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1. A cord with a spring is wrapped around a cylinder.  No horizontal 

excitation is imposed, so the cord and the spring remain vertical. 

 

a. Define the key variables and parameters placing them on the physical 

model shown to the left. 

 

 

 

 

 

 

 

 

b. Draw a bond graph model below for the system shown above right 

including all variables and parameters previously defined.  (DO NOT 

WASTE YOUR TIME CONVERTING THE BOND GRAPH 

MODEL INTO A SET OF DIFFERENTIAL EQUATIONS.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. What is the order of your model?  3 (there are three state variables; x , Rp  and Tp . 
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Start of Creating Block Diagram of System

Start of Creating Matrix Form of System Equation
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Block Diagram of System
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Start of Creating Matrix Form of System Equation
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DIMENSIONALITY FOR SIMULINK 

Must do dimensional unit checks---I prefer to use English as it forces you to get the units correct.  

In SI it is possible to think you have units correct and still make unit errors.  As a start one has 

 

m=2     initial cylinder mass   lbm 

IT=m          lbm 

g=386.4    gravity constant acceleration  in/s^2 

gc=386.4    unit convertor constant  lbm in / (lbf s^2) 

init_cylinder_trans_velocity=0      in/s 

pTinit=init_cylinder_trans_velocity*m/gc initial translational momentum lbf s 

r=2     cylinder radius    in 

T=1/r     transformer modulous   1/in 

yinit=10.    initial ver loc of cylinder cm  in 

xinit=0.    nitial cable stretch   in 

C=1     (initial) cable compliance   in/lbf 

IR=m*r^2 /2    (initial) cylinder rotary inertia  lbm in^2  

init_cylinder_rot_velocity=0       rad/s 

pRinit=IR*init_cylinder_rot_velocity/gc     lbf in s 

 

Examine purple block: mg hag units lbm * in/s^2 and is associated with a force equation.  It 

needs to be converted to mg/gc to be made a lbf. 

 

The mg./gc block output is added to a term at the yellow sum block.  That term must be in lbf.  

Check to so if it is. 

 

The result of the summation is integrate with time resulting in a lbf s.  The initial condition to 

that integral block must also be in lbf.  The initial condition shown is 0Tp  or 

pTinit=init_cylinder_trans_velocity*m/gc.  Notice how the initial velocity times mass must be 

scaled by 1/gc. 

 

Continue to check for dimensionality of each block.  Note that 0Rp  or 

pRinit=IR*init_cylinder_rot_velocity/gc also is scaled by gc. 

 

DIMENSIONALITY FOR MATLAB 

First examine the equation 
R

x
p

TC
=� .  The dimensionality of the right hand side is lbf.  Thus the 

dimensionality of linear momentum must be lbf s and rotational momentum lbf in^2 s..  Next 

examine the equation  T R

T R

p p
x

I TI
= −� .  As the dimensionality of the right hand side is in/s the 

required dimensionality of TI  should be lbf s^2/in.  If TI  has dimensionality of lbm then /T cI g  

has the dimensionality needed.  From this and the previous discussion it is obvious that all 

calculations utilizing mass require the mass in lbm be scaled by 1/gc.  Similarly the weight force 

requires the mass (in lbm) to be scaled using 1/gc. 
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SIMULINK CODING 

 

Open Matlab and then Simulink.  Make Matlab windows “all tabbed”.  Attempt, using “Library 

Explorer” to create the following model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then use “Model Explorer to input the variables” 

 

m=10 % initial cylinder mass -- lbm 

IT=m % 

g=386.4 % --- in per s^2 

gc=386.4 % --- lbm in / (lbf s^2) 

init_cylinder_trans_velocity=0 % --- in/s 

pTinit=init_cylinder_trans_velocity*m/gc % initial translational momentum --- lbf s 

r=5 % cylinder radius--- in 

T=1/r % transformer modulous --- 1/in 

yinit=10. % initial vertical location of cylinder center of mass ---- in 

xinit=10. % initial cabke length ----- in 

C=1/10. % cable compliance ---- in/lbf 

IR=m*r^2 /2% initial cylinder rotary inertia ----- lbm in^2  

init_cylinder_rot_velocity=0 % ---rad/s 

pRinit=IR*init_cylinder_rot_velocity/gc %----lbf in s 
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This can be done directly into the Model Explorer with explicit code as given above, through the 

use of variables placed in the mdl, reading a data or mat file or executing an m file.  I like thelast 

choice and created a file called cyl_and_cable_dat.m containing these statements. 

 

Examine the results of the above code.  One can consider it as a case of linearizing the stiffness 

of the cable at the stiffness of the original cable length.  As the cable gets longer its actual 

stiffness should decrease. Linearly with the inverse of the cable length.  Modifying the above 

results for this gives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATLAB CODING 

Coding for Simulation using ODE 

Although not strictly necessary I utilize a main m file and a function m file.  The function m file 

is of the same name as the function within it.  Alternatively one could put the function inside of 

the main m file as a local function or one may not wish to use a main m file.  I use a main m file 

so that I do not have to retype commands and to minimize the reproduction of typing errors. 
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For this particular problem the system is linear and thus it was possible to create system matrics.  

Thus I use these matrices in the function m file.   I use a global statement in both the main m file 

and function m file to transport calculated numbers so that they do not need to be recalculated 

over and over again. 

 

I also used a file called cyl_and_cable_dat.m to place all of my input parameter data.  This way I 

could use the same data in all of my programs to make sure I got the same results. 

 

My function m file, recall it has the same name, looks like 

 

function f=falling_cylinder(t,x) 

global Amatrix Bmatrix Cmatrix Dmatrix u 

% note x(1)=rotational momentum of cylinder 

%         x(2)=the stretch of cable 

%        x(3)=translational momentum of cylinder 

  

f=Amatrix*x+Bmatrix*u; 

 

It is tryuly very simple.  Notice that the forcing function u was passed using the global statement.  

Alternatively it could have been calculated repeatedly within this function. 

 

My main m file had a few portions to it.  The first portion looks like: 

 

close all 

clear all 

  

% Mechanical Properties 

cyl_and_cable_dat 

  

global Amatrix Bmatrix Cmatrix Dmatrix u 

% easier to transport values in the case of linear system through matrices 

Amatrix=[0,1/T/C,0;-1/T/(IR/gc),0,1/(IT/gc);0,-1/C,0] 

Bmatrix=[0;0;IT/gc] 

u=g 

  

% time range used 

Ttotal=10              % total time 

  

% print initial conditions 

pR0=pRinit 

x0=xinit 

pT0=pTinit 

  

[t,xcolumn_as_transposed_to_columned_time_sequences]=ode23('falling_cylinder',[0 

Ttotal],[pR0 x0 pT0]); 

 

Its purpose is to setup the data for the differential equations.  The remaining portion of the code 

is used to present the results.  It looks like: 
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Cmatrix=[0,1/C,0;0,0,1/(IT/gc)] %note this C gets ydot not y 

Dmatrix=[0;0] 

  

% as system is linear it is easier to use matrices 

% matlab places the solutions for each state variable as a column 

% to make it easier to see math transposes of the ode result 

  

ncolneeded=size(xcolumn_as_transposed_to_columned_time_sequences',2); 

ycolumn_as_time_row_sequences=Cmatrix*xcolumn_as_transposed_to_columned_time_sequen

ces'+g*Dmatrix*ones(1,ncolneeded); 

figure 

hold on 

subplot(3,1,1), plot(t,ycolumn_as_time_row_sequences(1,:),'k-') 

title('Falling cylinder held by elastic cable') 

ylabel('cable force in lbf') 

xlabel('t') 

subplot(3,1,2), plot(t,ycolumn_as_time_row_sequences(2,:),'k-') 

ylabel('falling velocity') 

xlabel('t') 

 
I did not bother setting up data for the third plot.  Note that the ode routine return the state vector 

(a 3x1 in the analysis above) as an nx3.  The n is associated with the times where the results are 

kept.  Thus when finding the output vector y transposes are required. 

 

Finally notice that the state vector included cable stretch and two momentums.  The two plots 

shown were in cable force and cylinder falling velocity, items that are easily obtained from the 

states.  If we want to know the vertical height of the cylinder with time we need to decide which 

of two procedures we want to use.  If we do not wish to rerun the simulation then the state vector 

results can be used through integration of the point data they provide.  This is done by using a 

trapezoidal integration of the velocity data and modifying the later part of the code above to 

 

cyl_velocity=xcolumn_as_transposed_to_columned_time_sequences(:,3)/(IT/gc); 

y0=yinit; 

cyl_ver_dist=y0+cumtrapz(t,cyl_velocity) 

subplot(3,1,3), plot(t,cyl_ver_dist,'k-') 

ylabel('cylinder position') 

xlabel('t') 

 

The second, and probably a little bit more accurate is to modify the state equations so that the 

cylinder position becomes a state variable.  Although this is not really true, in a dynamical sense 

as there is no additional potential or kinetic energy stored that is a function of this variable, 

never-the-less  one does this by noting that /T Ty p I=� .  The size of the state vector is thus 

increased by one.  A modification of this type to the system equations is left as an exercise for 

the student. 
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Using Matlab Linear System Functions 

 

 


