LV-Archiv: Wintersemester 2013/2014 - Ausgewählte Kataloganzeige
Für die Fachrichtung Physik
| |
Modul PHY Ma-I: Mathematik I / 1 (Physik) |
4+2+0 |
F01/211+ |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.) (gemeinsam mit BA-Mathematik, Lehramt GY und BBS - Staatsexamen, 1. Sem.) |
Vorkenntnisse |
- |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
OPAL-Kurs mit allen Informationen zur Vorlesung und den Übungen |
Dozent/Zeit/Ort |
Schuricht |
V |
Mo |
4. DS |
TRE MATH |
|
|
|
| |
Modul PHY Ma-I: Lineare Algebra (Physik) |
4+2+0 |
F01/190 |
Zielgruppe |
Bachelor-Studiengang Physik (1. Sem.) |
Vorkenntnisse |
Abitur |
Einschreibung |
- |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Kerkhoff |
V |
Mi |
2. DS |
WIL B321 |
|
|
|
|
N.N. |
Ü |
Do |
5. DS |
WIL C105 |
|
|
|
|
Die Benennung der Seminarleiter wird später bekannt gegeben. |
| |
Modul PHY Ma-II: Mathematik II / 1 (Physik) |
4+2+0 |
F01/291 |
Zielgruppe |
Bachelor-Studiengang Physik (3. Sem.) |
Vorkenntnisse |
Modul Mathematik I |
Einschreibung |
- |
Leistungsnachweis |
- |
Dozent/Zeit/Ort |
Kalauch |
V |
Di |
2. DS |
WIL A317 |
|
|
|
• • • Fakultativ - Für alle Interessenten • • •
| |
Seminar: Themen der Mathematischen Physik |
0+2+0 |
F01/257 |
Zielgruppe |
Physikstudenten mit Nebenfach Mathematik, Studierende in den Math. Diplom- und Masterstudiengängen |
Inhalt |
Es werden ausgewählte Themen der mathematischen Physik behandelt (z.B. dynamische Systeme, Ergodentheorie, mathematische Aspekte der Quantenphysik und statistischen Mechanik) |
Einschreibung |
siehe eigene Internetseite des Seminars |
Internet |
Webseite zum Seminar |
| |
Oberseminar Analysis |
0+2+0 |
F01/255 |
Zielgruppe |
Mathematische Diplom- und Masterstudiengänge, Studierende Physik |
Vorkenntnisse |
Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen |
Inhalt |
Lose Folge von Vorträgen zu ausgewählten Themen der Analysis. |
Internet |
Aktuelle Vorträge |
Dozent/Zeit/Ort |
Chill |
Ü |
Do |
5. DS |
WIL C129 |
|
|
|
| |
Modul Math Ba MOSIM Modellierung und Simulation: Differentialgleichungen
und dynamische Systeme |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
Dynamische Systeme sind eine mathematische Beschreibung zeitabhängiger Prozesse, die häufig in Form von gewöhnlichen Differentialgleichungen gegeben sind. Die Vorlesung behandelt Methoden zur numerischen Lösung gewöhnlicher Differentialgleichungen sowie zur numerischen Analyse dynamischer Systeme.
In Teil I betrachten wir vor allem Ein- und Mehrschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren etc.) zur Approximation von Anfangswertproblemen gewöhnlicher Differentialgleichungen und untersuchen die Eigenschaften der Methoden (Konsistenz, Konvergenz, Stabilität). Auch die Lösung von Randwertproblemen wird kurz thematisiert.
In Teil II lernen wir numerische Ansätze kennen, mit denen das Langzeitverhalten dynamischer Systeme zuverlässig analysiert werden kann. Dies geschieht durch die gezielte numerische Betrachtung spezieller Lösungen der zugrunde liegenden Differentialgleichung (z.B. stationäre und periodische Lösungen) sowie durch den Einsatz moderner Verfahren zur Approximation invarianter Mengen.
Die Vorlesung behandelt zum einen die theoretischen Grundlagen der Probleme und der numerischen Ansätze. Darüber hinaus werden wir die betrachteten Verfahren implementieren, auf Beispiele anwenden und die theoretischen Fehlerabschätzungen numerisch verifizieren. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs