LV-Archiv: Wintersemester 2014/2015 - Ausgewählte Kataloganzeige
Gesamtübersicht
Institut für Mathematische Stochastik
• • • 2. Studienjahr (Ba-Studiengang, LA Staatsexamen) • • •
| |
Modul Math Ba MINT: Maß und Integral |
3+1+0 |
F01/421 |
Zielgruppe |
Bachelor-Studiengang Mathematik (3. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG und Math-Ba-LAAG |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 11 |
Dozent/Zeit/Ort |
Schmidt, K.D. |
V |
Mo |
2. DS |
WIL A120 |
|
|
30.09.2014: geänderte Zeit eingetragen |
|
Schmidt, K.D. |
V |
Di |
3. DS |
WIL C129 |
ungerade Woche |
|
|
|
Schubert |
U |
Di |
3. DS |
WIL C129 |
gerade Woche |
|
|
|
Fuchs |
U |
Fr |
2. DS |
WIL C204 |
|
Kursassistent |
|
• • • 3. Studienjahr (Ba-Studiengang, LA Staatsexamen) • • •
| |
Modul Math Ba STOCHV: Vertiefung Stochastik -Statistik |
2+0+0 |
F01/431 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 24 |
Dozent/Zeit/Ort |
Ferger |
V |
Mi |
2. DS |
WIL A124 |
|
|
|
| |
Modul Math Ba STOCHV: Vertiefung Stochastik - Versicherungsmathematik |
2+0+0 |
F01/432 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 24 |
Dozent/Zeit/Ort |
Böttcher |
S |
Di |
5. DS |
WIL C129 |
|
|
|
| |
Modul MN-SEGY/SEBS/SEMS-MAT-STOCH: Stochastik |
4+2+0 |
F01/437 |
Zielgruppe |
Staatsexamen: Höheres Lehramt an Gymnasien und Berufsbildenden Schulen, Fach Mathematik, 5. Sem.; Lehramt an Mittelschulen, Fach Mathematik, 5. Sem. |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung ABS - Seite 11 |
• • • Masterstudium bzw. auslaufend Hauptstudium der Diplomstudiengänge • • •
| |
Modul Math Ma MAFIN: Mathematical Finance |
3+1+0 |
F01/441 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Gegenstand der Vorlesung ist die Modellierung von Finanzmärkten in diskreter und stetiger Zeit;
Insbesondere werden die Bewertung von Optionen und Anleihen, die Charakterisierung von Marktvollständigkeit & Arbitragefreiheit, das Nutzenoptimierungsproblem und optimale Stoppprobleme behandelt.
Im Zuge der Vorlesung werden Resultate über Martingale in diskreter und stetiger Zeit, stochastische Integrationstheorie und weitere Resultate der stochastischen Analysis gezeigt. |
Einschreibung |
Einschreibung erfolgt in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma MSTAT: Mathematische Statistik |
3+1+0 |
F01/442 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Ferger |
V |
Di |
6. DS |
WIL B321 |
|
|
|
|
Ferger |
V |
Do |
2. DS |
WIL C203 |
|
Übung integriert |
|
| |
Modul Math Ma WTHM: Wahrscheinlichkeitstheorie mit Martingalen |
3+1+0 |
F01/447 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienbereich Stochastik. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für die Module Math-Ma-STOCAL, Math-Ma-STOCHP und Math-Ma-MAFIN. |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Di |
2. DS |
WIL A124 |
|
|
|
|
Sasvári |
V |
Mi |
3. DS |
WIL A124 |
|
Übung integriert |
|
| |
Modul Math Ma VMRM: Versicherungsmathematik - Risikomodelle |
3+1+0 |
F01/446 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Analysis und Stochastik'. Master WMath: Pflichtmodul. |
Vorkenntnisse |
Vertiefte Kompetenzen aus dem Gebiet der mathematischen Stochastik auf Bachelor-Niveau sind von Vorteil. |
Inhalt |
Hinweis: Das Modul schafft Voraussetzungen für das Modul Math-Ma-VMPV.
Gegenstand des Moduls sind Risikomodelle der Versicherungsmathematik, insbesondere
- das kollektive Modell (univariat, multivariat, dynamisch) und
- der Poisson-Prozess (homogen, inhomogen, gemischt, bedingt).
Die Studenten besitzen ein systematisches Wissen und Verständnis von Risikomodellen und sind in der Lage, sie auf die Prämienkalkulation und das Ruin-Problem anzuwenden. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
| |
Modul Math Ma MMMA: Mathematische Methoden, Modelle und ihre Anwendung |
4+0+0 |
F01/450 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Inhalt |
Bemerkung: Teilmodul 2 SWS, kann mit einem anderen MMMA-Teilmodul aus dem Angebot des Institutes kombiniert werden. Nach einer Einführung in die Programmierung mit SigMath, in die Computergrafik mit OpenGL und in die Nutzung von den numerischen Algorithmen von NAG,
werden mit diesen Werkzeugen konkrete mathematische Anwendungen betrachtet.
Zu diesen Anwendungen gehören Independent Component Analysis und Zeitreihenanalyse.
Die Studenten bearbeiten diese Aufgaben im PC Pool am Computer. |
Einschreibung |
Erste Vorlesung. |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Di |
5. DS |
Raum nach Absprache |
|
|
|
| |
Modul Math Ma MMMA: Metriken und Distanzen in der Wahrscheinlichkeitstheorie |
2+0+0 |
F01/451 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich |
Inhalt |
Bemerkung: Teilmodul 2 SWS, kann mit einem anderen MMMA-Teilmodul aus dem Angebot des Institutes kombiniert werden. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
|
V |
|
|
|
|
|
16.09.2014 |
|
Die Veranstaltung findet nicht statt. |
| |
Modul Math Ma MMMA: Dirichlet-Formen |
3+1+0 |
F01/452 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math, TMath, WMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich Diploma students (year 3+), MSc students, PhD students,
researchers |
Vorkenntnisse |
Working knowledge of Functional Analysis/PDEs and/or
Stochastic Processes |
Inhalt |
In this lecture we want to study the boundary behaviour of stochastic
(one-dimensional diffusion) processes ('Feller boundary conditions').
Dirichlet forms are an important tool in this connection and we start
with a brief introduction to Dirichlet forms. Since Dirichlet forms are
at the interface between analysis and probability, this lecture should
be interesing for both analysts and probabilists. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Schilling |
V |
Mi |
2. DS |
WIL A120 |
|
|
|
|
Schilling |
V |
Fr |
1. DS |
WIL A124 |
|
Übung integriert |
|
• • • Fakultativ - Für alle Interessenten:
Vorlesungen / Forschungsseminare / Seminare / Gastvorträge in den Instituten • • •
| |
Graduate Lectures in Mathematics |
0+2+0 |
F01/448 |
Zielgruppe |
Fortgeschrittene Master-/Diplomstudenten, Doktoranden |
Vorkenntnisse |
Maßtheorie und Stochastik |
Inhalt |
This series of lectures aims at Master's and PhD students in mathematics and offers a first glimpse into topics which are not routinely taught in our MSc/PhD programme. The emphasis is to introduce new concepts and techniques, and not to present full mathematical details. |
Einschreibung |
- |
Leistungsnachweis |
- |
| |
Arbeitsgemeinschaft Analysis & Stochastik |
0+2+0 |
F01/460 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Stochastics, Analysis |
Inhalt |
Selected topics from real and stochastic Analysis. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
| |
Arbeitsgemeinschaft Mathematische Statistik |
0+2+0 |
F01/464 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik |
Vorkenntnisse |
Wahrscheinlichkeitstheorie, Statistik |
Inhalt |
Ausgewählte Probleme der Mathematischen Statistik. |
Einschreibung |
- |
Leistungsnachweis |
- |
Dozent/Zeit/Ort |
Ferger |
AG |
Do |
7. DS |
WIL A124 |
|
|
|
| |
Dresdner Kolloquium zur Versicherungsmathematik |
0+2+0 |
F01/462 |
Zielgruppe |
Diplom- und Masterstudiengänge Mathematik und Wirtschaftsmathematik, Wirtschaftswissenschaftler (ab 6. Sem.) |
Vorkenntnisse |
Wahrscheinlichkeitstheorie |
Inhalt |
Gastvorträge zu ausgewählten Problemen der Versicherungsmathematik. |
Einschreibung |
- |
Leistungsnachweis |
- |
Internet |
Aktuelle Vorträge |
• • • Für Studiengänge anderer Fachrichtungen und Fakultäten • • •
| |
Mathematik I (Wirtschaftswissenschaften und Verkehrswirtschaft) |
2+1+0 |
F01/481 |
Zielgruppe |
Studierende an der Fak. Wirtschaftswissenschaften und Studierende Verkehrswirtschaft |
Inhalt |
Zahlen (natürliche Zahlen, reelle und komplexe Zahlen), Vektorräume (lineare Unabhängigkeit, Dimension, Unterräume), Lineare Gleichungssysteme (Lösbarkeit), Lineare Optimierung (Simplexverfahren). |
Einschreibung |
- |
Leistungsnachweis |
Schein mit Note (Klausur) |
Internet |
Informationen zum Kurs auf der Webseite der Kursassistentin |
Dozent/Zeit/Ort |
Ferger |
V |
Mi |
4. DS |
HSZ AUDI |
|
|
|
|
Tutor |
S |
Di |
2. DS |
WIL B122 |
|
|
|
|
Fischer, K. |
S |
Di |
3. DS |
WIL C107 |
|
|
|
|
Tutor |
S |
Di |
3. DS |
HSZ 103 |
|
|
|
|
Röder |
S |
Di |
3. DS |
WIL B122 |
|
|
|
|
Tutor |
S |
Do |
2. DS |
HSZ E01 |
|
|
|
|
Fischer, K. |
S |
Do |
2. DS |
HSZ E05 |
|
|
|
|
Röder |
S |
Do |
2. DS |
HSZ E03 |
|
|
|
|
Für Informationen zu den Seminaren und Tutorien siehe Internetseite bei der Kursassistentin. |
| |
Modul BIO-BA 1100: Mathematik (Biologie) // Modul Ma1: Mathematik (Molekulare Biotechnologie) |
2+1+0 |
F01/581 |
Zielgruppe |
Studierende Biologie und Molekulare Biotechnologie (1. Sem.) gemeinsam mit Studierenden Chemie+ Lebensmittelchemie, Lehramt Chemie (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung, Wahrscheinlichkeitstheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
U |
|
|
|
|
|
|
|
Kursassistentin für Bio und Ch Lehramt |
|
Pfeifer |
U |
|
|
|
|
|
Beginn der Vorlesung und der Übungen: 20.10.2014 |
|
Kursassistentin für Chemie + Lebensmittelchemie |
| |
Modul Ch Ma: Mathematik für Chemiker (Chemie+Lebensmittelchemie) // Mathematik (Lehramt Fach Chemie) |
2+1+0 |
F01/581* |
Zielgruppe |
Studierende Chemie, Lebensmittelchemie, Lehramt Chemie (1. Sem.) gemeinsam mit Studierenden Biologie und Molekulare Biotechnologie (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Komplexe Zahlen, Grundlagen der Linearen Algebra (Teil 1), Folgen und Funktionen einer reellen Variablen, Differential- und Integralrechnung für Funktionen einer reellen Variablen, gewöhnliche Differentialgleichungen erster Ordnung |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Webseite zur Vorlesung und Übungen |
Dozent/Zeit/Ort |
Kuhlisch |
V |
Mo |
2. DS |
TRE MATH |
|
|
|
|
Kuhlisch |
U |
|
|
|
|
|
|
|
Kursassistentin für Bio und Ch Lehramt |
|
Pfeifer |
U |
|
|
|
|
|
Beginn der Vorlesung und der Übungen: 20.10.2014 |
|
Kursassistentin für Chemie + Lebensmittelchemie |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Elektrotechnik) |
2+2+0 |
F01/487 |
Zielgruppe |
Studiengang Elektrotechnik (3. Sem.) - (gemeinsam mit Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
Kuhlisch |
U |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul ET-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie ( Informationssystemtechnik ) |
2+2+0 |
F01/487* |
Zielgruppe |
Studiengang Informationssystemtechnik (3. Sem.) - (gemeinsam mit Elektrotechnik, Mechatronik) |
Vorkenntnisse |
Module ET-01-04-01, ET-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
Kuhlisch |
U |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul MT-01 04 03: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Mechatronik) |
2+2+0 |
F01/487+ |
Zielgruppe |
Studiengang Mechatronik (3. Sem.) - (gemeinsam mit Elektrotechnik, Informationssystemtechnik) |
Vorkenntnisse |
Module MT-01-04-01, MT-01-04-02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
Kuhlisch |
U |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Modul RES-G05: Funktionentheorie / partielle Differentialgleichungen und Wahrscheinlichkeitstheorie (Regenerative Energiesysteme) |
2+2+0 |
F01/487++ |
Zielgruppe |
Studiengang Regenerative Energiesysteme (3. Sem.) (gemeinsam mit Elektrotechnik, Informationssystemtechnik, Mechatronik) |
Vorkenntnisse |
Module RES-G01, RES-G02 |
Inhalt |
Funktionentheorie |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Sasvári |
V |
Mo |
4. DS |
TRE PHYS |
|
|
|
|
Kuhlisch |
U |
|
|
|
|
Kursassistentin |
|
|
Für die Übungen siehe Webseite bei der Kursassistentin. |
| |
Statistik I (Sozialwissenschaften, Geographie, ZIS) |
2+2+0 |
F01/492 |
Zielgruppe |
Studierende Sozialwissenschaften (Haupt- und Nebenfach), Geographie |
Inhalt |
Einführung in SPSS, Deskriptive Statistik (Skalenniveaus, Datentypen, uni- und bivariate Verteilungen, grafische Darstellung / Kenngrößen von Verteilungen, Abhängigkeitsmaße), Wahrscheinlichkeiten, Grundprinzipien der schließenden Statistik, Signifikanztests für Ein- und Zweistichprobenproblemen und ihre Realisierung in SPSS |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Teilnahme, Klausur |
Internet |
Internetangebot zur Vorlesung |
Dozent/Zeit/Ort |
Müller |
V |
Mi |
3. DS |
HSZ 03 |
|
|
|
|
Müller |
U |
|
|
|
|
|
|
|
Für die Übungen siehe Webseite beim Dozenten. |
| |
Modul MN-SEGY/SEBS/SEMS-STOCH: Elementare Stochastik (Informatik) |
4+2+0 |
F01/437* |
Zielgruppe |
Diplom-Studiengang Informatik für Nebenfach Mathematik Numerik /Optimierung /Stochastik: Elementare Stochastik (gemeinsam mit SE-Lehramtsstudiengängen GYM, BBS, MS) |
Vorkenntnisse |
Modul Analysis |
Inhalt |
siehe Modulbeschreibung |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs