LV-Archiv: Wintersemester 2009/2010 - Ausgewählte Kataloganzeige

Studiengänge: Mathematik, Technomathematik, Wirtschaftsmathematik
Hauptstudium

Lehrveranstaltungen am Institut für Analysis
 
Partielle Differentialgleichungen 2
4+2+0 F01/241
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker, Studierende Physik
Klassifizierung Reine Mathematik, Angewandte Mathematik, Spezialisierung
Vorkenntnisse Grundlagen der Funktionalanalysis, Partielle Differentialgleichungen 1
Inhalt In Fortsetzung des ersten Teils der Vorlesungsreihe werden in diesem zweiten Teil allgemeine Anfangsrandwertaufgaben und ihre Anwendungen auf spezifische Fragen der Mathematischen Physik betrachtet. Methodisch bewegt sich die Vorlesung im Rahmen der funktionalanalytischen Konzepte, die im ersten Teil bereit gestellt wurden. Insbesondere werden wir uns zur Illustration der verwendeten Methoden mit den Anfangsrandwertaufgaben der Akustik, Elektrodynamik und Elastizitätstheorie befassen.
Einschreibung   -
Leistungsnachweis Prüfung oder Prüfungsvorleistung
Dozent/Zeit/Ort Picard   V    Di    4. DS   WIL C129           
  Picard   V    Do    3. DS   WIL C129           
  N.N.   Ü    Mi    4. DS   WIL C105           
 
Einführung in die Ergodentheorie
2+0+0 F01/242
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker, Studierende Physik
Klassifizierung Reine Mathematik, Angewandte Mathematik, Spezialisierung
Vorkenntnisse
Inhalt Dynamische Systeme, Ergodensätze, Ergodizität, Mischung, Entropie, Beispiele und Anwendungen
Einschreibung   1. Vorlesung
Leistungsnachweis Prüfung oder Prüfungsvorleistung
Dozent/Zeit/Ort Timmermann   V    Do    2. DS   WIL C133           
 
Geometrische Maßtheorie
2+0+0 F01/243
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker
Klassifizierung Reine Mathematik, Angewandte Mathematik, Spezialisierung
Vorkenntnisse Vordiplom
Inhalt Grundlagen Maßtheorie, Lebesgue-Maß, Hausdorff-Maß, BV-Funktionen
Einschreibung   1. Vorlesung
Leistungsnachweis Prüfung oder Prüfungsvorleistung
Dozent/Zeit/Ort Schuricht   V    Do    4. DS   WIL A120           
 
Funktionalanalysis 1
4+2+0 F01/244
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker, Lehramt Gymnasium, Physiker
Klassifizierung Reine Mathematik, Spezialisierung, OD
Vorkenntnisse Vordiplom
Inhalt Grundtatsachen zu topologischen, metrischen und normierten Räumen; lineare Operatoren, lineare Funktionale und der Satz von Hahn-Banach, Satz vom abgeschlossenen Graphen, Satz von Banach-Steinhaus, schwache Konvergenz, Sobolev-Räume, Spektraltheorie, Anwendungen
Einschreibung   -
Leistungsnachweis Prüfung oder Prüfungsvorleistung
Dozent/Zeit/Ort Schuricht   V    Di    5. DS   WIL C133           
  Schuricht   V    Mi    1. DS   WIL A317         15.10.2009: Raumänderung eingetragen   
  Freymond   Ü    Di    1. DS   WIL A120           
  N.N.   Ü    Di    6. DS   WIL B122           
  Freymond   Ü    Do    1. DS   WIL C133           
 
Sobolev-Räume
2+0+0 F01/247
Zielgruppe Mathematiker, Physiker im Hauptstudium
Klassifizierung Reine Mathematik, Spezialisierung
Vorkenntnisse Analysis 1-3, Elementare Funktionalanalysis
Inhalt Sobolev-Räume sind die gleichzeitige Verallgemeinerung von Räumen differenzierbarer Funktionen und Lp-Räumen. Einführung, Dichtesätze, Einbettungssätze, Kompaktheit.
Einschreibung   -
Leistungsnachweis
Dozent/Zeit/Ort Voigt, J.   V    Mi    2. DS   WIL A120           
 
Dynamische Systeme
4+0+0 F01/248
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker
Klassifizierung Reine Mathematik, Angewandte Mathematik
Vorkenntnisse Analysis I und II
Inhalt Die Vorlesung gibt anhand ausgewählter Beispielklassen eine Einführung in die Theorie Dynamischer Systeme. Nach einem kurzen Exkurs über chaotische Dynamik stehen dabei Systeme mit elliptischer (d.h. rotationsartiger) Dynamik im Vordergrund. Behandelt werden insbesondere richtungserhaltende Kreishomeomorphismen, die unter anderem eine wichtige Rolle bei der Erklärung paradoxer Phänomene in den Neurowissenschaften spielen, sowie sogenannte Twist-Abbildungen, die als Modelle verschiedener physikalischer Systeme dienen (z.B. Billiards). Zunächst stehen dabei topologisch-geometrische Methoden im Vordergrund, mit Hilfe der KAM-Theorie (Kolmogorov-Arnold-Moser) lassen sich dann unter zusätzlichen Regularitätsannahmen weitergehende Aussagen für beide Systemklassen erhalten.
Einschreibung   -
Leistungsnachweis Prüfungsvorleistung
Dozent/Zeit/Ort Oertel-Jäger   V    Mo    4. DS   WIL C133           
  Oertel-Jäger   V    Fr    3. DS   WIL C133           
 
Seminar Partielle Differentialgleichungen
0+2+0 F01/263
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker u.a. Interessenten
Vorkenntnisse Partielle Differentialgleichungen 1 und 2
Inhalt Einzelne Vertiefungsthemen der Vorlesung Partielle Differentialgleichungen sollen hier in Einzelvorträgen der Teilnehmer näher behandelt und diskutiert werden.
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis optional
Dozent/Zeit/Ort Picard   S    Mo    2. DS   WIL C129           
  Webseite Seminare
 
Seminar Nichlineare Analysis
0+2+0 F01/245
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker u.a. Interessenten
Vorkenntnisse Grundkenntnisse Analysis, Funktionalanalysis und Differentialgleichungen
Inhalt Spezielle Fragen aus nichtlinearer Analysis und deren Anwendungen.
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis Schein (ohne Note)
Dozent/Zeit/Ort Schuricht   S    Mi    5. DS   WIL C133           
  Webseite Seminare
 
Seminar: Themen der mathematischen Physik: Dynamische Systeme, Chaos und Quantenchaos
0+2+0 F01/249
Zielgruppe Physikstudenten mit Nebenfach Mathematik, Mathematikstudenten im Hauptstudium
Vorkenntnisse
Inhalt Es werden ausgewählte Themen der mathematischen Physik behandelt, wobei ein besonderes Augenmerk auf dynamischen Systemen - insbesondere Ergodentheorie - und angrenzenden Gebieten der statistischen Mechanik und Thermodynamik liegt.
Einschreibung  
Leistungsnachweis -
Dozent/Zeit/Ort Kalauch   S    Mo    6. DS   WIL C205         15.09.09: Seminar neu eingetragen   
  Informationen zum Seminar
 
Seminar Positive Dynamische Systeme
0+2+0 F01/246
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker u.a. Interessenten
Vorkenntnisse
Inhalt Das Seminar gibt eine Einführung in die Theorie positiver Dynamischer Systeme. Solche Systeme spielen in vielen Anwendungen eine Rolle, etwa in der Biologie oder Populationsdynamik.
Einschreibung   über OPAL, siehe Webseite Seminare
Leistungsnachweis Schein (ohne Note)
Dozent/Zeit/Ort Siegmund   S    Mi    3. DS   WIL C129           
  Webseite Seminare
 
Oberseminar Analysis
0+2+0 F01/262
Zielgruppe Mathematiker, Technomathematiker, Wirtschaftsmathematiker, Studierende Physik
Vorkenntnisse Solide Kenntnisse in Funktionalanalysis und auf dem Gebiet der Partiellen Differentialgleichungen
Inhalt Lose Folge von Vorträgen zu ausgewählten Themen im Zusammenhang mit funktionalanalytischen Methoden der mathematischen Physik
Einschreibung   -
Leistungsnachweis optional
Dozent/Zeit/Ort Picard   S    Do    5. DS   WIL C133           






 Autor: Lehrveranstaltungsmanagement Mathematik
 Für Impressum, Datenschutzerklärung und Barrierefreiheit siehe Startseite des Lehrveranstaltungsarchivs