils eine Veranstaltung zu besuchen. |
| |
Modul Math MaL DID (Referat 1 oder 2): Seminar Didaktik der Analysis |
0+0+2 |
F01/742 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) (4. Sem., optional auch schon im 2. Sem.) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Behandlung ausgewählter Themenkreise der Analysis im gymnasialen Mathematikunterricht (Beweis durch vollständige Induktion; Zahlenfolgen; Behandlung spezieller Funktionen; Grenzwert- und Stetigkeitsbegriff; Ableitungs- und Integralbegriff; Kurvendiskussion und Extremwertaufgaben; Einsatz des graphikfähigen Taschenrechners im Analysisunterricht, wesentliche Strategien in der Analysis) |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Woithe |
S |
Mo |
4. DS |
WIL C204 |
|
|
|
| |
Modul Math MaL DID (Referat 1 oder 2): Seminar Didaktik der Analytischen Geometrie |
0+0+2 |
F01/743 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 4. Semester (optional schon im 2. Semester) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Möglichkeiten für einen Lehrgang der Analytischen Geometrie in der Oberstufe sollen aufgezeigt und die typischen Themenbereiche (Vektorbegriff, lineare Abhängigkeit, Skalar- und Vektorprodukt, Geraden und Ebenen) didaktisch analysiert werden. |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Deschauer |
S |
Mo |
4. DS |
WIL C102 |
|
|
|
| |
Modul Math MaL DID (Referat 1 oder 2): Seminar Didaktik der Stochastik |
0+0+2 |
F01/744 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Semester (optional schon im 1. Semester) |
Vorkenntnisse |
Grundkurs Didaktik der Mathematik |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung (nur für GYM verlinkt): Studienordnung GYM - Seite 10 |
Dozent/Zeit/Ort |
Woithe |
S |
Mi |
4. DS |
WIL C204 |
|
|
|
| |
Modul Math MaL DID: Blockpraktikum |
0+0+2 |
F01/733 |
Zielgruppe |
Master-Studiengänge: Höheres Lehramt an Gymnasien (MA GYM) und Höheres Lehramt an Berufsbildenden Schulen (MA BBS) im 3. Semester (optional schon im 1. Semester) |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
4-wöchiges Blockpraktikum an der Schule |
Einschreibung |
Platzvergabe über Onlineplattform bei der Fak. Erziehungswiss. |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung (nur für GYM verlinkt): Studienordnung GYM - Seite 10 |
• • • Weitere Lehrveranstaltungen bzw.
Lehrangebot im Rahmen des Ergänzungsbereichs für Lehramts-Studiengänge mit staatlichem Abschluss - Angebotskatalog der Fachrichtung Mathematik für Studierende des Fachs Mathematik • • •
| |
Seminar Didaktik der Algebra |
0+0+2 |
F01/751* |
Zielgruppe |
Staatsexamen: Gymnasium im Ergänzungsbereich EGS-SEGY-2 |
Vorkenntnisse |
Modul MN-SEMS-MAT-EDID |
Inhalt |
Behandlung ausgewählter Themen der Arithmetik und Algebra in der Sekundarstufe I.
Anhand von Aufgabenbeispielen aus aktuellen Lehrbüchern und Abschlussprüfungen
werden wesentliche unterrichtsrelevante Inhalte didaktisch vertieft. |
Einschreibung |
Einschreibeliste im Sekretariat |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung (nur für GYM verlinkt): Studienordnung GYM - Seite 10 |
Dozent/Zeit/Ort |
Koch |
S |
Di |
5. DS |
WIL C105 |
|
|
|
| |
Tafelbilder im Mathematikunterricht |
(fakultativ) |
F01/749 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2); Master MA GYM und MA BBS |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Gestaltung von Tafelbildern für den Mathematikunterricht, auch mit dem interaktiven Whiteboard (Promethean) |
Einschreibung |
im OPAL-Kurs |
Leistungsnachweis |
Präsentation mit Ausarbeitung (nur im Ergänzungsbereich für das neue Staatsexamen) |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Koch |
U |
Mo |
6. DS |
WIL A222 |
gerade Woche |
|
11.08.2014: neu 'gerade Woche' |
| |
Tutorium "Einsatz interaktiver Tafeln im Mathematikunterricht" |
(fakultativ, 0+0+2) |
F01/740* |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2); Master MA GYM und MA BBS |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Das Tutorium dient als Vorbereitung zur Nutzung der interaktiven Tafel in Studium und Schule. Neben der Vermittlung von Fertigkeiten im Umgang mit der interaktiven Tafel als Projektions- und Präsentationsfläche gibt dieses Tutorium vor allem einen Überblick über die Nutzung der Software ActiveInspire-Studio. Anhand ausgewählter Beispiele werden didaktische Einsatzmöglichkeiten der interaktiven Tafel im Mathematikunterricht gezeigt und entwickelt. |
Einschreibung |
siehe OPAL-Kurs |
Leistungsnachweis |
Entwicklung und Präsentation eines Tafelbildes (2 Basispunkte – BW 6, Ergänzungsstudien neues Staatsexamen) |
OPAL |
OPAL-Kurs |
| |
Lernwerkstatt |
(fakultativ) |
F01/748 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (insbesondere Ergänzungsbereich: EGS-SEMS-2, EGS-SEGY-2, EGS-SEBS-2); Master MA GYM und MA BBS |
Vorkenntnisse |
Modul EDID Einführung in die Didaktik der Mathematik |
Inhalt |
Fakultative Einzelveranstaltungen: Termine laut Aushang; Unterrichtsbeispiele für problemorientiertes und entdeckendes Lernen im Mathematikunterricht der Sek. I |
Einschreibung |
Petra.Woithe@tu-dresden.de |
Leistungsnachweis |
Präsentation mit Ausarbeitung (nur im Ergänzungsbereich für das neue Staatsexamen) |
Dozent/Zeit/Ort |
Woithe |
U |
Mo |
6. DS |
WIL C102 |
gerade Woche |
|
|
| |
Einführung in die Spieltheorie |
2+1+0 |
F01/545 |
Zielgruppe |
Staatsexamen: Gymnasium, BBS, Mittelschule (Ergänzungsbereich: EGS-SEGY-3, EGS-SEBS-3, EGS-SEMS-3); Master MA GYM und MA BBS |
Vorkenntnisse |
Es werden grundlegende Kenntnisse aus den jeweiligen Modulen zur Linearen Algebra bzw. zur Analysis vorausgesetzt. |
Inhalt |
Inhalte des Moduls sind:
- Definition und Beispiele strategischer Spiele
- Begriff des Nash-Gleichgewichts
- Zwei-Personen-Spiele
- Existenzaussagen für Nash-Gleichgewichte
- Äquivalente Umformulierungen von Nash-Gleichgewichtsproblemen
|
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Informationen zur Vorlesung (mit Modulbeschreibung) |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs