Elementare Stochastik | ||||||||
3+2+0 | F01/419 | |||||||
Zielgruppe | Lehramt: Grundschule, Mittelschule | |||||||
Vorkenntnisse | Grundkurs Analysis | |||||||
Inhalt | Entwicklung des Wahrscheinlichkeitsbegriffes, Wahrscheinlichkeitsraum, Zufallsvariable, Verteilung einer Zufallsvariablen, Familie der Binomialverteilungen, Familie der hypergeometrischen Verteilungen, Familie der Poissonverteilungen, Approximationssätze, Familie der Normalverteilungen, weitere Beispiele diskreter Verteilungen, Satz von Moivre-Laplace, Begriff der stochastischen Unabhängigkeit, bedingte Wahrscheinlichkeit, Bayes'sche Formel, Erwartungswert und Varianz von Zufallsvariablen, relative Häufigkeiten, Bernoullisches Gesetz der großen Zahlen, Fragestellungen der Mathematischen Statistik | |||||||
Einschreibung | ||||||||
Leistungsnachweis | lt. Prüfungsordnung |
Dozent/Zeit/Ort | Schenk | V | Di | 1. DS | WIL A120 | ungerade Woche |
Schenk | V | Do | 2. DS | WIL A120 |
Schenk | Ü | Mi | 2. DS | WIL B122 |
Seminar Geometrie 1 (Lehramt) | ||||||||
0+2+0 | F01/369 | |||||||
Zielgruppe | Lehramt: Grundschule, Mittelschule | |||||||
Vorkenntnisse | Lineare Algebra und Analytische Geometrie, Geometrie I | |||||||
Inhalt | Reguläre und halbreguläre Polyeder, Eulerscher Polyedersatz, Dualität, Symmetriegruppe, Ornamente und Ornamentgruppen, Zerlegungen und Pflasterungen, sphärische Figuren. Ausgewählte geometrische Themen sollen von den Teilnehmern in Vorträgen behandelt und diskutiert werden. Über die behandelten Themen ist eine schriftliche Ausarbeitung anzufertigen. Eine regelmäßige Teilnahme an den Seminaren wird vorausgesetzt. | |||||||
Einschreibung | 1. Lehrveranstaltung | |||||||
Leistungsnachweis | Schein |
Dozent/Zeit/Ort | Lehmann | S | Mo | 2. DS | WIL C205 | |||
Info-Seite zu allen Seminaren |
Seminar Geometrie 2 (Lehramt) | ||||||||
0+2+0 | F01/369* | |||||||
Zielgruppe | Lehramt: Grundschule, Mittelschule | |||||||
Vorkenntnisse | Lineare Algebra und Analytische Geometrie, Geometrie I | |||||||
Inhalt | Reguläre und halbreguläre Polyeder, Eulerscher Polyedersatz, Dualität, Symmetriegruppe, Ornamente und Ornamentgruppen, Zerlegungen und Pflasterungen, sphärische Figuren. Ausgewählte geometrische Themen sollen von den Teilnehmern in Vorträgen behandelt und diskutiert werden. Über die behandelten Themen ist eine schriftliche Ausarbeitung anzufertigen. Eine regelmäßige Teilnahme an den Seminaren wird vorausgesetzt. | |||||||
Einschreibung | 1. Lehrveranstaltung | |||||||
Leistungsnachweis | Schein |
Dozent/Zeit/Ort | Lehmann | S | Do | 3. DS | WIL C104 | |||
Info-Seite zu allen Seminaren |
Schulpraktische Übungen | ||||||||
0+2+0 | F01/908 | |||||||
Zielgruppe | Lehramt: Mittelschule | |||||||
Vorkenntnisse | Grundkurs Didaktik der Mathematik | |||||||
Inhalt | Planung, Durchführung und Auswertung von Mathematikunterricht | |||||||
Einschreibung | - | |||||||
Leistungsnachweis | Schein |
Dozent/Zeit/Ort | Ruprecht | Ü | Di | vormittags | ||||
siehe Information der Professur für Didaktik |