LV-Archiv: Wintersemester 2014/2015 - Ausgewählte Kataloganzeige
Für die Fakultät Bauingenieurwesen
| |
Mathematik I - BIW1-05: Lineare Algebra und Analysis (Bauingenieurwesen) |
4+2+0 |
F01/281-1 |
Zielgruppe |
BA-Studiengang Bauingenieurwesen (gemeinsam mit Geo- und Hydrowissenschaften) |
Vorkenntnisse |
- |
Inhalt |
Mengenlehre, Komplexe Zahlen, Lineare Algebra, Analytische Geometrie, Funktionen einer Variablen, Grundlagen der Differential- und Integralrechnung |
Einschreibung |
- |
Leistungsnachweis |
Klausur |
| |
Modul BIW1-09 Technische Grundlagen: Konstruktive Geometrie (Bauingenieurwesen) |
1+1+0 |
F01/385 |
Zielgruppe |
Studierende Bauingenieurwesen (1. Sem.) |
Vorkenntnisse |
- |
Inhalt |
Kotierte Projektion und ihre Anwendung auf Aufgaben im Straßen- und Bergbau, Bauwesen u.a., Konstruieren in Grund- und Aufriß |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
Schein/Testatklausur |
OPAL |
OPAL-Kurs |
Dozent/Zeit/Ort |
Lordick |
V |
Di |
4. DS |
TRE MATH |
gerade Woche |
|
|
|
|
U |
|
|
|
|
|
7.10.2014: Änderungen in den Übungszeiten |
|
Für die Übungen und weitere Informationen siehe o.g. OPAL-Kurs. |
| |
Mathematik III - BIW1-06: Lineare Differentialgleichungen und Stochastik (Bauingenieurwesen) |
2+2+0 |
F01/283-1 |
Zielgruppe |
Studierende Bauingenieurwesen (gemeinsam mit Geowissenschaften) |
Vorkenntnisse |
Mathematik I und II |
Inhalt |
Gewöhnliche Differentialgleichungen, Wahrscheinlichkeitsrechnung (Ereignisse, Wahrscheinlichkeitsbegriffe, Verteilungen), Mathematische Statistik (Kenngrößen der beschreibenden Statistik, Parameterschätzung, Testverfahren) |
Einschreibung |
- |
Leistungsnachweis |
Prüfung (Klausur) |
Dozent/Zeit/Ort |
Chill |
V |
Do |
1. DS |
TRE MATH |
|
|
|
|
Scheffler |
U |
|
|
|
|
Kursassistent |
|
|
Für die Übungen siehe Webseite des Dozenten. |
| |
Modul BIW3-12: Fortgeschrittene mathematische Methoden für Ingenieure |
2+1+0 |
F01/284 |
Zielgruppe |
Studierende des Ingenieurwesens, insbesondere des Bauingenieurwesens und Elektroingenieurwesens |
Vorkenntnisse |
Fundierte mathematische Kenntnisse aus den Modulen des Grund- und Grundfachstudiums |
Inhalt |
Inhalt dieses zwei-semestrigen Moduls sind die wichtigsten mathematischen Grundlagen für die Beschreibung von Fragen verschiedener ingenieurwissenschaftlicher Gebiete wie zum Beispiel Kontinuumsmechanik, Strömungsmechanik, Elektrodynamik usw. Einen weiteren Schwerpunkt bilden die Schlüsselideen der Tensoranalysis, Operatortheorie, Approximationstheorie und der Variationsrechnung. |
Einschreibung |
- |
Leistungsnachweis |
lt. Prüfungsordnung |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs