
Introduction to

–
A language and environment for statistical computing

david.kneis @ tu-dresden.de

ANSWER ITN course, Dresden, September 2016

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

Introduction

About this course

.

3

I An appetizer, which might not suite everybody’s taste

I A pragmatic introduction, that intentionally omits details

Introduction

What is R?

.

4

I A language and environment for statistical computing

I A multi-purpose scripting language

I A free, cross-platform, open-source software

I A project with many contributors

https://www.r-project.org/

https://www.r-project.org/

Introduction

Reasons to learn R

.

5

I Process raw data into final results through scripts
→ Transparent, repeatable, re-usable

I Wide spectrum of (statistical) methods
→ Many available by default
→ ≈ 9000 add-on packages
→ Can code on your own

I Production of high-quality graphics

I Large community
→ Web search brings up the answer to most questions

Introduction

Reasons to learn R

.

6

I Process raw data into final results through scripts
→ Transparent, repeatable, re-usable

I Wide spectrum of (statistical) methods
→ Many available by default
→ ≈ 9000 add-on packages
→ Can code on your own

I Production of high-quality graphics

I Large community
→ Web search brings up the answer to most questions

Introduction

Reasons to learn R

.

7

I Process raw data into final results through scripts
→ Transparent, repeatable, re-usable

I Wide spectrum of (statistical) methods
→ Many available by default
→ ≈ 9000 add-on packages
→ Can code on your own

I Production of high-quality graphics

I Large community
→ Web search brings up the answer to most questions

Introduction

Reasons to learn R

.

8

I Process raw data into final results through scripts
→ Transparent, repeatable, re-usable

I Wide spectrum of (statistical) methods
→ Many available by default
→ ≈ 9000 add-on packages
→ Can code on your own

I Production of high-quality graphics

I Large community
→ Web search brings up the answer to most questions

Introduction

R terminal

.

9

Introduction

R terminal: How to ...

.

10

Quit an R session
I Type q() + Enter

Get help on method known by name
I Type ? followed by name
I Example: ?runif

I Press q to exit help

Start help in web browser
I Type help.start()

Repeat entered commands
I Press ↑ key

Interrupt a computation
I Try Ctrl+C or ESC

Introduction

Ways to interact with R

.

11

1. Enter commands at the R prompt

2. Put chain of commands in a text file (= ’script’)
– Copy & paste into terminal
– Process file contents using R’s source() function

3. Use dedicated development environment, e. g. Rstudio

4. Process R script as a batch job

We will use approaches 1 & 2 during the course

Introduction

Install files for this course

.

12

1. Open the link written on white board

2. Navigate to section ’R-related material’

3. Download the ’Answer16’ course material for your operating
system (blue colored link)

4. Save the archive ’rintro.zip’ into a folder of your choice
e. g. C:\Users\yourname\Documents

e. g. /home/yourname/answer

5. Unzip (right click in file browser)

If this fails, please request an off-line copy on USB stick.

Introduction

Install files for this course

.

13

Introduction

Running a script I: Copy & paste

.

14

1. Try to open ’0_test.r’ located in folder ’code’

2. If the file doesn’t open out-of-the-box, associate the file
extension ’.r’ with your preferred editor

3. Copy & paste the file contents into the R terminal
→ Quick way is Ctrl+A, Ctrl+C, Ctrl+V

Introduction

Running a script II

.

15

Type something like the following into the R terminal

setwd("C:/Users/Yourname/Documents/rintro/code")

getwd()

I Adapt the file path according to your work folder first

I On Windows: Replace any backslash ’\’ in path by ’/’

Then, type the following to run the test script

source("0_test.r", echo=FALSE, print.eval=TRUE)

Introduction

How to run code from this presentation

.

16

Option 1 Type yellow-shaded text into R terminal

→ Slow

Option 2 Copy yellow-shaded text from ’rintro.pdf’

→ Selecting text may be a hassle

Option 3 Copy from respective ’.r’ file in folder ’code’

Option 4 Run the respective ’.r’ file using source()

→ Insert print() and stop() as necessary

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

R language basics

Ingredients of a script

.

18

Variables Store data under a name

Functions Produce output (data) from some input

Control structures Condition testing and iteration

Comments Text following a # character

x <- runif(1) # assigns a random number to variable 'x'
if (x > 0.5) # test a condition

print(x) # call to 'print' function

R language basics

Variables

.

19

Name Letter, followed by letters, digits, ’ ’, period

Type numeric, logical, character, list, factor
(special values: NA, NaN, Inf, NULL)

Length

Dimension

R language basics

Variables

.

20

Assignment to scalar variables

x <- 3.1415 # numeric

x <- "E. coli" # character (overwrites old value)

x <- TRUE # logical

x <- list(id=1, name="E. coli", rodShaped=TRUE) # list

Info about a variable

print(x) # print value

typeof(x) # returns the type

is.list(x) # type check (is.numeric, is.character, ...)

str(x) # structure; useful for large lists

R language basics

Variables

.

21

Vector constructors I: Frequently used

x <- seq(from=0, to=2, by=0.25) # numeric sequence

x <- 1:5 # integer sequence

x <- rep(0, times=3) # replication

Vector constructors II: Concatenation

x <- c("Athens", "Paris", "Rome") # vector of strings

x <- c(red=255, green=0, blue=128) # elements named

Some vector-related functions

length(x) # number of elements

names(x) # element names

R language basics

Variables

.

22

Vector subsetting I: By position

x[1] # 1st element

x[1:2] # using a vector of positions

Vector subsetting II: By name

x["red"] # single element

x[c("blue","red")] # using a vector of names

Vector subsetting III: By mask

x[x > 0] # logical mask

x[which(x > 0)] # a more explicit alternative

R language basics

Variables

.

23

Matrix constructors I: General method

x <- matrix(1:6, nrow=2, ncol=3, byrow=FALSE)

Matrix constructors II: Merging of column vectors

x <- cbind(temp= c(0, 10, 20), # 1st column

rate= c(0, 0.2, 0.4)) # 2nd column

Matrix constructors III: Merging of row vectors

x <- rbind(

tap= c(NO3= 0.5, NH4= 0, O2=12), # 1st row

river= c(NO3= 5, NH4= 1, O2=10),

WWTP= c(NO3= 10, NH4= 10, O2= 3))

R language basics

Variables

.

24

Matrix attributes

ncol(x) # number of columns

nrow(x)

colnames(x) # column names

rownames(x)

Matrix subsetting

x[1,] # 1st row (vector)

x[, 1] # 1st column (vector)

x[1, 1] # top left element (scalar)

x[1:2, 2:ncol(x)] # sub-matrix

x[x[,"O2"] > 5, "O2"] # subset by name / logical mask

R language basics

Variables

.

25

Data frame

I A special type to store tabular data

I Use if columns differ in type (matrix won’t fit then)
I A data frame is basically a list where ...

I each element is a column vector
I all those vectors are of common length

x <- data.frame(

element= c("C", "Si", "N", "P"),

group= c(4, 4, 5, 5),

mass= c(12.01, 28.09, 14.01, 30.97)

)

R language basics

Variables

.

26

Data frame treated as matrix

ncol(x) # also 'nrow(x)'
colnames(x) # also 'rownames(x)'
x[,3] # last column, access by index

x[,ncol(x)] # as above

x[,"mass"] # last column, access by name

x[1,] # first row, returns a list!

Data frame treated as a list

names(x) # same as 'colnames(x)'
x$element # extract column

R language basics

Variables

.

27

Summary of important data structures

vector Holds multiple values of equal type

→ scalars are vectors of length 1

matrix like above, but arranged in 2 dimensions

array like above, used for > 2 dimensions

list Holds values that differ in type

data.frame List type, dedicated to tabular data

R language basics

Operators

.

28

Numeric (+ - * / ^)

x <- 1:10

x * 2 # each element multiplied with scalar

x * x # operands of same length: works element-wise

Matrix multiplication

x <- matrix(1:6, ncol=3)

y <- matrix(1:6, ncol=2, byrow=TRUE)

x %*% y

R language basics

Operators

.

29

Comparisons (> < >= <= == !=)

x <= 5 # comparison for each element

!(x == 5) # negation, same as 'x != 5'

Logical AND / OR

x <- c(TRUE, FALSE)

y <- c(FALSE, TRUE)

x & y # element wise AND

x | y # element wise OR

R language basics

String manipulation

.

30

Concatenation

paste("use", "R", sep="") # 'sep' specifies the glue

paste("matrix is of size", # auto-converts numbers

nrow(x), "x", ncol(x))

Substrings

substring("function", 1, 3)

Pattern matching and substitution

?regexpr

R language basics

Flow control

.

31

Conditional execution I: Pure if

x <- runif(1) # single random number, range [0,1]

if (x > 0.5) { # logical statement

print("greater") # executed if TRUE

} # { } define a block of statements

Conditional execution II: Multiple branches

if (x > 0.5) {

print("greater")

} else if (x < 0.5) { # optional alternative condition(s)

print("less")

} else { # if all conditions are FALSE

print("equal") # very unlikely to be printed ever

}

R language basics

Flow control

.

32

Iterating over elements of a vector

x <- 1:8

for (i in x) { # i cycles through the elements of x

print(2 ^ i)

}

Repeated execution

x <- 1

while (x > 0.1) { # (non)-exit condition

print(x)

x <- runif(1)

}

R language basics

Functions

.

33

Definition
foo: Given name, x: Formal argument(s), if any

foo <- function(x) { # single argument function

lowest <- min(x) # processing of arguments

highest <- max(x) # + use of local variables

c(lowest, highest) # return value

} # closes body

Function call
Value of actual argument y passed to formal arg. x

y <- rnorm(n=100, mean=0, sd=1) # sample from N(0,1)

foo(y) # same as range(y)

R language basics

Functions

.

34

I Do not reference variables from the calling environment inside
a function. Pass their values via dedicated formal arguments!

I This makes code safer and more re-usable.

bad <- function (x) { x * a } # origin of 'a' not obvious

a <- 2

bad(3)

I Do not ignore this advice until you learned R’s scoping rules.

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

Data import and plotting

Example data

.

36

Heat pump

Data import and plotting

Example data

.

37

Data import and plotting

Example data

.

38

Recorded variables

date YYYY-MM-DD

heat Heat extracted from ground (kWh)

power Electric power consumed by heat pump (compressor, hy-
draulic pumps) and all other domestic appliances (kWh)

Data import and plotting

Data import

.

39

?read.table

Reading delimited text

dat <- read.table(file="../data/heatpump.txt",

sep="\t", header=TRUE) # TAB-delim.

print(dat[1:3,], row.names=FALSE) # top rows

date heat power

2015-02-04 45 16

2015-02-06 45 16

2015-02-09 42 15

I One can also read from ”clipboard” or pass an URL

Data import and plotting

Basic inspection

.

40

number of records

nrow(dat)

[1] 35

sum over rows

colSums(dat[,2:3])

heat power

1081 391

data range of a vector

range(dat$power)

[1] 4 16

summary(dat$heat) # summary for numeric data

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.00 24.00 32.00 30.89 38.00 46.00

Data import and plotting

Histogram

.

41

hist(dat$heat, main="")

dat$heat

F
re

qu
en

cy

0 10 20 30 40 50

0
2

4
6

8

Data import and plotting

Scatter plot

.

42

plot(x=dat$heat, y=dat$power)

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●
●

●
●

●
●●

●

●
●

●

10 20 30 40

4
8

12
16

dat$heat

da
t$

po
w

er

Data import and plotting

Simplified access to columns

.

43

with(dat, {

plot(x=heat, y=power)

})

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●
●

●
●

●
●●

●

●
●

●

10 20 30 40

4
8

12
16

heat

po
w

er

Data import and plotting

Adding a derived column

.

44

dat$year <- as.numeric(substr(dat$date,1,4))

print(dat[1:3,], row.names=FALSE)

date heat power year

2015-02-04 45 16 2015

2015-02-06 45 16 2015

2015-02-09 42 15 2015

Data import and plotting

Labels, colors, legend, ...

.

45

Function to assign colors to years; vector-valued

f <- function(x) {

col <- rep("black", length(x))

col[x == 2015] <- "steelblue"

col[x == 2016] <- "darkorange"

col

}

plot(x=dat$heat, y=dat$power, pch=16, col=f(dat$year),

xlab="Extracted heat (kWh)", ylab="Power (kWh)")

legend("topleft", bty="n", pch=16, col=f(range(dat$year)),

legend=range(dat$year))

Data import and plotting

Labels, colors, legend, ...

.

46

Labels, colors, legend, ...

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

10 20 30 40

4
6

8
10

14

Extracted heat (kWh)

P
ow

er
 (

kW
h)

●

●

2015
2016

Data import and plotting

Important methods for plotting

.

47

?plot # primary plot method

?barplot # often used high-level methods

?boxplot

?points # add data to existing plot

?lines

?polygon

?legend # legend

?text # text labels; also 'mtext'
?par # fine-tune settings

Data import and plotting

More fancy plot examples

.

48

Simulated dynamics of NH+
4

(mmol L−1) in a lake sediment

80
.2

5° 86
°

19°

23.75°

Sal

Kes Kan

Tik

Mun

Hir

River basin with remote sensing grid

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

Comparison of two samples’ means

Example data

.

50

Height of trees with different exposure to sunlight

Comparison of two samples’ means

Data import

.

51

trees <- read.table(file="../data/trees.txt",

sep="\t", header=TRUE)

print(trees[1:3,], row.names=FALSE) # rows 1-3

exposure height

North 135

North 118

North 121

exposure ’North’ or ’South’, interpreted as factors

height Plant height (cm)

Comparison of two samples’ means

Histograms and means

.

52

par(mfrow=c(1,2)) # 2 plots/row

with(trees, {

hist(height[exposure=="North"], main="")

hist(height[exposure=="South"], main="")

tapply(height, exposure, mean) # Group means

})

height[exposure == "North"]

F
re

qu
en

cy

80 100 130

0
2

4
6

8

height[exposure == "South"]

F
re

qu
en

cy

100 130 160

0
2

4
6

North South

113.5714 121.4000

Comparison of two samples’ means

Visual check for normality

.

53

par(mfrow=c(1,2)) # 2 plots/row

with(trees, {

for (group in unique(exposure)) {

qqnorm(height[exposure == group], main="")

qqline(height[exposure == group])

legend("topleft", bty="n", legend=group)

}

})

●

●
● ●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

−2 0 1 2

90
11

0

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

North
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

−1 0 1

10
0

13
0

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

South

Comparison of two samples’ means

Concepts of testing

.

54

Null hypothesis, H0 Hypothesis you try to reject, typically one of

– sample a drawn from same population as b

– variable a is unrelated to variable b

Alt. hypothesis, Ha Experimental hypothesis; Opposite of H0

Significance level, α Tolerated probability of incorrect rejection of H0;
often 0.05

p-value Probability of getting the observed (or more ex-
treme) result if H0 was true.

I If p < α we reject H0. There is ’reasonable evidence’ for Ha.

I No significance: Either H0 is true or sample size is too small.

I Significant does not necessarily mean relevant.

Comparison of two samples’ means

Concepts of testing

.

55

Probabilities of correct decisions and errors

True hypothesis

Accepted
hypothesis

H0 Ha

H0 1− α β

Ha α 1− β

I Probability α (’false positive’) equals chosen level of signif.

I Probability β (’false negative’) depends on α, sample size,
type of test

I Can only minimize α or β, → Problem-specific choice

I Analysis of ’power’ (1− β) is important aspect of study design

Comparison of two samples’ means

Performing the test

.

56

?t.test

Without checking / assuming equal variance

t.test(height ~ exposure, data=trees)

Welch Two Sample t-test

data: height by exposure

t = -1.7106, df = 29.341, p-value = 0.0977

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-17.183696 1.526553

sample estimates:

mean in group North mean in group South

113.5714 121.4000

Comparison of two samples’ means

Interpretation of p-value

.

57

Welch Two Sample t-test

data: height by exposure

t = -1.7106, df = 29.341, p-value = 0.0977

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-17.183696 1.526553

sample estimates:

mean in group North mean in group South

113.5714 121.4000

I p > 0.05: We can’t reject H0 at the 5% level.

I Note that the 95% CI (refers to the difference in means)
includes the value of zero

Comparison of two samples’ means

Power analysis

.

58

Power (1− β) is the probability of detecting an existing effect

?power.t.test

Typical applications

I How large is 1− β for a particular test problem?

I What is the required sample size n to achieve a certain power
if α is set and characteristics of the samples are known?

Comparison of two samples’ means

Power analysis

.

59

with(trees, {

x <- power.t.test(n=seq(from=5, to=100, by=1),

delta= diff(tapply(height, exposure, mean)),

sd= mean(tapply(height, exposure, sd)),

sig.level=0.05, power=NULL)

plot(xn, xpower, type="l", xlab="n", ylab="Power")

})

20 40 60 80 100

0.
2

0.
6

1.
0

n

P
ow

er

Comparison of two samples’ means

Power analysis

.

60

Standard deviation

D
iff

er
en

ce
 in

 m
ea

ns

 5

 1
0

 50

 100

 500

 1000

5 10 15 20

2
4

6
8

10
14

Required n per group if α=0.05, β=0.05

Red lines refer
to tree data

Comparison of two samples’ means

Power analysis

.

61

Code to produce the contour plot on previous slide

delta_mu= seq(1, 15, 1) # Assumed differences in means

sdev= seq(1, 20, 1) # Assumed standard deviations

alpha= 0.05 # Level of significance

beta= 0.05 # Desired beta error (1-power)

Empty matrix to store required sample size

n <- matrix(NA, ncol=length(delta_mu), nrow=length(sdev),

dimnames=list(sdev, delta_mu))

Comparison of two samples’ means

Power analysis

.

62

Compute cells

for (icol in 1:ncol(n)) { # iterate over columns

for (irow in 1:nrow(n)) { # iterate over rows

n[irow,icol] <- power.t.test(n=NULL,

delta=as.numeric(colnames(n)[icol]),

sd=as.numeric(rownames(n)[irow]),

sig.level=alpha, power=1-beta)$n

}

}

Comparison of two samples’ means

Power analysis

.

63

Create contour plot from matrix (log scale)

levels= log10(c(5,10,50,100,500,1000))

contour(x=as.numeric(rownames(n)),

y=as.numeric(colnames(n)), z=log10(n),

xlab="Standard deviation", ylab="Difference in means",

levels=levels, labels=10^levels, labcex=1)

mtext(substitute(paste("Required n per group if ",

alpha,"=",a,", ",beta,"=",b), list(a=alpha, b=beta)))

Highlight required sample size for tree problem

abline(h=with(trees, diff(tapply(height, exposure,

mean))), col="red", lty=2)

abline(v=with(trees, mean(tapply(height, exposure,

sd))), col="red", lty=2)

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

Simple linear regression

Structure of linear models

.

65

Linear model y = a + b1 · x1 + b2 · x2 . . .+ bn · xn + ε

y Dependent variable; response

x Independent variables; predictors

a Intercept

b Coefficients for predictors; slopes

ε Random error; residuals

Simple case y = a + b · x + ε

Simple linear regression

Example data

.

66

Electric conductance vs. salt concentration

Simple linear regression

Data import / preparation

.

67

dat <- read.table(file="../data/salt.txt",

sep="\t", header=TRUE)

dat$cond <- 1 / dat$resist # get conductance

print(dat[1:3,], row.names=FALSE) # show top rows

salt resist cond

0 327 0.003058104

1 315 0.003174603

2 305 0.003278689

salt Dissolved amount of NaCl (unspecified unit)

resist Measured electrical resistance (Ω)

cond Electrical conductance (S)

Simple linear regression

Visual check for linearity

.

68

with(dat, plot(x=salt, y=cond))

●

●

●
●

●

●
●

●
●

●

●

0 2 4 6 8 10

0.
00

32
0.

00
38

salt

co
nd

Simple linear regression

Estimate coefficients (OLS)

.

69

fit <- lm(cond ~ salt, data=dat)

summary(fit)

Call:

lm(formula = cond ~ salt, data = dat)

Residuals:

Min 1Q Median 3Q Max

-5.472e-05 -1.648e-05 -3.245e-06 6.836e-06 7.541e-05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.079e-03 1.956e-05 157.44 < 2e-16 ***

salt 9.909e-05 3.305e-06 29.98 2.5e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.467e-05 on 9 degrees of freedom

Multiple R-squared: 0.9901, Adjusted R-squared: 0.989

F-statistic: 898.8 on 1 and 9 DF, p-value: 2.499e-10

Simple linear regression

Interpretation

.

70

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0030790 1.956e-05 157.40 8.556e-17

salt 0.0000991 3.305e-06 29.98 2.499e-10

Interpretation of coefficients

I Conductance of tap water is ≈ 3 mS

I Conductance increases by ≈ 0.1 mS per unit of added NaCl

Interpretation of p-values

I Null hypothesis (H0): Regression coefficients are zero.

I p-value: Probability of observing the data if H0 was true.

Simple linear regression

Plotting regression results

.

71

plot(dat$salt, dat$cond) # scatter

lines(dat$salt, predict(fit, interval="none")) # add line

fitted <- signif(coef(fit), 3) # extract

names(fitted) <- c("intercept", "slope") # coeff.

legend("topleft", bty="n", legend=paste(names(fitted),

fitted, sep=": "))

x <- data.frame(salt=pretty(dat$salt, 100))

confLim <- predict(fit, newdata=x, interval="conf")

predLim <- predict(fit, newdata=x, interval="pred")

for (lim in c("lwr", "upr")) {

lines(x$salt, confLim[,lim], lty=2)

lines(x$salt, predLim[,lim], lty=3)

}

Simple linear regression

Plotting regression results

.

72

●

●

●

●

●

●
●

●
●

●

●

0 2 4 6 8 10

0.
00

32
0.

00
36

0.
00

40

dat$salt

da
t$

co
nd

intercept: 0.00308
slope: 9.91e−05

Prediction limits (dotted)
For a specific X , the true Y is
within limits with p ≥ 1− α.

Confidence limits (dashed)
Regression line is within the
limits with p ≥ 1− α.

Default α is 0.05.

Simple linear regression

Confidence limits of coefficients

.

73

Standard method

confint(fit) 2.5 % 97.5 %

(Intercept) 3.034516e-03 0.0031229905

salt 9.161782e-05 0.0001065728

Simple bootstrap for comparison

library(boot)

f <- function(x, i) {

coef(lm(x$cond[i] ~ x$salt[i], data=x))}

cf <- boot(dat, f, R=1000)$t # 1000 x

t(apply(cf, 2, quantile, probs=c(0.025, 0.975)))

2.5% 97.5%

[1,] 3.061697e-03 0.0031182366

[2,] 9.317326e-05 0.0001040553

Simple linear regression

Assumptions and how to verify

.

74

1. Linear relation between predictor(s) and response
→ Inspect scatter plot

2. Independence of residuals, esp. in time-series data
→ Understand how data were produced
→ Check auto-correlation

3. Constant variance of residuals (Homoscedasticity)
→ Plot residuals over predicted values
→ Try transformation if necessary

4. Gaussian residuals
→ Check Q-Q-Plot

Simple linear regression

Inspection of residuals

.

75

par(mfrow=c(1,2)) # 2 plots/row

plot(predict(fit), residuals(fit), # Homoscedasticity?

xlab="Predicted", ylab="Residuals")

qqnorm(fit$residuals, main="") # Normal QQ plot

qqline(fit$residuals, col="red") # Through quartiles

●
●●

●●

●

●

●

●

●

●

0.0032 0.0038

−
4e

−
05

6e
−

05

Predicted

R
es

id
ua

ls

●
● ●

●●

●

●

●

●

●

●

−1.5 0.0 1.5

−
4e

−
05

6e
−

05

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Simple linear regression

Beyond simple linear regression

.

76

I Multiple linear regression
→ use lm with more than one predictor

I Generalized linear models
→ e. g. for non-numeric predictors or response
→ see glm

I Non-linear fitting
→ see nls, nlm, optim

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

Fitting an ODE model

Example problem

.

78

Objective: Find model parameters that minimize residuals

Fitting an ODE model

Data import

.

79

d <- read.table(file="../data/growth.txt",

sep="\t", header=TRUE)

print(d[1:3,], row.names=FALSE)

time dens

0.0 0.00261

0.5 0.00261

1.0 0.00361

time Hours after start of experiment

dens Optical density at 600 nm
– indicator of E . coli concentration in liquid culture
– relation is linear within observed range

Fitting an ODE model

Plot dynamics

.

80

par(mfrow=c(1,2))

plot(d$time, d$dens, xlab="Hour", ylab="OD_600", las=2)

plot(d$time, d$dens, log="y", xlab="Hour", ylab="", las=2)

●●●●●●●●●
●●●●

●●
●●
●●
●●
●●
●
●
●●
●●
●●
●●
●●●

●●●
●
●●●●●●●●●

0 5 10 15 20

0.01
0.02
0.03
0.04
0.05

Hour

O
D

_6
00

●●
●●●●

●●●
●
●●
●●
●
●●
●●
●●
●●
●●
●●●

●●●●
●●●●●●

●●●●●●●●●●●

0 5 10 15 20

0.005

0.010

0.020

0.050

Hour

Log-scale plot suggests delayed growth in early stage (lag phase)

Fitting an ODE model

Proposed differential eqn.

.

81

d
dtYa = g · Ya ·

(
1− Ya + Yi

K

)
+ w · Yi

d
dtYi = − w · Yi

Growth Resource ’Wakeup’

limitation

State variables

Ya Conc. of active cells

Yi Conc. of inactive cells

Parameters

g Max. growth rate (h−1)

w Wakeup rate (h−1)

K Carrying capacity

Note: Measured optical density reflects Ya(t) + Yi (t)

Fitting an ODE model

Methods I: Numerical integration

.

82

Numerical integration is required to obtain the dynamics Ya(t) and
Yi (t) from the given differential equations.

install.packages("deSolve") # install ODE solvers

library("deSolve") # load solvers

A function returning the derivatives must be passed to solver

model <- function(time, y, p) { # deSolve compliant

list(c(dYi = -p["w"] * y["Yi"], # y: state vector

dYa = p["w"] * y["Yi"] + # p: param. vector

p["g"] * y["Ya"] *

(1 - (y["Ya"] + y["Yi"]) / p["K"])

))

}

Fitting an ODE model

Methods II: Optimization

.

83

I Optimization means to minimize an objective function.

I Here, the objective function computes the sum of squared
residuals for a given set of model parameters.

Fitting an ODE model

Methods II: Optimization

.

84

Objective function

objFunc <- function(p, obs) {

get Ya(t) and Yi(t) for current param. (integration)

sim <- deSolve::ode(y=c(Yi=p[["Yi0"]], Ya=p[["Ya0"]]),

time=obs$time, func=model,

parms=c(w=p[["w"]], g=p[["g"]], K=p[["K"]]))

compare Ya(t) + Yi(t) to observations

sum((obs$dens - apply(sim[,2:3], 1, sum))^2)

}

I Vector of parameters is 1st arg., for compliance with optimizer

I Initial values of Ya, Yi estimated along with actual parameters

Fitting an ODE model

Methods II: Typical optimization issues

.

85

Discontinuities Objective function returns invalid result for
certain parameter values, e. g. zero-division

→ Need to use box-constraints

Non-identifyability – Few data with insufficient variability

– Colinearity of parameters

Local minima Solution is sensitive to initial guess

→ Needs clever estimate or stochastic search

Scaling required If parameters are of different magnitude

Fitting an ODE model

Initial guess

.

86

guess <- c(Yi0=0.001, Ya0=0.001, w=0.1, g=0.3, K=0.06)

I K can be estimated from plot (density at saturation)

I Sum Yi + Ya visible in plot as well (assume, e. g., 50:50)

I Reasonable first guess for w might be 1
2g

I g can be estimated from linear part of log-scale plot

Y (t1) = Y (t0) · e g(t1−t0) → g =
ln(Y (t1))− ln(Y (t0))

t1 − t0

Fitting an ODE model

Estimating the parameters

.

87

Optimization with box-constraints

fit <- optim(par=guess, fn=objFunc, gr=NULL, obs=d,

method="L-BFGS-B",

lower=c(Yi0=0, Ya0=0, w=0, g=0, K=0.04),

upper=c(Yi0=Inf, Ya0=Inf, w=Inf, g=Inf, K=0.08),

control=list(parscale=guess))

Essential check if used in a script

if (fit$convergence != 0)

stop("fitting failed")

Fitting an ODE model

Result

.

88

print(fit)

$par

Yi0 Ya0 w g K

0.0029460 0.0003339 0.0239800 0.4198000 0.0566100

$value

[1] 3.855324e-05

$counts

function gradient

49 49

$convergence

[1] 0

Fitting an ODE model

Result

.

89

Re-run model with best-fit parameters for plotting

par(mfrow=c(1,1))

with(as.list(fit$par), {

int <- deSolve::ode(y=c(Yi=Yi0, Ya=Ya0),

time=d$time, func=model, parms=c(w=w, g=g, K=K))

plot(d$time, d$dens, xlab="Hour", ylab="OD_600", las=2)

lines(int[,1], apply(int[,2:3], 1, sum))

legend("bottomright", bty="n", pch=c(1,NA),

lty=c(NA,1), legend=c("Observed", "Model"))

})

Fitting an ODE model

Result

.

90

●●●●●●●●●●●●●●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●

●
●

●●●●●●●●

0 5 10 15 20

0.01

0.02

0.03

0.04

0.05

Hour

O
D

_6
00

● Observed
Model

Fitting an ODE model

Need to fit growth rates?

.

91

Consider the R package written by Thomas Petzoldt

https://cran.r-project.org/package=growthrates

https://cran.r-project.org/package=growthrates

Outline

Introduction

Basics of the R language

Data import and plotting

Comparison of two samples’ means

Simple linear regression

Fitting an ODE model

Final remarks

Final remarks

General recommendations

.

93

I Keep data organized
→ learn the basics of data base design
→ always request and store meta data

I Increase efficiency and transparency by writing scripts
→ R is just one option
→ Use functions to facilitate re-use and debugging

I Plot your data, preferably in multiple ways

I Understand the meaning and limitations of p-values

I Only trust in transparent statistics

The ANSWER project has received fund-
ing from the European Union’s Horizon
2020 research and innovation programme
under the Marie Sk lodowska-Curie grant
agreement No 675530.

	Introduction
	Basics of the R language
	Data import and plotting
	Comparison of two samples' means
	Simple linear regression
	Fitting an ODE model
	Final remarks

