LV-Archiv: Wintersemester 2013/2014 - Ausgewählte Kataloganzeige
Bachelor-Studiengang Mathematik
3. Studienjahr
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Diskrete Strukturen |
3+1+0 |
F01/131 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) , für Master Höheres Lehramt an Gymnasien = Angebot für Modul Math-MaL-VERT-G im 3. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Inhalt |
Einführung in die Methoden der Diskreten Mathematik am Beispiel von Problemen aus der Graphenteorie, Codierungstheorie und Kryptologie. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 19 |
Dozent/Zeit/Ort |
Baumann |
V |
Do |
5. DS |
WIL C133 |
|
|
|
|
Baumann |
V/Ü |
Fr |
1. DS |
WIL C133 |
|
Übung integriert |
|
| |
Modul Math Ba ALGSTR Algebraische Strukturen: Methoden der angewandten Algebra |
3+1+0 |
F01/132 |
Zielgruppe |
Bachelor-Studiengang Mathematik (6. Sem.) , für Master Höheres Lehramt an Gymnasien = Angebot für Modul Math-MaL-VERT-G im 2. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-920 'Vertiefung im Nebenfach' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAG, Math-Ba-LAAG und Math-Ba-PROG |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Dozent/Zeit/Ort |
Pech, M. |
V |
Di |
3. DS |
WIL A120 |
|
|
|
|
Pech, M. |
V |
Fr |
1. DS |
WIL A120 |
gerade Woche |
|
|
|
Pech, M. |
Ü |
Fr |
1. DS |
WIL A120 |
ungerade Woche |
|
|
| |
Modul Math Ba HANA Höhere Analysis: Funktionalanalysis |
3+1+0 |
F01/231 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 21 |
Dozent/Zeit/Ort |
Vogt |
V |
Mo |
6. DS |
WIL A120 |
gerade Woche |
1. Vorlesung am 14.10.2013 |
08.10.2013 Eintragung: 1. Vorlesung in der geraden Woche |
|
N.N. |
Ü |
Mo |
6. DS |
WIL A120 |
ungerade Woche |
1. Übung am 21.10.2103 |
|
| |
Modul Math Ba DGEO: Differentialgeometrie |
3+1+0 |
F01/331 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ALGZTH, Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-GEO, Math-Ba-LAAG und Math-Ba-PROG |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 20 |
Dozent/Zeit/Ort |
Brehm |
V |
Di |
4. DS |
WIL C129 |
|
|
|
|
Brehm |
V |
Fr |
3. DS |
WIL C133 |
gerade Woche |
|
|
|
Brehm |
Ü |
Fr |
3. DS |
WIL C133 |
ungerade Woche |
|
|
| |
Modul Math Ba STOCHV: Vertiefung Stochastik -Statistik |
2+0+0 |
F01/431 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 24 |
Dozent/Zeit/Ort |
Ferger |
V |
Mi |
1. DS |
WIL C133 |
|
|
|
| |
Modul Math Ba STOCHV: Vertiefung Stochastik - Versicherungsmathematik |
2+0+0 |
F01/432 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME, Math-Ba-PROG und Math-Ba-STOCH. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 24 |
| |
Modul Math Ba OPTINUM: Optimierung und Numerik |
3+1+0 |
F01/531 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Master Höheres Lehramt an Gymnasien für Modul Math-MaL-VERT-G im 3. Sem.; für Diplomstudiengang Informatik = MODUL INF-D-510 'Grundlagen des Nebenfachs' |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG sowie ggf. aus den Modulen Math-Ba-ANAA und Math-Ba-MINT |
Inhalt |
Teil 1 des Moduls: Einführung in Gebiete der numerischen Mathematik Grundlagen, Theorie und Methoden der
- Numerik nichtlinearer Gleichungen
- Numerik für Randwertaufgaben bei Differentialgleichungen |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 23 |
Dozent/Zeit/Ort |
Franz |
V |
Mo |
5. DS |
WIL C133 |
gerade Woche |
|
|
|
Franz |
V |
Mi |
4. DS |
WIL C129 |
|
|
|
|
Franz |
Ü |
Mo |
5. DS |
WIL C133 |
ungerade Woche |
|
|
| |
Modul Math Ba MOSIM Modellierung und Simulation: Differentialgleichungen
und dynamische Systeme |
3+1+0 |
F01/631 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
Dynamische Systeme sind eine mathematische Beschreibung zeitabhängiger Prozesse, die häufig in Form von gewöhnlichen Differentialgleichungen gegeben sind. Die Vorlesung behandelt Methoden zur numerischen Lösung gewöhnlicher Differentialgleichungen sowie zur numerischen Analyse dynamischer Systeme.
