TECHNISCHE o
UNIVERSITAT r
DRESDEN »

Introduction to (\Rj

A language and environment for statistical computing
david.kneis @ tu-dresden.de

ANSWER ITN course, Dresden, September 2016

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

Introduction

About this course

» An appetizer, which might not suite everybody's taste

» A pragmatic introduction, that intentionally omits details

Introduction

What is R?

>

A language and environment for statistical computing

v

A multi-purpose scripting language

v

A free, cross-platform, open-source software

v

A project with many contributors

https://www.r-project.org/

https://www.r-project.org/

Introduction

Reasons to learn R

> Process raw data into final results through scripts
— Transparent, repeatable, re-usable

Introduction

Reasons to learn R

> Process raw data into final results through scripts
— Transparent, repeatable, re-usable

» Wide spectrum of (statistical) methods
— Many available by default
— =2 9000 add-on packages
— Can code on your own

Introduction

Reasons to learn R

> Process raw data into final results through scripts
— Transparent, repeatable, re-usable

» Wide spectrum of (statistical) methods
— Many available by default
— =2 9000 add-on packages
— Can code on your own

» Production of high-quality graphics

Introduction

Reasons to learn R

v

Process raw data into final results through scripts
— Transparent, repeatable, re-usable

v

Wide spectrum of (statistical) methods
— Many available by default

— =2 9000 add-on packages

— Can code on your own

v

Production of high-quality graphics

» Large community
— Web search brings up the answer to most questions

Introduction

R terminal

dkneis@falkenst

File Edit View Search Terminal Help
dkneis@falkenstein:~5 R

R wersion 3.3.1 (2016-86-21) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R 1s a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 1

Introduction

R terminal: How to ...

Get help on method known by name
i » Type 7 followed by name

File Edt View Search Terminal Help
akn

> Example: ?runif
> Press q to exit help

jeno()! for
)" fo

Start help in web browser
R e i gt » Type help .start ()

Repeat entered commands

Quit an R session
> Press ke
» Type q(O) + Enter Y

Interrupt a computation
» Try Ctrl4+C or ESC

Introduction

Ways to interact with R

1. Enter commands at the R prompt

2. Put chain of commands in a text file (= "script’)
— Copy & paste into terminal
— Process file contents using R’s source () function

3. Use dedicated development environment, e. g. Rstudio

4. Process R script as a batch job

We will use approaches 1 & 2 during the course

Introduction

Install files for this course

1. Open the link written on white board
2. Navigate to section 'R-related material’

3. Download the 'Answerl6’ course material for your operating
system (blue colored link)

4. Save the archive 'rintro.zip’ into a folder of your choice
e. g. C:\Users\yourname\Documents
e. g. /home/yourname/answer

5. Unzip (right click in file browser)

If this fails, please request an off-line copy on USB stick.

Introduction

Install files for this course

answer - fhome/dk

File Edit View Go Bookmarks Help

temp/answer

{ +
» [script
» [share
~ [temp
» [dia
» [dro
» [mai
» [nan
» [om
» i rdg
» [l rod:
» [shin
» [stb
» [test
» [irme
~ [tudd
b = ans

[. (]

Location: ';’home;’dkneis/temp,’answer

Name
~ |l rintro
~ [l code
0_test.r
1_language.r

v §

2_datalmportAndPlotting.r

3_twoSampleMeans.r

9

4_linearRegressionSimple.r

5_fittingODE.r
~ [l data
growth.txt
heatpump.txt
salt.bxt
trees.txt
[rintro.pdf

& rintro.zip 2.1 MB Zip archive

"rintro.zip" selected (2.1 MB), Free space: 53.3 GB

5
9
1
5

ize
3items
6 items
83 bytes
6.3kB
1.4kB
76 bytes
1.9kB
2.5kB
4 items
43 bytes
17 bytes
41 bytes
07 bytes
2.2 MB

Type

folder

folder

R Source File

R Source File

R Source File

R Source File

R Source File

R Source File

folder

plain text document
plain text document
plain text document
plain text document
PDF document

Introduction

Running a script |I: Copy & paste

1. Try to open 'O_test.r' located in folder 'code’

2. If the file doesn't open out-of-the-box, associate the file
extension '.r’ with your preferred editor

3. Copy & paste the file contents into the R terminal
— Quick way is Ctrl+A, Ctrl+C, Ctrl+V

Introduction

Running a script |l

Type something like the following into the R terminal

setwd("C:/Users/Yourname/Documents/rintro/code")
getwd ()

» Adapt the file path according to your work folder first

» On Windows: Replace any backslash "\" in path by '/’

Then, type the following to run the test script

source("O_test.r", echo=FALSE, print.eval=TRUE)

Introduction

How to run code from this presentation

Option 1 Type yellow-shaded text into R terminal
— Slow
Option 2 Copy yellow-shaded text from 'rintro.pdf’

— Selecting text may be a hassle

Option 3 Copy from respective .1’ file in folder 'code’

Option 4 Run the respective '.r’ file using source()

— Insert print () and stop() as necessary

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

R language basics

Ingredients of a script

Variables Store data under a name
Functions Produce output (data) from some input
Control structures Condition testing and iteration

Comments Text following a # character

x <- runif(1) # assigns a random number to variable 'x'
if (x > 0.5) # test a condition
print (x) # call to 'print' function

R language basics

Variables

Name

Type

Length

Dimension

Letter, followed by letters, digits, '_’, period

numeric, logical, character, list, factor
(special values: NA, NaN, Inf, NULL)

Vector of length 6

Matrix: 2 dimensions 3-dimensional array

R language basics

Variables

Assignment to

scalar variables

x <- 3.1415 # numeric
x <- "E. coli" # character (overwrites old value)
x <- TRUE # logical

x <- list(id=1, name="E. coli", rodShaped=TRUE) # list

Info about a variable

print (x)
typeof (x)
is.list(x)
str(x)

print value

returns the type

type check (is.numeric, is.character, ...)
structure; useful for large lists

R language basics

Variables

Vector constructors |: Frequently used

x <- seq(from=0, to=2, by=0.25) # numeric sequence
x <- 1:5 # integer sequence
x <- rep(0, times=3) # replication

Vector constructors |l: Concatenation

**

x <- c("Athens", "Paris'", "Rome") vector of strings
x <- c(red=255, green=0, blue=128) # elements named

Some vector-related functions

length(x) # number of elements
names (x) # element names

R language basics

Variables

Vector subsetting |: By position

x[1] # 1st element
x[1:2] # using a vector of positions

Vector subsetting Il: By name

x["red"] # single element
x[c("blue", "red")] # using a vector of names

Vector subsetting Ill: By mask

x[x > 0] # logical mask
x[which(x > 0)] # a more explicit alternative

R language basics

Variables

Matrix constructors |: General method

x <- matrix(1:6, nrow=2, ncol=3, byrow=FALSE)

Matrix constructors Il: Merging of column vectors

x <- cbind(temp= c(0, 10, 20), # 1st column
rate= c(0, 0.2, 0.4)) # 2nd column

Matrix constructors Ill: Merging of row vectors

x <- rbind(
tap= c(NO3= 0.5, NH4= 0, 02=12), # 1st row

river= c¢(NO3= 5, NH4= 1, 02=10),
WWTP= c¢(NO3= 10, NH4= 10, 02= 3))

R language basics

Variables

Matrix attributes

ncol (x) # number of columns
nrow(x)
colnames (x) # column names

rownames (x)

Matrix subsetting

x[1,] 1st row (vector)
x[, 1] 1st column (vector)
x[1, 1] top left element (scalar)

sub-matrix
subset by name / logical mask

x[1:2, 2:ncol(x)]
X[X[, ”02”] > 5’ ’IUQ”J

H R KR

R language basics

Variables

Data frame
» A special type to store tabular data
» Use if columns differ in type (matrix won't fit then)

» A data frame is basically a list where ...

» each element is a column vector
> all those vectors are of common length

x <- data.frame(
element= C(”C”, ”Sj_”, HNH, HPH)’
group= c(4, 4, 5, 5),
mass= ¢(12.01, 28.09, 14.01, 30.97)

R language basics

Variables

Data frame treated as matrix

ncol (x) also 'nrow(x)'
colnames (x) also 'rownames(x)'
x[,3] last column, access by index

x[,ncol(x)]
x[,"mass"]

x[1,]

as above
last column, access by name
first row, returns a list!

H OH R R K R

Data frame treated as a list

names (x) # same as 'colnames(x)'
x$element # extract column

R language basics

Variables

Summary of important data structures

vector Holds multiple values of equal type

— scalars are vectors of length 1

matrix like above, but arranged in 2 dimensions
array like above, used for > 2 dimensions
list Holds values that differ in type

data.frame List type, dedicated to tabular data

R language basics

Operators

Numeric (+ - * / 7)

x <= 1:10
X * 2 # each element multiplied with scalar
X * X # operands of same length: works element-wise

Matrix multiplication

x <- matrix(1:6, ncol=3)
y <- matrix(1:6, ncol=2, byrow=TRUE)
X h*¥hy

R language basics

Operators

Comparisons (> < >= <= == I=)
x <=5 # comparison for each element
I'(x == 5) # negation, same as 'x !=5'

Logical AND / OR

x <- c(TRUE, FALSE)
y <- c(FALSE, TRUE)
X &y # element wise AND
x|y # element wise OR

R language basics

String manipulation

Concatenation

paste("use", "R", sep="") # 'sep' specifies the glue
paste("matrix is of size", # auto-converts numbers
nrow(x), "x", ncol(x))

Substrings
substring("function", 1, 3)
Pattern matching and substitution

’regexpr

R language basics

Flow control

Conditional execution |: Pure if

x <- runif(1) # single random number, range [0,1]

if (x > 0.5) { # logical statement
print("greater") # executed if TRUE

F # { } define a block of statements

Conditional execution Il: Multiple branches

if (x > 0.5) {
print ("greater")

} else if (x < 0.5) { # optional alternative condition(s)
print("less")

} else { # if all conditions are FALSE
print ("equal") # very unlikely to be printed ever

}

R language basics

Flow control

Iterating over elements of a vector

x <- 1:8

for (i in x) { # i cycles through the elements of x
print(2 ~ i)

}

Repeated execution

x <- 1

while (x > 0.1) { # (non)-exit condition
print (x)
x <- runif(1)

}

R language basics

Functions

Definition
foo: Given name, x: Formal argument(s), if any

foo <- function(x) { # single argument function

lowest <- min(x) # processing of arguments
highest <- max(x) # + use of local variables
c(lowest, highest) # return value

F # closes body

Function call
Value of actual argument y passed to formal arg. x

y <- rnorm(n=100, mean=0, sd=1) # sample from N(0,1)
foo(y) # same as range(y)

R language basics

Functions

» Do not reference variables from the calling environment inside
a function. Pass their values via dedicated formal arguments!

» This makes code safer and more re-usable.
bad <- function (x) { x * a } # origin of 'a' not obvious

a <- 2
bad (3)

» Do not ignore this advice until you learned R's scoping rules.

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

Data import and plotting

Example data

Heat pump
3 Expansion valve
o 25°C)
5°C p [; Heating
35 °C system

8°C 6°C Compressor

LT Heat uptake

from soil / water

Data import and plotting

Example data 37

Data import and plotting

Example data

Expansion valve
3°C

o 25°C
5°C p C, Heating
35°C system
8°C 6°C Compressor

U Heat uptake

from soil / water

Recorded variables

date YYYY-MM-DD
heat Heat extracted from ground (kWh)

power Electric power consumed by heat pump (compressor, hy-
draulic pumps) and all other domestic appliances (kWh)

Data import and plotting

Data import

?“read.table
Reading delimited text

dat <- read.table(file="../data/heatpump.txt",
sep="\t", header=TRUE) # TAB-delim.
print(dat[1:3,], row.names=FALSE) # top rows

date heat power
2015-02-04 45 16
2015-02-06 45 16
2015-02-09 42 15

> One can also read from "clipboard” or pass an URL

Data import and plotting

Basic inspection

number of records [1] 35
nrow(dat)

sum over rows heat power

colSums(dat[,2:3]) 1081 391

data range of a vector (11 4 16

range (dat$power)

summary (dat$heat) # summary for numeric data
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.00 24.00 32.00 30.89 38.00 46.00

Data import and plotting

Histogram

hist (dat$heat, main="")

®
)
& o
@
T <
e
L«
o C 1 [1]
[I I I I 1
0 10 20 30 40 50

dat$heat

Data import and plotting

Scatter plot

plot (x=dat$heat, y=dat$power)

8 =)
°) o
— °
= o o ooo
q;') ﬁ — o o oo
&)) o
o = o o
* o 0o o o o000
© 0 — o o
©
< Lo
I I I I
10 20 30 40

dat$heat

Data import and plotting

Simplified access to columns

with(dat, {
plot(x=heat, y=power)

2 — o o
° o o
— o
o o ooo
— ﬁ — o o oo
(3] o o
g — o o
o 0o o o o000
e 0 - o o o o
< —| o
I I I I
10 20 30 40

heat

Data import and plotting

Adding a derived column

dat$year <- as.numeric(substr(dat$date,1,4))
print(dat[1:3,], row.names=FALSE)

date heat power year
2015-02-04 45 16 2015
2015-02-06 45 16 2015
2015-02-09 42 15 2015

Data import and plotting

Labels, colors, legend, ...

Function to assign colors to years; vector-valued
f <- function(x) {

col <- rep("black", length(x))

col[x == 2015] <- "steelblue"

col[x == 2016] <- "darkorange"

col

plot (x=dat$heat, y=dat$power, pch=16, col=f(dat$year),
xlab="Extracted heat (kWh)", ylab="Power (kWh)")

legend("topleft", bty="n", pch=16, col=f(range(dat$year)),
legend=range (dat$year))

Data import and plotting

Labels, colors, legend, ...

Labels, colors, legend, ...

|+ 2015 O
3 - 2016 .
= | e
2
N o _] .
g - .
5 o
o
© -
q- p—
I I I I
10 20 30 40

Extracted heat (kWh)

Data import and plotting

Important methods for plotting

?plot

?barplot
?boxplot

?points
?lines
?polygon

?legend
?text
?par

primary plot method

**

often used high-level methods

add data to existing plot

legend
text labels; also 'mtext'
fine-tune settings

Data import and plotting

More fancy plot examples

Simulated dynamics of NH Gl

(mmol L™1) in a lake sediment

NH4

-0.05 0.00

80.25°

depth
015 -0.10

-0.25 -0.20

2012

time

River basin with remote sensing grid

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

Comparison of two samples’ means

Example data

Height of trees with different exposure to sunlight

Comparison of two samples’ means

Data import

trees <- read.table(file="../data/trees.txt",
sep="\t", header=TRUE)
print (trees[1:3,], row.names=FALSE) # rows 1-3

exposure height
North 135
North 118
North 121

exposure 'North’ or 'South’, interpreted as factors
height Plant height (cm)

Comparison of two samples’ means

Histograms and means

par (mfrow=c(1,2)) # 2 plots/row
with(trees, {

hist (height [exposure=="North"], main="")

hist (height [exposure=="South"], main="")

tapply (height, exposure, mean) # Group means
P
©
©
> >
2 © 2 9«
(5] [
z < =
@ 2 North South
o * 113.5714 121.4000
o o
L LI O I I B
80 100 130 100 130 160

height[exposure == "North"] height[exposure == "South"]

Comparison of two samples’ means

Visual check for normality

par (mfrow=c(1,2)) # 2 plots/row
with(trees, {
for (group in unique (exposure)) {

-
o

Sample Quantiles

90 110

qqnorm (height [exposure == group], main="")
qqline (height [exposure == group])
legend("topleft", bty="n", legend=group)

(%]
g & 5

1 North _0° g - South
1 S =
u o 4
] Q2 7

£ o]
| 5
L N B § 2 T
-2 0o 1 2 -1 0 1

Theoretical Quantiles Theoretical Quantiles

Comparison of two samples’ means

Concepts of testing

Null hypothesis, Hy Hypothesis you try to reject, typically one of
— sample a drawn from same population as b
— variable a is unrelated to variable b

Alt. hypothesis, H, Experimental hypothesis; Opposite of Hy
Significance level, & Tolerated probability of incorrect rejection of Hy;
often 0.05

p-value Probability of getting the observed (or more ex-
treme) result if Hy was true.

» If p < o we reject Hy. There is 'reasonable evidence’ for H,.

» No significance: Either Hy is true or sample size is too small.

» Significant does not necessarily mean relevant.

Comparison of two samples’ means

Concepts of testing

Probabilities of correct decisions and errors

True hypothesis
| Ho H,
Ho 11—« ﬁ
Q 1-p

Accepted
hypothesis Ha

» Probability « ('false positive’) equals chosen level of signif.

» Probability 5 ('false negative') depends on «, sample size,
type of test

» Can only minimize « or 8, — Problem-specific choice

» Analysis of 'power’ (1 — /3) is important aspect of study design

Comparison of two samples’ means

Performing the test

?t.test
Without checking / assuming equal variance

t.test (height ~ exposure, data=trees)

Welch Two Sample t-test

data: height by exposure
t = -1.7106, df = 29.341, p-value = 0.0977
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-17.183696 1.526553
sample estimates:
mean in group North mean in group South
113.5714 121.4000

Comparison of two samples’ means

Interpretation of p-value

Welch Two Sample t-test

data: height by exposure
t = -1.7106, df = 29.341, p-value = 0.0977
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-17.183696 1.526553
sample estimates:
mean in group North mean in group South
113.5714 121.4000

» p > 0.05: We can't reject Hy at the 5% level.

» Note that the 95% Cl (refers to the difference in means)
includes the value of zero

Comparison of two samples’ means

Power analysis

Power (1 — (3) is the probability of detecting an existing effect

?power.t.test

Typical applications

» How large is 1 — 3 for a particular test problem?

» What is the required sample size n to achieve a certain power
if v is set and characteristics of the samples are known?

Comparison of two samples’ means

Power analysis

with(trees, {
x <- power.t.test (n=seq(from=5, to=100, by=1),
delta= diff (tapply(height, exposure, mean)),
sd= mean(tapply(height, exposure, sd)),
sig.level=0.05, power=NULL)
plot (xn, xpower, type="1", xlab="n", ylab="Power")
»

1.0

Power
0.6
|

0.2
|

20 40 60 80 100

Comparison of two samples’ means

Power analysis

Difference in means

Required n per group if 0=0.05, 3=0.05

Standard deviation

Red lines refer
to tree data

Comparison of two samples’ means

Power analysis

Code to produce the contour plot on previous slide

delta_mu= seq(1, 15, 1) # Assumed differences in means

sdev= seq(1, 20, 1) # Assumed standard deviations
alpha= 0.05 # Level of significance
beta= 0.05 # Desired beta error (1-power)

Empty matrix to store required sample size
n <- matrix(NA, ncol=length(delta_mu), nrow=length(sdev),
dimnames=1ist (sdev, delta_mu))

Comparison of two samples’ means

Power analysis

Compute cells
for (icol in 1:ncol(n)) { # iterate over columns
for (irow in 1:nrow(n)) { # iterate over rows
n[irow,icol] <- power.t.test(n=NULL,
delta=as.numeric (colnames (n) [icol]),
sd=as.numeric (rownames (n) [irow]),
sig.level=alpha, power=1-beta)$n

Comparison of two samples’ means

Power analysis

Create contour plot from matrix (log scale)

levels= log10(c(5,10,50,100,500,1000))

contour (x=as.numeric (rownames (n)) ,
y=as.numeric(colnames(n)), z=logl0(n),
xlab="Standard deviation'", ylab="Difference in means'",
levels=levels, labels=10"levels, labcex=1)

mtext (substitute (paste("Required n per group if ",
alpha,"=",a,", ",beta,"=",b), list(a=alpha, b=beta)))

Highlight required sample size for tree problem

abline (h=with(trees, diff (tapply(height, exposure,
mean))), col="red", 1lty=2)

abline(v=with(trees, mean(tapply(height, exposure,
sd))), col="red", 1lty=2)

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

Simple linear regression

Structure of linear models

Linear model

Simple case

y=a+bi-x1+by-xo...+by-x,+e¢€

Dependent variable; response
Independent variables; predictors
Intercept

Coefficients for predictors; slopes

o L X X<

Random error; residuals

[

y=a+b-x+e

Simple linear regression

Example data

BIGTAL MOLTWETER

=)

V Pl
50 £y
£ &

Electric conductance vs. salt concentration

Simple linear regression

Data import / preparation

dat <- read.table(file="../data/salt.txt",
sep="\t", header=TRUE)

dat$cond <- 1 / dat$resist # get conductance
print(dat[1:3,], row.names=FALSE) # show top rows
salt resist cond

0 327 0.003058104
1 315 0.003174603
2 305 0.003278689

salt Dissolved amount of NaCl (unspecified unit)
resist Measured electrical resistance (£2)

cond Electrical conductance (S)

Simple linear regression

Visual check for linearity

with(dat, plot(x=salt, y=cond))

0.0038
|

cond
|

0.0032
|

salt

Simple linear regression

Estimate coefficients (OLS)

fit <- 1lm(cond ~ salt, data=dat)
summary (fit)

Call:
Im(formula = cond ~ salt, data = dat)

Residuals:
Min 1Q Median 3Q Max
-5.472e-05 -1.648e-05 -3.245e-06 6.836e-06 7.541e-05

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 3.079e-03 1.956e-05 157.44 < 2e-16 **x*
salt 9.909e-05 3.305e-06 29.98 2.5e-10 **x*

Signif. codes: 0 “***> 0.001 ‘x*’ 0.01 ‘*’ 0.05 .’ 0.1 ¢ > 1

Residual standard error: 3.467e-05 on 9 degrees of freedom
Multiple R-squared: 0.9901, Adjusted R-squared: 0.989
F-statistic: 898.8 on 1 and 9 DF, p-value: 2.499e-10

Simple linear regression

Interpretation

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.0030790 1.956e-05 157.40 8.556e-17
salt 0.0000991 3.305e-06 29.98 2.499e-10

Interpretation of coefficients
» Conductance of tap water is &~ 3 mS

» Conductance increases by =~ 0.1 mS per unit of added NaCl

Interpretation of p-values
» Null hypothesis (Hp): Regression coefficients are zero.

» p-value: Probability of observing the data if Hy was true.

Simple linear regression

Plotting regression results

plot(dat$salt, dat$cond) # scatter
lines(dat$salt, predict(fit, interval="none")) # add line

fitted <- signif (coef (fit), 3) # extract

names (fitted) <- c("intercept", "slope") # coeff.

legend("topleft", bty="n", legend=paste(names(fitted),
fitted, sep=": "))

x <- data.frame(salt=pretty(dat$salt, 100))
confLim <- predict(fit, newdata=x, interval="conf")
predLim <- predict(fit, newdata=x, interval="pred")
for (1im in c("lwr", "upr")) {

lines(x$salt, confLim[,1im], 1ty=2)

lines (x$salt, predLim[,lim], 1ty=3)
*

Simple linear regression

Plotting regression results

Prediction limits (dotted)
For a specific X, the true Y is
within limits with p > 1 — a.

- intercept: 0.00308
slope: 9.91e-05

dat$cond

Confidence limits (dashed)
, Regression line is within the
& limits with p > 1 — «.

0.0032 0.0036 0.0040
|

Default « is 0.05.

dat$salt

Simple linear regression

Confidence limits of coefficients

Standard method

confint (fit) 2:5 % o1.5 I
(Intercept) 3.034516e-03 0.0031229905
salt 9.161782e-05 0.0001065728

Simple bootstrap for comparison

library(boot)
f <- function(x, i) {
coef (Im(x$cond[i] ~ x$salt[i], data=x))}
cf <- boot(dat, f, R=1000)$t # 1000 x
t(apply(cf, 2, quantile, probs=c(0.025, 0.975)))

2.5% 97.5%
[1,] 3.061697e-03 0.0031182366
[2,] 9.317326e-05 0.0001040553

Simple linear regression

Assumptions and how to verify

1. Linear relation between predictor(s) and response
— Inspect scatter plot

2. Independence of residuals, esp. in time-series data
— Understand how data were produced
— Check auto-correlation

3. Constant variance of residuals (Homoscedasticity)
— Plot residuals over predicted values
— Try transformation if necessary

4. Gaussian residuals
— Check Q-Q-Plot

Simple linear regression

Inspection of residuals

par (mfrow=c(1,2)) # 2 plots/row
plot(predict (fit), residuals(fit), # Homoscedasticity?
xlab="Predicted", ylab="Residuals")
qqnorm(fit$residuals, main="") # Normal (Q plot
qqline(fit$residuals, col="red") # Through quartiles
[%2]
T O w0
o o = O 9|
2%] =
g © 7] [} g ©] o
k=)] o (04]
n 1] 0% ° o v
O O —p o o 2 o _/DMNP/
X I]]
) N E o
N T T 11 Y TTTTITI
0.0032 0.0038 -15 00 15

Predicted Theoretical Quantiles

Simple linear regression

Beyond simple linear regression

» Multiple linear regression
— use 1m with more than one predictor

» Generalized linear models
— e. g. for non-numeric predictors or response
— see glm

» Non-linear fitting
— see nls, nlm, optim

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

Fitting an ODE model

Example problem

> A
i
C
(0]
: o Observed
'§ N Model
& — Residuals
m
|
Time

Objective: Find model parameters that minimize residuals

Fitting an ODE model

Data import

d <- read.table(file="../data/growth.txt",
sep="\t", header=TRUE)
print(d[1:3,], row.names=FALSE)

time dens
0.0 0.00261
0.5 0.00261
1.0 0.00361

time Hours after start of experiment

dens Optical density at 600 nm
— indicator of E. coli concentration in liquid culture
— relation is linear within observed range

Fitting an ODE model

Plot dynamics

par (mfrow=c(1,2))
plot(d$time, d$dens, xlab="Hour", ylab="0D_600", las=2)
plot(d$time, d$dens, log="y", xlab="Hour", ylab="", las=2)

0.05 g
0.04

o
3
DI 0.03 0o°
o 0.02
0.01
o mn o .nm o o n o .n o
— «— N - — N
Hour Hour

Log-scale plot suggests delayed growth in early stage (lag phase)

Fitting an ODE model
Proposed differential eqn.

Growth Resource "Wakeup'
limitation
State variables Parameters
Y, Conc. of active cells g Max. growth rate (h™1)
Y; Conc. of inactive cells w Wakeup rate (h™1)

K Carrying capacity

Note: Measured optical density reflects Y,(t) + Y;(t)

Fitting an ODE model

Methods I: Numerical integration

Numerical integration is required to obtain the dynamics Y,(t) and
Yi(t) from the given differential equations.

install.packages ("deSolve") # install ODE solvers
library("deSolve") # load solvers

A function returning the derivatives must be passed to solver

model <- function(time, y, p) { # deSolve compliant
list(c(dYi = -p["w"] * y["Yi"], # y: state vector
dYa = p["w"] * y["Yi"] + # p: param. vector
pl"g"] * y["Ya"] *
(1 - (y["Ya"] + y["Yi"]) / p["K"1)
J))

Fitting an ODE model

Methods II: Optimization

> A
i
c
()
_z o Observed
'§ N Model
® — Residuals
m
|
Time

» Optimization means to minimize an objective function.

» Here, the objective function computes the sum of squared
residuals for a given set of model parameters.

Fitting an ODE model

Methods II: Optimization

Objective function

objFunc <- function(p, obs) {
get Ya(t) and Yi(t) for current param. (integration)
sim <- deSolve::ode(y=c(Yi=p[["Yi0"]], Ya=p[["Ya0"]]),
time=obs$time, func=model,
parms=c(w=p[["w"]], g=p[["g"]1], K=p[["K"]1]))
compare Ya(t) + Yi(t) to observations
sum((obs$dens - apply(sim[,2:3], 1, sum))"2)
}

» Vector of parameters is 1% arg., for compliance with optimizer

» Initial values of Yj,, Y; estimated along with actual parameters

Fitting an ODE model

Methods Il: Typical optimization issues

Discontinuities

Non-identifyability

Local minima

Scaling required

Objective function returns invalid result for
certain parameter values, e. g. zero-division

— Need to use box-constraints

— Few data with insufficient variability

— Colinearity of parameters

Solution is sensitive to initial guess

— Needs clever estimate or stochastic search

If parameters are of different magnitude

Fitting an ODE model

Initial guess

guess <- c(Yi0=0.001, Ya0=0.001, w=0.1, g=0.3, K=0.06)

» K can be estimated from plot (density at saturation)

» Sum Y; + Y, visible in plot as well (assume, e. g., 50:50)
» Reasonable first guess for w might be %g

» g can be estimated from linear part of log-scale plot

Y(t) = Y(t) e8-0) _, g= /”(Y(tliz - iz(y(to))

Fitting an ODE model

Estimating the parameters

Optimization with box-constraints

fit <- optim(par=guess, fn=objFunc, gr=NULL, obs=d,
method="L-BFGS-B",
lower=c(Yi0=0, Ya0=0, w=0, g=0, K=0.04),
upper=c (YiO=Inf, YaO=Inf, w=Inf, g=Inf, K=0.08),
control=list (parscale=guess))

Essential check if used in a script

if (fit$convergence != 0)
stop("fitting failed")

Fitting an ODE model

Result

print(fit)

$par
Yio Ya0 W g K
0.0029460 0.0003339 0.0239800 0.4198000 0.0566100

$value
[1] 3.855324e-05

$counts

function gradient
49 49

$convergence

(11 o

Fitting an ODE model

Result

Re-run model with best-fit parameters for plotting

par (mfrow=c(1,1))
with(as.list(fit$par), {
int <- deSolve::ode(y=c(Yi=Yi0, Ya=YaOl),
time=d$time, func=model, parms=c(w=w, g=g, K=K))
plot(d$time, d$dens, xlab="Hour", ylab="0D_600", las=2)
lines(int[,1], apply(int[,2:3], 1, sum))
legend ("bottomright", bty="n", pch=c(1,NA),
lty=c(NA,1), legend=c("Observed", "Model"))
3

Fitting an ODE model

Result

0.05 —
0.04 —
o
o
©10.03
S
0.02 —
0.01 — o Observed
oo — Model
\ \ \ \ \
o [Te] o n o
- - N

Hour

Fitting an ODE model

Need to fit growth rates?

Consider the R package written by Thomas Petzoldt

https://cran.r-project.org/package=growthrates

https://cran.r-project.org/package=growthrates

Introduction

Basics of the R language

Data import and plotting
Comparison of two samples’ means
Simple linear regression

Fitting an ODE model

Final remarks

Final remarks

General recommendations

>

Keep data organized
— learn the basics of data base design
— always request and store meta data

v

Increase efficiency and transparency by writing scripts
— R is just one option
— Use functions to facilitate re-use and debugging

v

Plot your data, preferably in multiple ways

v

Understand the meaning and limitations of p-values

v

Only trust in transparent statistics

The ANSWER project has received fund-
ing from the European Union's Horizon
2020 research and innovation programme
under the Marie Sktodowska-Curie grant
agreement No 675530.

	Introduction
	Basics of the R language
	Data import and plotting
	Comparison of two samples' means
	Simple linear regression
	Fitting an ODE model
	Final remarks

