Introduction to data management

with applications in hydrobiology

david.kneis@tu-dresden.de

TU Dresden, Institute of Hydrobiology

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

Outline

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

Motivation Typical sources of data

Monitoring

(e.g. water quality recorded over time)

Snapshot sampling (e.g. abundance of river bed organisms)

Experiments

(e.g. response of system to treatment; with replication)

Model outputs (e.g. scenario or sensitivity analysis)

- the key to efficient data analysis
- avoids inconsistency / loss of information
- ensures re-usability by others (and yourself at a later time)
- ► a must for serious research (traceability of results)
- enables efficient version control and archiving

Investment in good data management always pays out.

- 1. Arranging data in tables with proper layout
- 2. Selecting a software for data storage and manipulation
- 3. Understanding operations on tables
 - ▶ merging, filters, aggregation
- 4. Knowing how to create inputs for specific analysis
 - plotting, statistical tests

- 1. Arranging data in tables with proper layout
- 2. Selecting a software for data storage and manipulation
- 3. Understanding operations on tables
 - ► merging, filters, aggregation
- 4. Knowing how to create inputs for specific analysis
 - plotting, statistical tests

These will be the main subjects of this course.

Outline

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

numeric Weights, dimensions, concentrations, ...

integer Number of offspring, ordinal and nominal data (classes), ID

character nominal data (classes), ID

logical All kinds of dichotomous data

special types dates and times, images, ...

Basics about tables Tables

- Most common and versatile data container.
- Columns are vectors of a particular data type.
- A table row is, in general, not a vectors but a list (because types differ).

River	Station	Species	Abundance

Representation of tables in 🗬

data.frame Classic, commonly used, but 'ugly' defaults will likely confuse beginners

tibble Good alternative

data.table Another alternative

Basics about tables

print(x[1,])

Exercise: A simple data frame

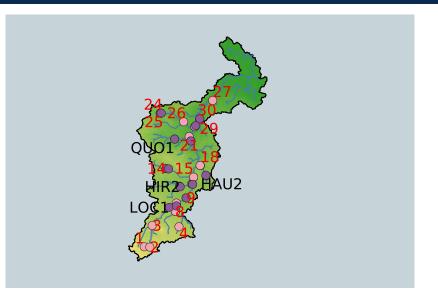
```
rm(list=ls())
options(stringsAsFactors=FALSE)
x <- read.table(file="data/lakedepth.txt",</pre>
 sep="\t", header=TRUE)
print(typeof(x))
                           # type of object
print(str(x))
                           # structure
print(lapply(x, typeof))
                           # type of columns
print(head(x))
                           # top rows
print(x$maxDepth)
                          # access a column
                           # ...
print(x["maxDepth"])
print(x[,"maxDepth"]) # ...
```

access a row

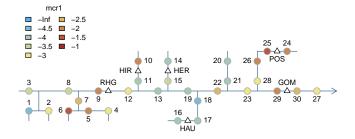
Motivation

Basics about tables

Example data set


How to arrange data properly

Software options for data storage


Working with data in base R

Topics not covered

Example data set Screening a river for AMR genes

Example data set Screening a river for AMR genes

Example data set Summary

16

We sampled ...

- water and bottom sediment
- at multiple locations
- repeatedly, in monthly intervals

to analyze DNA extracts for ...

- ► the abundance of various antibiotic resistance genes
- ► the abundance of marker genes (e.g. 16S rRNA)

and we took physical and technical replicates.

Example data set Why is this bad practice?

	badExample.ods - LibreOffice Calc			0	•
File	Edit View Insert Format Styles	Sheet Data To	ools Window Help		
Lib	eration Sans 👻 10 👻 🖪 🛛	<u>U</u> <u>A</u> · <u>M</u> ·		⊞ ₹ * ≛	*
	A	В	С	D	
1					
2	2017-01-10	1			7
3	upstream sediment	sul1	12400, 11000		A
4		tetC	5000, 5500		
5					
6	downstream sediment	sul1	10700, 8000		Ø
7		tetC	6500, 5500		fx
8					
9					
10	2017-02-15				
11	upstream sediment	sul1	13900, 9000		
12		tetC	3500, 7200		
13					
14	downstream sediment	sul1	8100, 7000		
15		tetC	6400, 11500		
16					
H 4	(▶ ▶ + Sheet1				

Example data set Why is this bad practice?

۲	badExample.ods - LibreOffice Calc			•	08
ile	Edit View Insert Format Styles	Sheet Data T	ools Window Help		
Lit	peration Sans 👻 10 🝸 🖪 🛽	<u>U</u> <u>A</u> • <u>M</u> •	18.0.015	四 〒米 半	,
	A	В	c	D T	
1					
2	2017-01-10				¥
3	upstream sediment	sul1	12400, 11000		A
4		tetC	5000, 5500		
5					
6	downstream sediment	sul1	10700, 8000		ø
7		tetC	6500, 5500		fx
8				-	1 X
9					
10	2017-02-15				
11	upstream sediment	sul1	13900, 9000		
12		tetC	3500, 7200		
13					
14	downstream sediment	sul1	8100, 7000		
15		tetC	6400, 11500		
16					
	· · · · · · · · · · · · · · · · · · ·				

- Mixed information in column and even cells
- Multiple values per cell
- Many sub-tables on spreadsheet
- Missing headers
- No software can read this out of the box
- ► Data become useless soon (missing headers and meta data)

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

Understand ...

- the main structure of a data set.
- ▶ how to split the data over separate tables.
- ▶ how individual tables are linked to each other.
- basic rules to achieve data integrity.

How to arrange data properly Data dimensions

Consider the example data set (page 16). What are the major dimensions of the data?

- Compartment (water, sediment)
- ► Space (2-dimensional, sampling locations)
- ► Time
- ► Gene

- Compartment (water, sediment)
- ► Space (2-dimensional, sampling locations)
- ► Time
- Gene Variable

- Compartment (water, sediment)
- ► Space (2-dimensional, sampling locations)
- ► Time
- Variable

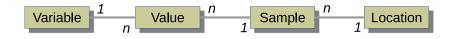
A very common case in hydro-biological field research.

- Compartment (water, sediment)
- ► Space (2-dimensional, sampling locations)
- ► Time
- Variable

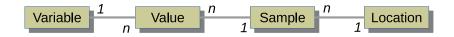
A very common case in hydro-biological field research.

If you are not sure about dimensions, imagine some plots of the data. Which item(s) would appear on the x-axis or in the legend?

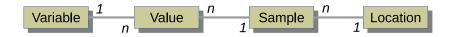
- ► Samples
- Locations
- Compartments
- Variables
- ► Values (measured numerical properties)


- Samples
- Locations
- Compartments (Dropped for simplicity)
- Variables
- ► Values (measured numerical properties)

- Samples
- Locations
- Compartments (Dropped for simplicity)
- Variables
- ► Values (measured numerical properties)

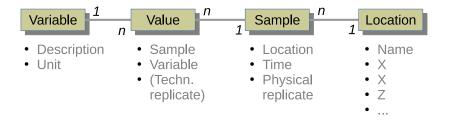

This leads us to the entity-relationship model (ERM) https://en.wikipedia.org/wiki/Entity-relationship_model

How to arrange data properly Entities and relations


How to arrange data properly Entities and relations

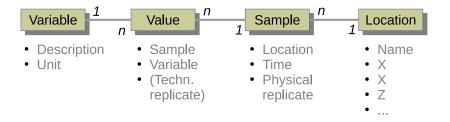
- Multiple values, each measured on one particular sample
- Multiple samples, each taken at one particular location
- Each value relates to just one variable
- ▶ ...

How to arrange data properly Entities and relations



- Multiple values, each measured on one particular sample
- Multiple samples, each taken at one particular location
- ► Each value relates to just one variable
- ▶ ...

Relations of type 1:1 and n:m also exist and those need to be resolved (not discussed here).


How to arrange data properly Attributes of entities

How to arrange data properly Attributes of entities

 \rightarrow Attributes become table columns

How to arrange data properly Tables and relations

35

values

sample	variable	repl	value
1	sul1	1	13800
1	tetC	2	5200
1	sul1	1	12300
1	tetC	2	4900
2	sul1	1	14700
2	tetC	2	3300
2	sul1	1	9800
2	tetC	2	11900

samples

id	time	location	repl
1	2017-11-09	A	1
2	2017-12-09	A	1

variables

id	description	unit
sul1	sulfonamide ARG	copies/ng
tetC	tetracyline ARG	copies/ng

locations

id	name	X	y
A	site A		
В	site B		

How to arrange data properly Tables and relations

36

Χ

values

sample	variable	repl	value
1	sul1	1	13800
1	tetC	2	5200
1	sul1	1	12300
1	tetC	2	4900
2	sul1	1	14700
2	tetC	2	3300
2	sul1	1	9800
2	tetC	2	11900

samples					locat	ions
id	time	location	repl		id	name
1	2017-11-09	A	1		A	site A
2	2017-12-09	A	1		В	site B
variables						
id	description	n uni:	t			
sul1	sulfonamide	ARG cop	ies/ng			
tetC	tetracyline	ARG cop:	ies/ng			

- ► No orphaned records (e.g. only samples from known locations)
- ► No ambiguity (e.g. two samples cannot share the same ID)

How to arrange data properly Additional constraints

37

values

sample	variable	repl	value
1	sul1	1	13800
1	tetC	2	5200
1	sul1	1	12300
1	tetC	2	4900
2	sul1	1	14700
2	tetC	2	3300
2	sul1	1	9800
2	tetC	2	11900

samples

id	time	location	repl
1	2017-11-09	A	1
2	2017-12-09	A	1
	•••		

variables

id	description	unit
sul1	sulfonamide ARG	copies/ng
tetC	tetracyline ARG	copies/ng

locations

id	name	х у
A	site A	
В	site B	

How to arrange data properly Additional constraints

values

sample	variable	repl	value
1	sul1	1	13800
1	tetC	2	5200
1	sul1	1	12300
1	tetC	2	4900
2	sul1	1	14700
2	tetC	2	3300
2	sul1	1	9800
2	tetC	2	11900

samples

id	time	location	repl
1	2017-11-09	А	1
2	2017-12-09	A	1

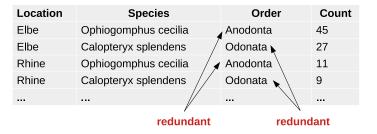
variables

id	description	unit
sul1	sulfonamide ARG	copies/ng
tetC	tetracyline ARG	copies/ng
	•••	

locations

id	name	x	у
A	site A		
В	site B		

- ► Each table needs a unique primary key (green color)
- ► Further columns may require uniqueness (blue color)
- Constraints can apply to a single column or to a set of columns


How to arrange data properly Summary of basic steps

- ► Identify entities, attributes, and relations
- Optimize tables following the rules of 'normalization'
- Introduce single-table constraints (primary key, unique, non-emptiness) for data integrity
- Ensure integrity of table relations (foreign key constraints)
- \rightarrow Look for courses and books on 'relational database design'

- Tables are strictly rectangular (well defined number of rows and columns)
- ► Data is self-contained (all relevant meta data included)
- Tables and columns have intuitive names
- ► No redundancies (eliminates risk of inconsistency)
- Limited number of explicit missing values (saves memory)
- ► Tables can be joined properly (no orphaned records)

41

Location	Species	Order	Count
Elbe	Ophiogomphus cecilia	Anodonta	45
Elbe	Calopteryx splendens /	Odonata 📐	27
Rhine	Ophiogomphus cecilia 🖉	Anodonta	11
Rhine	Calopteryx splendens	Odonata 🦕 🔪	9
	redundant	redund	lant

Ugly: Waste of storage space

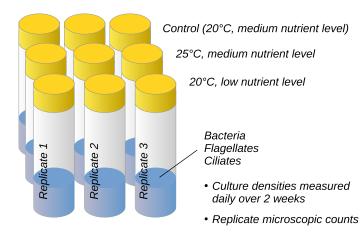
Location	Species	Order	Count
Elbe	Ophiogomphus cecilia	Anodonta	45
Elbe	Calopteryx splendens	Odonata 📐	27
Rhine	Ophiogomphus cecilia 🖉	Anodonta	11
Rhine	Calopteryx splendens	Odonata 🦕 🔪	9
	redundant	redund	lant

Ugly: Waste of storage space

Bad: Need to edit multiple rows to correct the order name of a single species (*Anodonta* is wrong)

Location	Species	Order	Count
Elbe	Ophiogomphus cecilia	Anodonta	45
Elbe	Calopteryx splendens	Odonata 📐	27
Rhine	Ophiogomphus cecilia 🖉	Anodonta	11
Rhine	Calopteryx splendens	Odonata 🦕 🔪	9
	redundant	redund	lant

- Ugly: Waste of storage space
- **Bad:** Need to edit multiple rows to correct the order name of a single species (*Anodonta* is wrong)
- Evil: Danger of creating inconsistency


Location	Species	Order	Count	
Elbe	Ophiogomphus cecilia	Anodonta	45	
Elbe	Calopteryx splendens	Odonata	27	
Rhine	Ophiogomphus cecilia 🖉	Odonata	11	
Rhine	Calopteryx splendens //	Odonata	9	
inconsistent				

Bad and evil often go together ...

Location		ID_Species	Count					
Elbe		1	45					
Elbe		2	27					
Rhine		1	11					
Rhine	e	2	9					
ID		Species	Order					
1	Oph	iogomphus cecilia	Odonata					
2	Calc	pteryx splendens	Odonata					

- Redundancy eliminated
- Inconsistency prevented by database design

Propose a database design for this situation

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

49

- Relational database client-server software operated with the structured query language (SQL)
- 'Loose' collections of tables
 - Spreadsheet software
 - Delimited text files

Software options SQL data bases

Pro

- Takes care of data integrity (implements tables + constraints)
- ► Simultaneous editing by multiple users (server + clients)
- ► Optimized for huge amounts of data (e.g. fast search)

Software options SQL data bases

Pro

- ► Takes care of data integrity (implements tables + constraints)
- ► Simultaneous editing by multiple users (server + clients)
- ► Optimized for huge amounts of data (e.g. fast search)

Cons

- Needs special software
- ► Need to learn SQL
- Needs maintenance

Software options SQL data bases

Pro

- ► Takes care of data integrity (implements tables + constraints)
- ► Simultaneous editing by multiple users (server + clients)
- ► Optimized for huge amounts of data (e.g. fast search)

Cons

- Needs special software
- ► Need to learn SQL
- Needs maintenance
- \rightarrow Gold standard but overkill for small projects

Software options Spreadsheet software

Pro

- Convenient data editing and viewing
- ► Some built-in query features (auto filter, pivot tables)

Software options Spreadsheet software

Pro

- Convenient data editing and viewing
- ► Some built-in query features (auto filter, pivot tables)

Cons

- Unsafe (no way to implement table constraints)
- Not suitable for version control or archiving
- ► Size limitations (e.g. number of table rows)
- Software incompatibilities

Software options Spreadsheet software

Pro

- Convenient data editing and viewing
- ► Some built-in query features (auto filter, pivot tables)

Cons

- Unsafe (no way to implement table constraints)
- ► Not suitable for version control or archiving
- ► Size limitations (e.g. number of table rows)
- Software incompatibilities
- \rightarrow For small single-user projects

Software options Delimited text files

Pro

- ▶ Maximum portability (spreadsheet, R, GIS, SQL databases, ...)
- Limited multi-user access through version control systems (e.g. git, svn)
- Hard to destroy files

Software options Delimited text files

Pro

- ▶ Maximum portability (spreadsheet, R, GIS, SQL databases, ...)
- Limited multi-user access through version control systems (e.g. git, svn)
- Hard to destroy files

Cons

Unsafe (table constraints to be implemented independently) see, e.g. https://github.com/dkneis/tabular

Software options Delimited text files

Pro

- ▶ Maximum portability (spreadsheet, R, GIS, SQL databases, ...)
- Limited multi-user access through version control systems (e.g. git, svn)
- Hard to destroy files

Cons

- Unsafe (table constraints to be implemented independently) see, e.g. https://github.com/dkneis/tabular
- \rightarrow My favorite for typical projects

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

Working with data in base R Loading the plain text 'database'

```
rm(list=ls())
options(stringsAsFactors=FALSE)
# convenience function for reading delimited text
rd <- function(f, ...) {
    read.table(file=f, sep="\t", header=TRUE, ...)
}
# load individual tables as data frames
locations <- rd("data/amr_locations.txt")</pre>
```

variables <- rd("data/amr_variables.txt")
samples <- rd("data/amr_samples.txt")</pre>

```
values <- rd("data/amr_values.txt")</pre>
```

Working with data in base R Checking data integrity

example: test for violation of primary key constraint
if (any(duplicated(samples[,"id"])))
stop("duplicate sample identifiers")

```
# example: test for violation of unique constraint
coord <- c("x","y")</pre>
```

if (nrow(unique(locations[,coord])) < nrow(locations))
 stop("multiple locations with identical coordinates")</pre>

example: test for violation of foreign key constraint
if (!all(values[,"sample"] %in% samples[,"id"]))
stop("values linked to unknown samples")

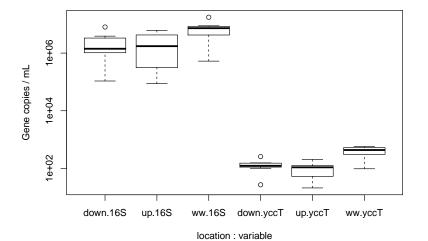
Serious work requires ALL constraints to be checked!

Working with data in base R Joining tables

```
# join two tables with 'merge'
values <- merge(
  x=values,
  y=samples,
  by.x="sample", # foreign key field in 'values'
  by.y="id", # primary key field in 'samples'
  suffixes=c(".tech",".phys")
)</pre>
```

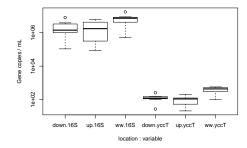
print(head(values))

Working with data in base R Joining tables


```
# join two tables with 'merge'
values <- merge(</pre>
 x=values.
 y=samples,
  by.x="sample", # foreign key field in 'values'
 by.y="id", # primary key field in 'samples'
 suffixes=c(".tech",".phys")
print(head(values))
```

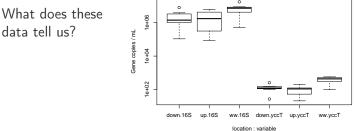
Check the help page of the 'merge' function

```
# inspect first records
print(head(values))
```


```
# example of using a function with formula interface;
# let's compare concentrations of bacterial marker genes
boxplot(
   formula=value ~ location + variable,
   data=values,
   subset=values[,"variable"] %in% c("16S","yccT"),
   log="y",
   ylab="Gene copies / mL"
)
```

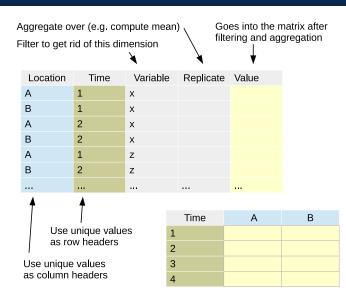
Working with data in base R Working with the 'long table' format

Working with data in base R Working with the 'long table' format


What does these data tell us?

66

Working with data in base R Working with the 'long table' format


- ► Wastewater effluent causes (moderate) microbial pollution.
- ▶ Particularly true for *E. coli*, a member of gut communities.
- Statistical significance?

Working with data in base R Reshaping: long \rightarrow wide

Location	Time	Variable	Replicate	Value
А	1	х		
В	1	х		
А	2	х		
В	2	х		
А	1	z		
В	2	Z		

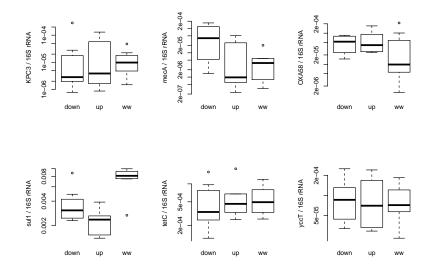
	Time	Location A	Location B
Make data	1		
2-dimensional	2	Data from	column
	3	"value"	
(paired observations)	4		

Working with data in base R Reshaping: long \rightarrow wide

Working with data in base R 'Wide format' makes pairs explicit

```
library(reshape2)
                            # functions for reshaping
keep <- which(values[,"variable"]=="yccT") # filter</pre>
vccT <- acast(</pre>
 formula= time ~ location, # set row + column headers
 data= values[keep,], # apply filter
 fun.aggregate= mean, # aggregate
 value.var= "value" # define matrix content
print(yccT)
# Signed rank test
wilcox.test(x=yccT[,"ww"], y=yccT[,"up"], paired=TRUE)
# Rank sum test (would have worked without reshape)
wilcox.test(x=yccT[,"ww"], y=yccT[,"up"], paired=FALSE)
```

```
# note 'dcast' instead of 'acast'; two row headers
tmp <- dcast(location + time ~ variable, data=values,
    value.var="value")
print(head(tmp))</pre>
```


```
# normalize gene abundances using info on 16S rRNA
genes <- c("KPC3", "mecA", "OXA58", "sul1", "tetC", "yccT")
for (g in genes)
  tmp[,g] <- tmp[,g] / tmp[, "16S"]</pre>
```

```
# back-transformation to 'long format'
values <- melt(tmp, id.vars=c("location","time"))
values$variable <- as.character(values$variable)</pre>
```

Working with data in base R Some custom plotting

```
# relative gene abundances in sub-figures
par(mfrow=c(2, ceiling(length(genes)/2)))
for (g in genes) {
 z <- boxplot(
    formula=value ~ location,
    data=values,
    subset=values[,"variable"] == q,
   log="v",
    xlab="", ylab=paste0(g," / 16S rRNA"),
    axes=FALSE
  axis(1, at=1:length(z$names), labels=z$names, lwd=0)
 axis(2)
par(mfrow=c(1,1))
```

Working with data in base R Some custom plotting

Motivation

Basics about tables

Example data set

How to arrange data properly

Software options for data storage

Working with data in base R

Topics not covered

Some useful packages

RODBC Direct interaction with SQL databases

readODS Import spreadsheets created with LibreOffice

readxl Import spreadsheets created with ... (guess)

Topics not covered Modern data processing in R

- There is a trend to use high-level packages like tidyr, dplyr, ggplot
- ► I recommend to learn base R first
- ▶ ... and you may often find it sufficient