In Teil I betrachten wir vor allem Ein- und Mehrschrittverfahren (Runge-Kutta-Verfahren, Extrapolationsverfahren etc.) zur Approximation von Anfangswertproblemen gewöhnlicher Differentialgleichungen und untersuchen die Eigenschaften der Methoden (Konsistenz, Konvergenz, Stabilität). Auch die Lösung von Randwertproblemen wird kurz thematisiert.
In Teil II lernen wir numerische Ansätze kennen, mit denen das Langzeitverhalten dynamischer Systeme zuverlässig analysiert werden kann. Dies geschieht durch die gezielte numerische Betrachtung spezieller Lösungen der zugrunde liegenden Differentialgleichung (z.B. stationäre und periodische Lösungen) sowie durch den Einsatz moderner Verfahren zur Approximation invarianter Mengen.
Die Vorlesung behandelt zum einen die theoretischen Grundlagen der Probleme und der numerischen Ansätze. Darüber hinaus werden wir die betrachteten Verfahren implementieren, auf Beispiele anwenden und die theoretischen Fehlerabschätzungen numerisch verifizieren. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 22 |
• • • Katalog für das Modul SEM - Seminar (Zusatzangebot im Wintersemester) • • •
| |
Modul Math Ba SEM Seminar: Musik, Mathematik, Kommunikation |
0+2+0 |
F01/157* |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Mathematische Diplom- und Masterstudiengänge u.a. Interessenten |
Inhalt |
Das Seminar ist ein kritischer Streifzug durch die mathematische Musiktheorie unter dem Aspekt der Entwicklung einer extensionalen Standardsprache. Querverbindungen zu anderen Disziplinen werden diskutiert. Ziel ist die Erarbeitung eines umfangreichen Musikbegriffs, der mehr als nur den Hörsinn einbezieht. Eine Leitfrage ist: Wie ist Musik kommunizierbar? |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 17 |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Chill |
S |
Di |
5. DS |
WIL C133 |
|
|
|
| |
Modul Math Ba SEM: Seminar Geometrie |
0+2+0 |
F01/335 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.) (auch für Mathematiker, Technomathematiker, Wirtschaftsmathematiker, ggf. Lehramtsstudiengänge höherer Semester) |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-PROSEM sowie ggf. weiterer Module des Pflichtbereiches abhängig von der Thematik des Seminars. |
Inhalt |
Selbst gewählte Themen aus der Geometrie und ihrem Umfeld, die sich an
Vorkenntnissen und Interessen der Teilnehmer ausrichten, sind nach
Absprache mit dem Dozenten vor der ersten Vorlesungswoche möglich und
willkommen.
Außerdem werden Themen wie das ``Inscribed square problem'' oder
topologisch-geometrische Lösungen diskreter Probleme wie der
Kneser-Vermutung angeboten. |
Einschreibung |
über OPAL, siehe Webseite Seminare |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 17 |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare' |
Dozent/Zeit/Ort |
Schultz |
S |
Fr |
4. DS |
WIL C133 |
|
|
|
Autor: Lehrveranstaltungsmanagement Mathematik
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs