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Abstract

We develop understanding for the existence of a Lyapunov function and demonstrate
why proofs for synchronization of chaotic systems based on a naive choice of a Lyapunov
function as e�g� in ��� are not so e�cient and why others as� e�g� in ��� can even lead to
wrong results� We show how to apply the circle criterium in a not so common way for
a more e�cient proof of synchronization� Furthermore we illustrate the outweighing ap�
proach which allows the outweighing of temporary divergence by appropriate convergence
with respect to a Lyapunov function which then generalizes to be a Curduneanu function�

� Introduction

Synchronization of dynamic systems generally means that one system somehow traces the
motion of the other� It has achieved much attention in terms of chaotic systems due to its
possible application for communication purposes� There usually aMaster�Slave�Con�guration
is adopted� i�e� an autonomous chaotic system drives another system�

�x � F�x	� x � Rm �
	

�y � G�x�y	� y � Rn ��	

where generallym � n and synchronization is perceived to imply that y asymptotically copies
a subset xS � x� However� for the sake of easy readability we will stick to the case m � n
and xS � x� The basic ideas are not changed by that� Thus a certain di�erence z � x� y �

is expected to vanish as time goes on


jx� yj �� � as t�� ��	

In other words� a certain Synchronization Manifold of the composition state space Rn � Rn

is asymptotically stable ��

�This research was funded by German Academic Exchange Service�
�One could think about a more general kind of copy� z � x � h�y� which corresponds to Generalized

Synchronization �see e�g� ��	�� Here we will deal exclusively with Identical Synchronization
 i�e� h��� is the
identity map�

�Throughout the paper we mean global asymptotic stability unless we say explicitely local asymptotic
stability






The natural approach to establish synchronization� i�e� the asymptotic stability of the
synchronization manifold� is therefore to prove that the origin of the Di�erence System

�z � F�x	�G�x�y	 � f�x� z	 ��	

is asymptotically stable� In other words� the motion transversal to the synchronization man�
ifold is supposed to die out�
It is reasonable to assume that the systems �
	 and ��	 are to a certain degree identical

�as in all communication applications so far	� That is G�y�y	 � F�y	 which results in that
for every initial state of �
	 there exists at least an initial state of ��	 for which the systems
are immediately identically synchronized� namely

y��	 � x��	 ��	

In other words the identical synchronization manifold is invariant�
Obviously� synchronization occurs when all solutions of ��	 converge to one� namely the

right one with ��	� This feature has a nice old name
 Unique Asymptotic Behaviour of the
driven system ��	� �see e�g� ��� or ���	� In ��� the term
 uniform�asymptotically stable with
respect to a set of driving functions was developed for the same thing��

Thus In order to establish synchronization one has to prove unique asymptotic behaviour
or the asymptotic stability of the origin of a di�erence system�
A common way is to apply Lyapunov�s Direct Method ��� on the di�erence system�� That

is one chooses a scalar� energy�like function� the Lyapunov function� on the di�erence state
space with a minimum at the origin and establishes a strictly decreasing energy along the
system �ow� See �gure 
 for an illustration� This has the inherent problem of how to choose
the Lyapunov function�

V( x )=constan t

gradV
f( x )

Figure 

 Illustration of decreasing energy along a system 	ow

One purpose of this paper is to recall and illustrate criteria which provide the existence of
a suitable Lyapunov function� We will explain� why a suitable Lyapunov function is somehow
a Common Lyapunov function� This way we work out why the approach in ��� can lead to
wrong results and why a naive choice of a Lyapunov function as in �
� may not lead to best
results�

�Though there all this is put into a frame which admits bidirectional interaction between both systems too
�It does not matter whether one considers the di�erence between x and y or between any two solutions of

���
 since we already know
 that there is one right solution with �
��

�



Another drawback associated with Lyapunov�s direct method is that it requires decreasing
energy always and everywhere� This way one thus cannot establish synchronization of systems
which outweigh temporary divergence by appropriate convergence with respect to an energy�
like function�
Therefore the second purpose of this paper is to describe and illustrate the outweighing

approach for proves of synchronization� In stability theory this is known as the Comparison
Principle ��� and the energy�like function is then called Curduneanu function ���� In �
�� a
similar approach was tempted� However we think� we can give a clearer frame for this and
point out its weakness�
Often synchronization depends on parameters� which describe the interaction between

the systems be it coupling or feedback parameters �see e�g� �

� or ��� for a description of
synchronization principles	� Since synchronization proofs provide rather su�cient conditions
for synchronization the analytically determined border of synchronization e�g� in terms of
a coupling parameter is often far away from the parameter value of the actual onset of
synchronization� The idea throughout this paper is to achieve analytical results as close
as possible to the synchronization border� i�e� to improve or sharpen the proofs�

� Theory

��� Common Lyapunov Function

Recall we have to establish the asymptotic stability of the zero solution of the di�erence
system ��	� For easy feasability it is often put in a time�variant� linear form


�z � A�t	 � z� A � Rn�n ��	

where the Matrix A depends on lets say the coupling parameter k and x� z and this way on
the time�
Sometimes it is chosen to consider the variational equation of ��	� i�e� for in�nitesimal

z only� In this case the Matrix A is the Jacobian of the di�erence system Dzf�x��	� This
corresponds to Lyapunov�s Indirect Method �the linearization method	 ����
This way one only proves local asymptotic stability of the zero solution� i�e� a non�

empty basin of attraction� In other words synchronization for initial states in a non�empty
neighbourhood of the synchronization manifold� However� often people have been satis�ed
with this weaker result too� e�g� ����
The idea is now to �nd a Lyapunov function V �t� z	 such that its time derivative is negative

always and everywhere� For linear systems as in ��	 quadratic forms have been proven to be
handy as Lyapunov functions


V � z�Pz� P � Rn�n ��	

� stands for the tranpose of a vector or a matrix� In order to serve as a Lyapunov function P
has to be positive de�nite


De�nition � �Positive De�nite �pdf��� P is pdf�� if with ��� V � �� 	 z 
� ��

Next we state a well known result


�



Theorem � For every Hurwitz matrix A and for each pdf� matrix Q exists a pdf� matrix P
such that with �	� and ���

�V � z��A�P�PA	z � �z�Qz � �� 	 z 
� � ��	

We have adapted a result which is actually known as the Lyapunov Matrix Equation ����
One is tempted to assume that� if A�t	 is Hurwitz for all t then asymptotic stability of

��	 is assured� however this is wrong� Either one has to impose additional conditions on the
time�variation �as e�g� in theorems for Slowly Varying Systems� ��� where V depends on t
too	 or one has to assure the existence of a common Lyapunov function� The fact that at
each moment a Lyapunov function exists does not imply that there is a common Lyapunov
function� i�e� one and the same for all A�t	�
Thus it is not su�cient to require A�t	 to be Hurwitz for all t in order to assure synchro�

nization as done in ���� An example� where a common Lyapunov function of the form ��	 does
not exist although all matrices are Hurwitz is illustrated in section ��

��� Usage of the Kalman�Yacubovitch Lemma �KYL�

There are criteria which provide the existence of a common Lyapunov function without con�
structing it explicitely� The famous KYL does this in terms of Positive Realness of a transfer
matrix H�s	� Although we do not cite the KYL itself it is the basis for the theorem below�
This goes back to a typical control theory setup
 An n�dimensional� linear system with an

m�dimensional input and output and transfer matrix H�s	 has a nonlinear static feedback�
This feedback can be time�varying but has merely to obey a sector condition� see �gure � for
an illustration� For our purpose we state the following theorem in a slightly di�erent form
than in ��� �� The proof follows straight the one given there�

dz/dt = Az+Bu
    y = Cz+Du

H(s)=C(sI−A) B+D−1

u = − g(t,y)

m

m

a y i i

b y i i

y
i

g (t,y)
i

Figure �
 Feedback scheme consisteing of a linear dynamical system with a time�varying non�
linearity in the feedback path

Theorem � Given a system as in 
gure � with a m�dimensional feedback� The linear part is
a minimal realization of H�s	 and each �scalar� component of the nonlinear feedback belongs

�On one hand we are more restrictive
 since we require the inequality �g�t�y� � ay�� � �by � g�t�y� � �
to hold componentwise� On the other hand ��� admits di�erent sectors for the nonlinearity and is thus more
general�

�



to a sector �ai� bi� with

�gi�t�y	� ai � yi	 � �bi � yi � gi�t�y		 � �� i � 
� � � � m ��	

and the transfer matrix

T�s	 � H�s	�I�Diag�ai� �H�s	�
�� �Diag�
��bi � ai	� �
�	

is positive real� then the origin of the system is asymptotically stable�

For m�
 this comes down to the consideration of positive realness of a scalar transfer function
which has a nice geometrical interpretation in the Nyquist plot of the transfer function H�s	�
This is known as the circle criterium�

We emphasize	 The system ��� as well as the feedback setup of 
gure � generally can
be put into the form �	�� Therefore the above theorem or basically the KYL by assuring the
existence of a suitable Lyapunov function essentially provides a common Lyapunov function
for all possible matrices A�t	� This idea is the clue to the illustrations in section ��
In order to apply theorem � we will put ��	 or ��	 into such a feedback frame in �gure ��

If A�t	 varies e�g� only with rank
 one can put this into a scalar time�varying feedback� i�e�
m�
� and one applies the circle criterium�
The common application of the circle criterium decides which sector �a� b� of the nonlin�

earity is admissible for a given transfer functionH�s	� In our setup� however� the sector might
be determined by the system �
	 and the transfer function depends on the coupling parameter
k� the admissible range of which we want to �nd� Thus we have to apply the circle criterium
in some sense in reverse� The following describes how this can be done in principle� First we
recall some de�nitions and theorems on positive realness and positive de�niteness�

De�nition � �Positive Realness �pr��� A complex matrix H�s	 is positive real if its her�
mitian part J�s	 � H�s	 �H��s	 � is positive de
nite on the imaginary axis� i�e� for

H�s � j�	 
 Re�v�Hv	 � v��H�H�	v � �� 	 v 
� �� 	 � � R �

	

� stands for the conjugated tranpose of a vector or a matrix and Re for the real part of the
quadratic form�

Theorem 
 �pdf� �� �Leading Principal Minors � ��� A hermitian matrix is positive
de
nite if and only if all its leading principal minors are positive 
����

The leading principal minors of an n�square matrix are its n �north�westerly� subdeterminants�
Thus� in order to establish positive realness of the hermitian part of a transfer matrix we have
to prove the positiveness of n functions on the imaginary axis� These appear to be polynomials
of ��


P ���	 � a� � a��
� � a��

� � a��
� � � � � � ai � R �
�	

The positiveness of a polynomial up to �th order can be decided by more or less handy criteria
on its coe�cients� An obviously necessary condition for P ���	 � �� 	 � is

a� � � �
�	

Given this one has to establish that P ��	 has no positive real roots� A powerful criterium to
decide this is the so called


�J is a hermitian matrix� J � J�
 i�e� it is a sum of a real symmetric matrix and a purely imaginary
skew�symmetric matrix� All its eigenvalues are real� And ���� implies that they are all positive�

�



Lemma � �Descarte�s Rule of Signs� The number of positive real roots of a polynomial
P ��	 with real coe�cients ai is either equal to the number of variations of signs between the
ai in successive order or less than this number by an even integer 
���� �

Thus a second necessary condition for a nth� order principal minor polynomial �
�	 to have
no positive real roots is

an � � �
�	

and we would be �nished if all ai � �� In case they aren�t� the actual number of positive real
roots� which has to be zero for our purpose� can be determined by sign changes of so called
Inners of matrices built out of the polynomial coe�cients ai �
��� This leads to conditions on
characteristic expressions of ai such as the Discriminants� as known for �nd and �rd order
polynomials� We will state these conditions for �rd and �th order polynomials later� The
reason� why it becomes less handy for higher order polynomials is� that too many di�erent
cases of sign changes had to be considered�
Recall� our matrix A depends on the coupling parameter k and so does the transfer

matrix to be investigated for positive realness and so do the coe�cients of the principal
minor polynomials of ��� Consequently we will detect the border of �analytically established	
synchronization at the coupling parameter value�s	� where such positiveness criteria cease to
be ful�lled� All this will be demonstrated at examples in sections � and ��

��� The Outweighing Approach

Recall Lyapunov�s direct method requires decreasing energy with respect to a Lyapunov func�
tion always and everywhere� Our goal here is to admit outweighing of temporary divergence
by appropriate convergence with respect to an energy�like function� That means to establish
synchronization for coupling parameter values where Lyapunov�s direct method fails� Al�
though in this case the energy�like function is sometimes called Curduneanu function ��� we
stick to the name Lyapunov function since the idea is related�
In �
�� this idea was applied to a one dimensional di�erence system ��	� Dimension�


provides the advantage that divergence and convergence occur in the same �only one	 direction
of state space and their outweighting is therefore easy to estimate� Here we will regard the
general case of n dimensional di�erence systems�

We point out	 In more�dimensional di�erence systems diverging and converging may
occur in di�erent �directions� of state space and the estimation of their outweighting is non�
trivial� One has to regard the worst�case of diverging over the whole di�erence state space�
That means the maximum divergence with respect to a chosen Lyapunov function V �z	 for all
states�
The following quantity �we don�t know a proper name yet	 serves this purpose


�V �A�t		 � sup
z�Rn�f�g

� �V �A�t	� z	�V �z	� �
�	

In case V is a norm on Rn then the quantity de�ned above appears to be the matrix measure
induced by V � 	

�E�g� a �rd order polynomial with coe�cient signs ������� has either � or � positive real roots�
�This relation was once nicely pointed out in ��
	�

�



Simple integration of �
�	 yields an upper bound of the systems energy


V �z�t		 
 V �z��		 exp�

Z t

�

�V �A��		d� � �
�	

�
�	 provides the possibility to estimate the outweighting of divergence and convergence


Theorem 
 If for some V exists a continous function �V �t	 with ���� and

lim
T��

Z T

�

�V ��	d� � �� �
�	

then the trivial solution of �	� is asymptotically stable� �adapted from 
���

It follows that in order to tell whether synchronization takes place one needs merely the
mean value of �V �A�t		� Surely� this requires knowledge about which proportion of time each
possible matrix A�t	 is valid� See section � for a discussion of related problems�

�V �A�t		 can be determined for the kind of Lyapunov function we chose in ��	 in the
following way


Lemma � �V de
ned in ���� with ��� and ��� is equal to the maximum generalized eigenvalue
of ��Q�P	�

	max��Q�P	 � �V �A	 �
�	

Proof	 According to �
�	 we want to determine the maximum value of the ratio of the two
quadratic forms of �V and V � This can be converted into the following conditional optimization
problem to be solved by means of Lagrangian theory


maximize �V � �z�Qz over z � Rn�f�g with V � z�Pz � constant �
�	

We introduce the Lagrangian L � �V �	 �V and achieve as conditions for the extremal value


�Qz � 	 �Pz ���	

z�Pz � constant ��
	

���	 de�nes 	 to be a generalized eigenvalue of the pair of matrices ��Q�P	� Clearly� multi�
plication of ���	 with the eigenvector z� belonging to the largest generalized eigenvalue �which
obeys ��
		 reveals that 	max��Q�P	 is the maximum ratio of �V and V which completes the
proof�
Surely� in order to apply the outweighing approach �theorem �	 one still has to �nd a

suitable Lyapunov function which leaves the mean value of �V �t	 negative� Next we explain�
how this problem can be brought back to the need of a common Lyapunov function in a
special situation� Thus it can be solved by means of theorem �� Concluding this section we
will discuss� why a similar approach suggested in �
�� must lead to weaker results than the
direct application of theorem ��

�



A Application of Theorem 
 in a Special Situation

Assume system �
	 is piecewise linear and knowledge is availible about which proportion of
time it stays in each linear region� We consider a linear coupling scheme and assume there
are merely two di�erent Jacobians of F in �
	� lets say DF� and DF�� which di�er only by
rank
� W�l�o�g�


�y � F�y	� k � bc��y � x	� b� c � Rn ���	

DF� � DF� � g � e�e
�
�
� g� k � R ���	

e� denotes the �rst unity vector� Furthermore we only consider the linearized di�erence
system of ��	� Consequently A�t	 � fA��A�g in ��	 with

A� � DF� � k � bc and A� � A� � g � e�e
�
�

���	

Remember at this point we could already provide a common Lyapunov function for fA��A�g
by application of the circle criterium since both matrices di�er only by rank
� One had
to decide the positive realness of a scalar transfer function depending on the coupling k�
However� by application of the outweighing approach we can establish synchronization for a
wider range of k�
Assume� p�� p� � 
�p� are the proportions of time each linear region is �valid� in �
	 resp�

��	� By application of theorem � we have to require that


p��V �A�	 � p��V �A�	 � � or �V �A�	 � �
p�
p�
�V �A�	 � �p � �� ���	

For the sake of simplicity we droped a few indices and arguments at the end�
Thus� if we could �nd a Lyapunov function with �� � � and �� � �p � � then we meet

the condition in ���	� This will be a common Lyapunov function of two modi�ed matrices


Lemma 
 If V � z�Pz is a common Lyapunov fuction for the matrices

B� � A� �mI and B� � A� � pmI� m � R then ���	

�V �A�	 � �m and �V �A�	 � ��pm ���	

Proof	 If V � z�Pz is a common Lyapunov fuction for Bi� i � 
� � then

z��B�
iP�PBi	z � �z�Qiz � �� 	 z 
� � and ���	

�V � z��A�
�P�PA�	z � �z�Q�z� �m � z�Pz � �m � V ���	

It follows �V �V � �m and thus �V �A�	 � �m� A similar argument holds for A��B� which
completes the proof� It is obvious that �m serves the purpose required above for ��
Figure � illustrates the di�erent ranges of matrices required to have a common Lyapunov

function if outweighing is admitted and if not� This should clarify that it is well possible that
for a coupling value k with outweighing a common Lyapunov function exists while without
outweighing it does not� Furthermore �gure � indicates the additional di�culty we face now

the range of matrices� we have to provide a common Lyapunov function for� depends now on
two parameters� k and m�
The idea to bring the outweighing approach back to the need of a common Lyapunov

function for modi�ed matrices could be extended to the case where the A�t	 constitute a
continuous range of matrices� Then we neeeded a common Lyapunov function for the matrices
A�t	�m�t	I with m�t	 � �� ��	 denotes the time average� However� at present we do not see
a way to choose m�t	 appropriately�

�
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Figure �
 Comparison of ranges of A in terms of its components a�� and aii� i � � required to
have a common Lyapunov function 
a� with and 
b� without outweighing

B Dicussion of the Approach in ����

In �
�� the authors complain about the necessary inspiration for derivation of a suitable
Lyapunov function in conventional approaches but they merely replace this by the necessary
inspiration of a suitable choice of a vector norm� This is even more restrictive� since not every
Lyapunov function serves as a norm�
The authors also start with ��	 but instead of dealing with �V �A	 dircetly they separate

A � A� � A�� However� in case V is a norm �V �A	 is the matrix measure and obeys the
triangular inequality �V �A	 
 �V �A�	 � �V �A�	� This weakens the results which aim to
make the average of �V negative�
In the approach of �
�� A� is constant with lets say �V �A�	 � ��� Instead of

�� � �V �A�	 � � the authors require �� � kA�k � �� where k��	k denotes the matrix norm�
However� for all matrix measures and matrix norms induced by the same vector norm V 

�V �A	 
 kAk ���� This weakens the results again�
We see that �
�� though slightly weaker in the concept could still yield results in cases we

don�t provide a practical method for �except trial and error with the choice of the Lyapunov
function	� However� the authors also face di�culties and much need for intuition in the
practical analytical realization of their approach� We merely want to point out the more
general frame �theorem �	 all this embedds in and evoke deep understanding of the issues by
means of the following illustrations�

� Two�dimensional Illustration

��� Set of Possible Quadratic Lyapunov Functions for a Matrix

We restrict our discussion to quadratic Lyapunov functions of the form ��	� Thus each
Lyapunov function is represented by a symmetric ��square matrix� 
 It is sensible to normalize
p�� to 
� Consequently� a ��dimensional quadratic form is described by two � parameters� we

	A skew�symmetric part contributes � in a quadratic form

�



call them p�� p��

P �

�

 p�
p� p�

�
���	

As already emntioned P has to be pdf�

Lemma 
 A matrix M ceases to be pdf� if one of its principal minors �not only the leading
principal minors� ceases to be positive 
��� This means in the ��dinensional case�

m�� � � or m�� � � or m��m�� �m�

�� � � ��
	

Thus the region of pdf� matrices in the space of quadratic forms �p�� p�	 � R�R is described
by a parabula p� � p���
From theorem 
 follows that a Hurwitz matrixA maps the whole space of pdf� matricesQ

into a certain region of pdf� matrices P� We call this the Set of Possible Lyapunov functions
of A� Given a Hurwitz matrix A this set can be determined by requiring the conditions ��
	
to hold for Q � ��A�P�PA	� see ��	� The �rst two equations in ��
	 de�ne a straight line
in the �p�� p�	�space and the last one an ellipse� The regions of positiveness belong to the
corresponding halfspaces resp� to the region inside the ellipse�
We illustrate this for two matrices


M �

�
� �
�� �


�
and �M �M� ���I �

�
���� �
�� �
��

�
���	

Figure ��a	 shows the set of possible Lyapunov functions for M� The �rst two constraints
according to ��
	 lead to �p� � � and q�� � ��p���p� � � i�e� the region right of the p��axis
and left of the straight line� The third constraint �here omitted	 describes the inner region of
the ellipsis� which depicts the actual set for M� All is nice above the parabola which limits
the set of pdf� matrices in terms of p�� p�� We observed that these three regions have no
common point when A is not Hurwitz�
By an argument similar to the proof of lemma � it is clear� that every Lyapunov function

of M is a Lyapunov function of �M too� i�e� one set of possible Lyapunov functions contains
the other one� see �gure ��b	�
The advanced reader will now anticipate that the synchronization border we detect with�

out outweighing corresponds to the coupling value k for which the matrices A�t	 have just a
Lyapunov function common in their sets� Whereas by outweighing �i�e� modi�cations as in
lemma �	 we modify the sets which have no point in common for a certain value of k� One is
enlarged the other is made smaller until they eventually overlap�

��� Without Outweighing

We chose a ��dimensional example of the special situation described in section ��� A� i�e� we
assume two matrices to di�er only by rank
�

A� �

�
�� k �
�� �


�
and A� � A� � 
 � e�e

�
� �

�

� k �
�� �


�
���	


�
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Figure �
 Set of possible Lyapunov functions for 
a� M and 
b� M� �M of 

��

A The Hurwitz Border

It is necessary that both matrices are Hurwitz in order to have a common Lyapunov function�
though not su�cient� The well known necessary and su�cient conditions for a characteristic
polynomial of a matrix to be Hurwitz �e�g� in ���	 lead in the ��dimensional case to
trace � a�� � a�� � � and det�A	 � �� For the matrices in ���	 this gives


k � 
 ���	

B Reverse Application of the Circle Criterium

Since both matrices in ���	 di�er only by rank
� theorem � comes down to m � 
 and thus
to the application of the circle criterium� We put this into the feedback structure of �gure �
and have
 A � A�� B � e�� C � e��� D � �� a � �� b � 
 with

H�s	 �

 � s

� � k � s� ks� s�
���	

In this situation the sector of the nonlinearity is �xed �a� b	 but the transfer function depends
on the coupling parameter� we want to �nd the admissible values for� such that according to
theorem �


T �s	 � H�s	 � 
 is pr�� i�e� Re�T �s � j�		 � �� 	 � � R ���	







We multiply T �s	 with its denominator and its conjugate and require the real part of the
resulting nominator� J�s	 to be positive on the imaginary axis


J�s	 � ��� �k� k���s���ks�� k�s�� s�
s���v
� ����k� k�� ���� �k� k�	v� v� ���	

Here we wrote the polynomial in ��� cf� �
�	 as a polynomial in v and require this to have
no positive real roots� Conditions �
�	 and �
�	 are easily satis�ed since

a� � �� � �k � k� � �� for k � �� or k � �� ���	

a� � 
 � � ���	

�Due to the negative error feedback setup in ���	 we are only interested in k � ��	 According
to lemma 
 we would be �nished if also a� � �� In this case the number of variations of signs
of the ai would be zero and garantees no positive real roots� However


a� � ��� �k � k� � �� for � 
��� � k � ���� ���	

In this case the discriminant� dis � a�� � �a�a�� has to be negative in order to assure that
there are no positive real roots�

dis � 
 � 
�k � 
�k� � �k� � k� � ������ � k	��
��� � k	����� � k	����
 � k	

� k � 
��� ��
	

Thus� only for ��
	 J�v	 has no positive real roots and J�s � j�	 is positive for all � � R ���
Figure ��a	 illustates that the sets of possible Lyapunov functions of A��A� just touch

each other for the critical coupling value detected by means of the circle criterium� ��
	� Note�
that this common Lyapunov function has by no means to be a diagonal one �p� � �	� Thus�
if one pre�chooses the kind of Lyapunov function naively� e�g� to be a diagonal one as done
in �
�� one does not get as good results as by taking full advantage of the power of the circle
criterium� which provides just any Lyapunov function�
Figure ��b	 demonstrates that is not su�cient to require all matrices to be Hurwitz� as

done in ���� in order to provide the existence of a common Lyapunov function� Both sets have
no common point for a coupling value between the Hurwitz border ���	 and the critical value
justi�ed by the circle criterium ��
	 ���

��� With Outweighing

We assume knowledge is available about which proportion of time each linear region is �valid��
be it p� � 
��� p� � ��� thus p � ��� in ���	� According to lemma � we now look for a
common Lyapunov function of two modi�ed matrices


B� �

�
�� k �m �

�� �
�m

�
and B� �

�

� k � ���m �

�� �
 � ���m

�
���	

Since both matrices in ���	 now di�er by rank� theorem � leads to the check for positive
realness of a ��dimensional transfer matrix� We put this into the feedback structure of �gure �
and have
 B � I� C � I� D � �� a� � �� b� � 
� 
��m� a� � �� b� � 
��m and

A �

�
�� k �m �

�� �
 � ���m

�
���	

�
The region k � ���� with dis � � is outside the region we are concerned with according to ����
��We cannot illustrate the situation at the Hurwitz border
 because then one set melts to a point


�
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Figure �
 Set of possible Lyapunov functions of A��A� in 


� for 
a� k � ���� and 
b� k � ����

We chose A to be neither B��B� for that both b�� b� are positive
��� Now the transfer function

depends on the coupling parameter k as well as the outweighing parameter m


H�s	 �



d

�

� ���m� s �

�� �� � k �m� s

�
with d �

� � k � �m� ���km� ���m�

�s� ks� ���ms� s�

���	
According to theorem � we now have to decide the positive realness of the matrix
T�s	 � H�s	 � Diag�
�b�� 
�b��� respectively the positive de�nitness of its Hermitian part
J�s	 � H�s	�H��s	 on the imaginary axis� Following theorem � this leads us to consider the
positiveness of the its leading principal minors� namely j�� and det�J	� which become after
multiplication with the common denominator and it conjugate


j��
s���v
�

�� � �k � k� � 
�m� ���km� 
k�m� 
��m� � 
���km� � ����k�m� � ���m�

���
��km� � ��
��m� � ���� �k � k� � 
m� ���km� ����m�	v � v�

���	
We omit det�J	 here and mention merely that it is a polynomial in even powers of � up to
power � i�e� a �th�order polynomial in v� In both cases the coe�cients of vi depend on two

��Inspect �gure � to see that only such m with b� � g � �� � p�m � � are sensible because every region
 to
provide a common Lyapunov function for
 with g � �� � p�m � � would be bigger than another region with
smaller m


�



parameters
 k�m� Since the conditions for positiveness will lead up to ��th�order polynomials
in k we do not see another way than scanning the sensible range of m � ��� g��
 � p	� �
��� 
�
����� for the widest admissible range of k�
For �xed m the positiveness of ���	 is established in the same way as in section ��� since

it is also a �nd�order polynomial in v� Here we sketch the way to decide the positiveness of
det�J	 and obtain the admissible range of k where both leading principal minors are positive�
We start as in section ��� with the conditions �
�	 and �
�	� a� � 
 � � is immediately

ful�lled and a� is a �th�order polynomial in k but positive in the interesting range of k � �
and m � ��� 
�
���� However� a� � � in the region � � k � 
���� which would correspond to
an improvement of the synchronization border� for all sensible m� This destroys our hope� we
could exclude any positive real roots by ai � �� i � 
 � � � n and lemma 
�
Similar to the discriminant for �nd�order polynomials there exist so called Characteristic

Expressions for �th�order polynomials �
��


G � a�� � �a�a� � �a� ���	

H � �a� � �a
�

� ���	

F � 
�a�� � �a
�

� � 
�a�a
�

� � ��a� � 
�a�a� ���	

I � a�
� � 
�a� � �a�a� ���	

J � ��a�a� � �a�a�a� � �a
�

� � ��a
�

� � ��a�a
�

� ���	

dis � ���I� � J�	 ��
	

The necessary and su�cient conditions for a certain root clustering of a �th�order polynomial
�real�imaginary�negative	 are stated in terms of ai and these characteristic expressions and
can be combined to the case �no positive real roots�� Here we merely state the conditions
for �no real roots�� because this turned out to determine the critical value of k� for which
det�J�v		 ceases to have no positive real roots and for which det�J�s		 ceases to be positive
on the imaginary axis�
A �th�order polynomial has no real roots if

�H � �� dis � �	 OR �F � �� dis � �	 OR �H � �� F � �� � G � �	 ���	

In our case H�Fand dis are for �xed m polynomials in k of order �� � and ��� By inspection
of their zeros we achieved the smallest admissible k for m � ���� i�e� for the upper bound of
the sensible m�range�
For m � ��� the �rst principal minor j���v	 has no positive real roots for ��� � k � ���

whereas det�J�v		 has no positive real roots for ���� � k � ��
� Thus we found T�s	 to be
positive real for

���� � k � ��� ���	

It is understood that the range of admissible coupling values k consists of the union of the
admissible k� ranges for all m� Since� the range ���	 overlaps the range� we have established
in section ��� with m � �� we had proven asymptotic stablity of ��	 for k � ����� This is an
improvement of the admissible k�border of more than ����
Figure � illustrates the situation for �a	 the smallest admissible coupling value and �b	 for

the critical coupling value without outweighing ��
	� This should demonstrate how the sets

��The upper bound depicts the case when the square of required common Lyapunov function melts to a
vertical line in �gure �


�



of possible Lyapunov functions� which just touch in �gure ��a	� are modi�ed by outweighing�
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Figure �
 Set of possible Lyapunov functions of B��B� in 

� for m � ��
 and 
a� k � ����
and 
b� k � ����

We conclude� by application of the outweighing approach it is possible to establish stabiliy
for a wider range of parameters�

� Example� Coupled Chua�s circuits

Two coupled Chua�s circuits ��� also represent a case where the matrices A�t	 in ��	 vary only
by rank
� The two extremal matrices are


A� �

�
B� �
�
 � a	� k 
 �


 �
 

� �� �

�
CA and A� �

�
B� �
�
 � b	� k 
 �


 �
 

� �� �

�
CA ���	

with the usual set of parameters
 
 � 
�� � � 
����� a � �
���� b � ������
Applying the Hurwitz conditions on both matrices leads to the Hurwitz border k � 

�
�

���� However� this result is false in the sense that for this coupling value no common Lyapunov
function of the form ��	 exists� as we will see in the sequel�
Here we apply only the circle criterium since the outweighing approach would lead to

higher than �th order polynomials� By establishing a common Lyapunov function for A��A�


�



we provide one for all A�t	� since they lie in the convex hull of A��A�� Again we put this
into the structure of �gure � and have
 A � A�� B � e�� C � e�

�
� D � �� a � �� b � ���

with

H�s	 �

���� � s� s�

����
�� � 
����k � ��
�s� ks� 
��s� � ks� � s�
���	

We have to establish the positive realness of the transfer function T �s	 � H�s	 � 
�����
Multiplication with the common denominator and its conjugate leads to a real part�J � which
is a polynomial in even powers of � up to order � and thus a �rd order polynomial in v


J � �
�
�����

����k���
�
�k����������������k������k� 	v���
��������k�k�	v��v�

���	
a� � 
 � � and a� � � for k � ����� k � ���� Thus� the conditions �
�	 and �
�	 are well
ful�lled above the Hurwitz border� Again� a� � � �for k � ���	 destroys our hope to �nish
with ai � �� i � 
 � � � n�
The Descarte�s rule of sign lemma 
 apllied to the polynomial in �v gives exactly one

variation of sign and thus exactly one negative real root of J � no matter which sign a� has� If
we could exclude that J has � real roots then we exclude that it has positive real ones� This
can be decided by means of thediscriminant of �rd order polynomials� de�ned in the following
way


Q �
a�� � �a�

�
� R �

�a�� � �a�a� � ��a�
��

� dis � Q� �R� ���	

If the discriminant is negative then the polynomial has not � real roots �
��� dis is a �th order
polynomial in k and is negative for k � ����� k � 

����
Thus� T�s	 is positive real for

k � 

��� ���	

That means that there are some coupling values between the Hurwitz border and ���	 for
which no common Lyapunov function exists although all matrices are Hurwitz�
In �
� the analytically determined synchronization border was k � �
 � a � 
��� because

the Lyapunov function was pre�chosen to be diagonal� As expected our result admits a bigger
range of k since it provides a common Lyapunov function which can have any form�

� Conclusions

We explained why the proof of synchronization is essentially a proof of unique asymptotic
behaviour or a proof of asymptotic stability of the zero solution of a di�erence system�
The application of Lyapunov�s direct method for this purpose leads basically to the need

for a common Lyapunov function of a set of matrices A�t	� We demonstrated the power of
a theorem based on the Kalman�Yacubovitch Lemma in providing such common Lyapunov
function by means of positive realness of a transfer function� Some tools of linear algebra
suitable to establish this are recalled�
We demonstrated the application of the circle criterium in some sense in reverse� That

is� the sector of the nonlinearity is �xed but the transfer function depends on a parameter
that we derive the admissible ranges for� This way we achieved a sharper proof �in the sense
of �for a wider range of this parameter�	 than others �
� with a naively pre�chosen Lyapunov
function�


�



We described the outweighing approach which admits outweighing of temporary diver�
gence by appropriate convergence with respect to an energy�like function and we developed
how this can be brought back to the need of a common Lyapunov function for modi�ed
matrices�
For a ��dimensional �di�erence	 state space we illustrated that Hurwitz matrices do not

necessarily have a common Lyapunov function �i�e� the aproach in ��� can lead to wrong
results	 and that the common Lyapunov function provided by the circle criterium does not
need to be a diagonal one �i�e to pre�chose this gives worse results	�
Furthermore� we introduced the set of possible Lyapunov functions of a matrix and showed

how it is modi�ed by adding a multiple of the identity matrix� This illustrates why the
outweighing approach� i�e� the search for a common Lyapunov function for modi�ed matrices�
can lead to better results�
The application of the outweighing approach requires the mean value of the quantity

de�ned in �
�	 to be negative� However� such a mean value depends on the measure on
the attractor� It could be negative for the natural measure of the chaotic attractor in the
invariant synchronization manifold and positive if the measure is supported by an unstable
periodic orbit of this manifold� Such a situation can lead to locally riddled basins of the
synchronization manifold or on�o� intermittency �
��� We see clearly that this limits the
application of the approach to cases where one can assume a certain minimum proportion of
time in a contracting region� This means considering a somehow worst�case measure� but we
are far away from providing such a tool� However� we hope that the illustrated ideas help to
evoke a deeper understanding of the issues in proofs of synchronization�
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