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Abstract — We propose an alternative proof
of synchronization based on a necessary and
sufficient condition for the existence of a
quadratic Lyapunov function. This method
theoretically detects the whole parameter
range of a given synchronization structure,
for which just any quadratic Lyapunov func-
tion exists. In principle we are able to exceed
results of approaches which either pre- choose
the shape of the Lyapunov function or try to
find it by optimization.

I. INTRODUCTION

Designing a synchronization scheeme of e.g.
two identical chaotic systems for communication
purposes one often has to find parameters for
which synchronization can be proven.

One even might be interested in the whole
range of admissible parameters in order to opti-
mize the parameter choice with respect to other
features like robustness against noise or mis-
match.

Or one might need the information that for a
certain synchronization structure (e.g. scalar er-
ror feedback) no admissible feedback parameter
exists in order to decide that another structure
(e.g. dynamic error feedback [1]) is necessary.

Without loss of generality we consider a
Master- Slave configuration. G could depend on
the feedback parameter to be designed.

x€R” (1)
y €R" (2)
Conditions for synchronization are often based

on the existence of a suitable quadratic Lya-
punov function

V(z) =2'Pz; PcR™™ P>0 (3)
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which proves the gobal asymptotic stability (e.g.
in [5]) of an error system.

i=F(x) - Gx,y) = f(x7)  (4)

Current proofs of synchronization either pre-
choose the shape of the Lyapunov function (e.g.
a diagonal P as in [2]) or try to find it by solving
a constrained nonlinear non- convex optimiza-
tion problem [1].

Although the latter approach allows the us-
age of efficient LMI methods [3] we wish to pro-
vide an alternative tool overcoming the following
drawbacks:

One possibly detects a parameter range
smaller than the analytically provable one. And
if one merely does not find a suitable quadratic
Lyapunov function one cannot conclude that
none exists.

Therefore we suggest to apply a theorem, well-
known in control theory, which is based on the
famous Kalman- Yacubovitch Lemma (KYL) [4].

The KYL provides a condition necessary
and sufficient for the existence of a quadratic
Lyapunov function without constructing it ex-
plicitely.

Since this approach leaves the form of P in
(3) free one can prove synchronization (for a
possibly larger parameter range) as long as any
quadratic Lyapunov function exists. And one
could detect if none exists.

Next we state the theorem based on the KYL
and develop how its condition can be checked
analytically. Finally we demonstrate its applica-
tion with an example.

II. APPLICATION OF THE KYL

We do not cite the KYL itself but it is the basis
of the theorem following below. This deals with
a typical control theory setup:



A linear dynamic system with an m-
dimensional input and output and transfer ma-
trix H(s) has a nonlinear static feedback. This
feedback can be time-varying but has to obey a
sector condition, see figure 1 for an illustration.

Especially when the synchronizing systems are
Lur’e systems it is natural to bring (4) into this
form. The matrix A could depend on the feed-
back parameter to be designed.
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which has an elegant graphical interpretation in
the Nyquist plot of the transfer function H(s).
This is known as the circle criterium.

Definition 1 (Positive Realness (pr.))

A complex matriz H(s) is positive real if its
hermitian part J(s) = H(s) +H*(s) 2 is positive
definite (pdf.) on the imaginary azis, i.e. for

(t,
g, ( Y)A b.y,

Fig. 1: Feedback scheme consisting of a linear dynamical system with a time-varying nonlinearity
in the feedback path

Theorem 1 Consider the system in figure 1.
Suppose (i) the pair (A,B) is controllable, (ii)
the pair (C,A) is observable and (iii) each
(scalar) component of the nonlinear feedback be-
longs to a sector [a;,b;] with

(9i(t,y)—a;i-yi)-(bi-yi—gi(t,y)) >0, i =1,. (n;
5
Define

H,(s) = H(s)[L + Diagla;] - H(s)]™"  (6)

Suppose (iv) all poles of H,(s) have negative
real parts and (v) the transfer matrix

T(s) = H(s)[I+ Diagla;] - H(s)]™"

+Diag[1/(b; — a;)] (7)

is positive real. Under these conditions, the
origin of the system is globally asymptotically
stable.

We stated the theorem in a slightly different
form than in [5] '. The proof follows straight
the one given there.

For m=1 this comes down to the consideration
of positive realness of a scalar transfer function

1On one hand we are more restrictive, since we require
the inequality (g(t,y) — ay)’ - (by — g(¢,y) > 0 to hold
componentwise. On the other hand (5) admits different
sectors for the nonlinearity and is thus more general.

H(s = jw): Re(v*Hv) =v*(H+H*)v >0
Vv#0,VweR (8)

*

stands for the conjugated transpose of a vec-
tor or a matrix and Re for the real part of the
quadratic form.

Theorem 2 ( pdf. <= (LPMs > 0)) A her-
mitian matriz is positive definite if and only if all
its leading principal minors (LPMs) are positive

6]

The leading principal minors of an m-square ma-
trix are its m 'north-westerly’ subdeterminants.

Consequently, in order to establish pos-
itive realness of a transfer matrix we have
to prove the positiveness of m functions,
the LPMs of its hermitian part on the
imaginary axis.

These appear to be polynomials of w?:

P(W?) =ap + a1w? + asw* +asw® + ..., a; ER
(9)
Next we cite some criteria suitable to establish
the positiveness of such a polynomial.
An obviously necessary condition for P(w?) >
0, Vwis

ag >0 (10)

2J is a hermitian matrix: J = J*. All its eigenvalues
are real.



Given this one has to establish that P(.) has
no positive real roots. A helpful criterium to
decide this is the so called:

Lemma 1 (Descarte’s Rule of Signs) The
number of positive real roots of a polynomial
P(.) with real coefficients a; is either equal to
the number of variations of signs between the a;
in successive order or less than this number by
an even integer [7]. 3

Thus a second necessary condition for a nth.
order principal minor polynomial (9) to have no
positive real roots is

an >0 (11)

and we could finish if all a; > 0.

In case they aren’t, the actual number of posi-
tive real roots, which has to be zero for our pur-
pose, can be determined by sign changes of so
called Inners of matrices built out of the poly-
nomial coefficients a; [7].

This leads to conditions on characteristic ez-
pressions of a; such as the Discriminants, as
known for 2nd and 3rd order polynomials.

For higher order polynomials more and more
different cases of sign changes have to be consid-
ered. And this method becomes less handy.

Recall, the error system (4) depends on the
feedback parameter (e.g. the matrix A in fig-
ure 1) and so does the transfer matrix to be
checked for positive realness and so do the co-
efficients of the m principal minor polynomials
of w?.

Consequently, we detect the border of (analyt-
ically established) synchronization at the feed-
back parameter value(s), where such positive-
ness criteria cease to be fulfilled. Next we
demonstrate this at an example.

IIT. EXAMPLE

As sort of a benchmark example we consider cou-
pled Chua’s circuits [8]. k describes the scalar
error feedback of the first component. And we
want to detect an as large as possible range of
admissible k.

We put the error system into the structure of
figure 1 with m =1 and have:

—a(l+go)—k a O
A= 1 -1 1 (12)
0 8 0

3E.g. a 3rd order polynomial with coefficient signs
+,—,+,— has either 3 or 1 positive real roots.

with the usual set of parameters: a = 10,8 =
14.87, g0 = —1.27 and

H(s) (14.87 + s + 5%)/d (13)
d = -—40.149+ 14.87k + 2.17s + ks
—1.78 + ks> + s°

B=¢e,C=¢],D=0,a=0, b=5.9 with

Applying a necessary (Hurwitz) condition to
the scheeme leads to the Hurwitz border k& >
11.12 [8]. However, this is not sufficient (as
claimed in [8]) to establish synchronization.

We have to establish the positive realness of
the transfer function 7'(s) = H(s) +1/5.9. Mul-
tiplication with the common denominator and
its conjugate leads to a real part,J, which is a
polynomial in even powers of w up to order 6
and thus a 3rd order polynomial in v = w?:

—1910.45 + 110.56k + 221.12%*
—(—267.03 + 34.37k + 28.74k*)v
+(—17.38 4+ 0.5k + k*)v® +v* (14)

J =

Next we check the positiveness of J(w?) by de-
termining for which parameter & the polynomial
J(v) has no positive real roots.

a3 =1>0and agp >0 for k < —=3.2,k > 2.7.
Le. the conditions (10) and (11) are well fulfilled
above the Hurwitz border. However, a; < 0 (for
k > 2.5) destroys our hope to finish with a; >
0,i=1...3.

The Descarte’s rule of sign (lemma 1) applied
to the polynomial in —v gives exactly one vari-
ation of sign and thus exactly one negative real
root of J, no matter which sign a, has.

If we could exclude that J(v) has 3 real roots
then we exclude that it has positive real ones.

This can be decided by means of the discrim-
inant of 3rd order polynomials, defined in the
following way:

Q_a%—i’)al R_2a%—9a2a1+27a0
9 T 54

dis = Q* — R? (15)

If the discriminant is negative then the polyno-
mial has not 3 real roots [7].

dis is a 8th order polynomial in k£ and is neg-
ative for k£ < 2.68,k > 11.77.

Thus, T(s) is positive real for

k> 1177 (16)



In [2] the analytically determined synchroniza-
tion border was k > —a - a = 12.7 where the
Lyapunov function was pre-chosen to be diago-
nal.

As expected our result admits a bigger range
of k since it provides the existence of a Lyapunov
function which can have any form.

IV. CONCLUSION

We proposed an alternative proof of synchroniza-
tion by application of a theorem, well- known
in control theory, to the error system. This
theorem is based on the Kalman-Yacubovitch
Lemma and proves global asymptotic stability.
It establishes the existence of a quadratic Lya-
punov function by means of a frequency domain
criterium, namely by the positive realness of a
transfer marix.

We show a way to check positive realness an-
alytically. This leads to the positiveness of m
polynomials which are the leading principal mi-
nors of the hermitian part of the transfer matrix.
We recall some criteria capable to establish the
positiveness of such a polynomial.

The power of the approach arises from the fact
that the KYL provides a condition necessary and
sufficient for the existence of a quadratic Lya-
punov function.

Since the shape of the Lyapunov function is
free one can prove synchronization theoretically
as long as just any such Lyapunov function ex-
ists and thus for the widest possible range of
e.g. feedback parameters. And one can detect
in principle if for a certain feedback structure no
quadratic Lyapunov function exists.

We demonstrated the application of the pro-
posed method at an example with m = 1. This
corresponds to a special case, the well known
circle criterium.

We apply it in some sense in reverse. That
is, the sector of the nonlinearity is fixed but the
transfer function depends on a parameter that
we derive the admissible range for.

As expected we are able to establish synchro-
nization for a wider range of this parameter than
others [2] with a pre-chosen Lyapunov function.
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