|
Modul Math Ba MOSIM Modellierung und Simulation: Computerarithmetik und Ergebnisverifikation |
4+0+0 |
F01/644 |
Zielgruppe |
Bachelor-Studiengang Mathematik (5. Sem.), Studierende Physik, Informatik |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG. |
Inhalt |
Die Computerarithmetik bildet die Grundlage des numerischen und wissenschaftlichen Rechnens. Sowohl algebraische und algorithmische Aspekte einer Arithmetik als auch logische und technische Aspekte des Entwurfs von Rechenwerken und Prozessoren, welche die arithmetischen Grundoperationen in Hardware realisieren, werden behandelt. Dabei spielen verschiedene Techniken der Beschleunigung der 4 Grundrechenarten sowie die Rundungs- und Genauigkeitsproblematik eine zentrale Rolle. Neben den Grundlagen der Gleitkommarechnung werden auch die wesentlichen Eigenschaften einer Intervallarithmetik vorgestellt, welche die Voraussetzungen für eine automatisierte numerische Ergebnisverifikation auf dem Computer schafft. Auch wünschenswerte zusätzliche Operationen (z.B. zur Erhöhung der Rechengenauigkeit) werden thematisiert. Im zweiten Teil der Vorlesung werden Methoden, Algorithmen und Werkzeuge für die automatische Ergebnisverifikation vorgestellt, deren Ziel die Berechnung garantierter Unter- und Oberschranken für die Lösung bzw. die Lösungsmenge eines numerischen Problems ist. Hierbei soll der Rechner mittels geeigneter Hilfsmittel im Zuge der Berechnung einer EinschlieÜung den Nachweis der Existenz (und evtl. der Eindeutigkeit) der Lösung im berechneten Intervall selbsttätig erbringen. Mittels Intervallarithmetik, Automatischer Differentiation und Fixpunktsätzen aus der Analysis werden verifizierende Algorithmen für verschiedene Grundaufgaben der Numerik entwickelt, teilweise programmiert und auf dem Rechner erprobt. Typische Aufgaben sind: EinschlieÜung des Wertebereichs einer Funktion, Nullstellensuche, Lösen linearer Gleichungssysteme, Quadratur, globale Optimierung, gewöhnliche Differentialgleichungen. |
Einschreibung |
1. Lehrveranstaltung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Modulbeschreibung: Studienordnung - Seite 22
|
|
Hochleistungsrechner und ihre Programmierung (Teil I) |
2+2+0 |
F01/651 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Bitte erfragen Sie die Möglichkeit, die Vorlesung als Modul Math Ma SCPROG zu verwenden. |
Vorkenntnisse |
Es werden Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse vorausgesetzt. |
Inhalt |
Der Schwerpunkt der Vorlesung liegt auf den Strategien und Methoden der Parallelverarbeitung - einschlieÜlich der im Supercomputing weitverbreiteten Programmiermodelle, Architektur- und Netzwerkkonzepte - und den notwendigen algorithmischen Bausteinen in enger Verknüpfung mit praktischen Erfahrungen aus dem interdisziplinären Arbeitsfeld des Zentrums für Hochleistungsrechnen. (Ausführliche Beschreibung im Internet unter -->ZIH -->Lehre) |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
Internet |
Für Vorlesungsinformation und Übung siehe Web-Seiten des ZIH
|
|
Modul Math Ma SCPROG: AMDiS - Einführung in die FE-Toolbox |
3+1+0 |
F01/652 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich, gehört zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation'. Master Math: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen zur Modellierung und Simulation auf Bachelor-Niveau und gute Programmierkenntnisse vorausgesetzt. |
Inhalt |
|
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
|
Modul Math Ma PDENM: Numerik partieller Differentialgleichungen und Modul Math Ma FEM: Finite-Elemente-Methode â?? Theorie, Implementierung und Anwendungen |
6+2+0 |
F01/555* |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Wahlpflichtmodule im Mathematischen Wahlpflichtbereich, gehören zum Studienschwerpunkt 'Numerik, Optimierung, Modellierung und Simulation' (PDENM gehört darüberhinaus zum Studienschwerpunkt 'Analysis und Stochastik'). Master TMath: Pflichtmodule Master WMath: Wahlpflichtmodule im Mathematischen Wahlpflichtbereich. |
Vorkenntnisse |
Es werden Kompetenzen aus dem Gebiet der Numerik gewöhnlicher Differentialgleichungen auf Bachelor-Niveau vorausgesetzt. |
Inhalt |
Bemerkung: Die beiden Module werden in einer gemeinsamen Vorlesung gelesen (Im 1. Teil des Semesters PDENM und anschlieÜend im 2. Teil des Semesters FEM, Umfang 6+2+0). Hinweis: Die Module schaffen Voraussetzungen für das Modul Math-Ma-MODSEM. |
Einschreibung |
in der Vorlesung |
Leistungsnachweis |
laut Modulbeschreibung |
|
Modul Math Ma WIA - Wissenschaftliches Arbeiten: Objektorientierte Programmiersprachen |
0+0+4 |
F01/679 |
Zielgruppe |
Master-Studiengänge Mathematik, Technomathematik, Wirtschaftsmathematik |
Klassifizierung |
Master Math: Pflichtmodul. Master TMath: Wahlpflichtmodul im Mathematischen Wahlpflichtbereich. Master WMath: Pflichtmodul. |
Inhalt |
In diesem Modul werden zu Beginn des Semesters Vorlesungen über moderne Programmierparadigmen und -techniken sowie deren Anwendung in mathematischen, numerischen und wissenschaftlichen Programmen gehalten. Dabei werden neben speziellen Aspekten objektorientierter Programmiersprachen auch moderne Themen wie Generizität, template-basierte und Meta-Programmierung, Serialization und Persistence sowie Threads und Concurrency behandelt. Im zweiten Teil werden von den Teilnehmern Seminarvorträge über konkrete Programmiersprachen gehalten, wobei insbesondere zu evaluieren ist, inwieweit in diesen Sprachen eine moderne wissenschaftliche Programmierung möglich ist. |
Einschreibung |
über OPAL |
Leistungsnachweis |
laut Modulbeschreibung |
OPAL |
Für Informationen und OPAL-Einschreibung siehe Webseite 'Seminare und Module mit Einschreibung'
|
|
Modul Math MaL-VERT-G/B: Computerarithmetik und Ergebnisverifikation |
4+0+0 |
F01/644* |
Zielgruppe |
Master Höheres Lehramt an Gymnasien und Berufsbildenden Schulen: Angebot für Modul Math-MaL-VERT-G im 3. Sem. |
Vorkenntnisse |
Kompetenzen aus den Modulen Math-Ba-ANAA, Math-Ba-ANAG, Math-Ba-LAAG, Math-Ba-MINT, Math-Ba-NUM, Math-Ba-NUME und Math-Ba-PROG; ; ggf. Absprache mit dem Dozenten |
Inhalt |
1. Semester des Moduls Math Ba MOSIM - Modellierung und Simulation Die Computerarithmetik bildet die Grundlage des numerischen und wissenschaftlichen Rechnens. Sowohl algebraische und algorithmische Aspekte einer Arithmetik als auch logische und technische Aspekte des Entwurfs von Rechenwerken und Prozessoren, welche die arithmetischen Grundoperationen in Hardware realisieren, werden behandelt. Dabei spielen verschiedene Techniken der Beschleunigung der 4 Grundrechenarten sowie die Rundungs- und Genauigkeitsproblematik eine zentrale Rolle. eben den Grundlagen der Gleitkommarechnung werden auch die wesentlichen Eigenschaften einer Intervallarithmetik vorgestellt, welche die Voraussetzungen für eine automatisierte numerische Ergebnisverifikation auf dem Computer schafft. Auch wünschenswerte zusätzliche Operationen (z.B. zur Erhöhung der Rechengenauigkeit) werden thematisiert. Im zweiten Teil der Vorlesung werden Methoden, Algorithmen und Werkzeuge für die automatische Ergebnisverifikation vorgestellt, deren Ziel die Berechnung garantierter Unter- und Oberschranken für die Lösung bzw. die Lösungsmenge eines numerischen Problems ist. Hierbei soll der Rechner mittels geeigneter Hilfsmittel im Zuge der Berechnung einer EinschlieÜung den Nachweis der Existenz (und evtl. der Eindeutigkeit) der Lösung im berechneten Intervall selbsttätig erbringen. Mittels Intervallarithmetik, Automatischer Differentiation und Fixpunktsätzen aus der Analysis werden verifizierende Algorithmen für verschiedene Grundaufgaben der Numerik entwickelt, teilweise programmiert und auf dem Rechner erprobt. Typische Aufgaben sind: EinschlieÜung des Wertebereichs einer Funktion, Nullstellensuche, Lösen linearer Gleichungssysteme, Quadratur, globale Optimierung, gewöhnliche Differentialgleichungen. |
Einschreibung |
1. Vorlesung |
Leistungsnachweis |
Prüfung nach Absprache mit dem Dozenten |
Internet |
Modulbeschreibung: Studienordnung - Seite 22
|
Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs