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Abstract�Stability proofs are important in many �elds of
science and engineering� A good example is the synchroniza�

tion of chaotic systems� We propose the application a sta�
bility theorem based on the Kalman� Yacubovitch Lemma�
Furthermore we introduce a method to improve such stabil�

ity proofs � the outweighing approach� Illustrative examples
are provided�

Keywords� Proof of global asymptotic stability� proof of
synchronization of chaotic systems�

I� Introduction

Prove of global asymptotic stability �g�a�s�� is an unbiq�
uitous problem in science� Sometimes the applied criteria
provide rather conservative conditions in the sense that the
detected stability range �e�g� in terms of system parame�
ters� is much smaller than the actual stability range� The
idea throughout this paper is to enlarge the analytically
detectable stability ranges i�e� to improve or sharpen the
proofs�
A g�a�s� problem arises for instance with proofs of

synchronization of chaotic systems� like for the following
Master�Slave�con�guration�

	x 
 F�x�� x � Rn ���

	y 
 G�x�y�� y � Rn ���

The system ��� synchronizes to ��� if�

z 
 x� y �� 
 as t�� ���

Thus in order to establish synchronization we have to show
that the origin� z 
 
� of the di�erence system�

	z 
 F�x� �G�x�y� 
 f�x� z� ���

is globally asymptotically stable� Sometimes it is useful to
put the considered system into a time�variant� linear form�

	z 
 A�t� � z� A � Rn�n ���

where the Matrix A depends on x� z and this way on the
time t� A common way to prove g�a�s� is to apply Lya�
punov�s Direct Method ���� That is one has to �nd a
scalar� energy�like function� the Lyapunov function� on the
state space with a minimum at the origin and establishes
a strictly decreasing energy along the system �ow� See
�gure � for an illustration�
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Quadratic forms have been proven to be handy as Lya�
punov functions�

V 
 z�Pz� P � Rn�n ���

where P has to be positive de�nite �pdf��� � stands for the
transpose of a vector or a matrix�

Handwritten proofs of g�a�s�� e�g� proofs of synchroniza�
tion� often prechoose for the sake of simplicity the shape
of the Lyapunov function as e�g� in ���� While other ap�
proaches try to �nd a Lyapunov function by solving a non�
linear non�convex optimization problem ���� Although the
latter approach allows the usage of e�cient LMI methods
��� we wish to provide an alternative tool overcoming the
following drawbacks�

One possibly detects a smaller stability range than the
analytically provable one� And if one does not �nd a suit�
able Lyapunov function one cannot conclude that none ex�
ists�

Therefore the �rst purpose of this paper is to recall a
g�a�s� theorem which leaves the shape of the quadratic
Lyapunov function free and to propose a method to apply
this theorem analytically �section II��

Since this approach proves g�a�s� �or e�g� synchroniza�
tion� as long as any quadratic Lyapunov function exists
one can possibly detect a larger stability range than with
a prechosen quadratic Lyapunov function� And one could
in principle detect analytically if none exists�

Another drawback associated with Lyapunov�s direct
method is that it requires decreasing energy always and
everywhere� This way one cannot establish g�a�s� of sys�
tems which outweigh temporary divergence by appropriate
convergence with respect to an energy�like function�

Therefore the second purpose of this paper is to describe
the outweighing approach� In stability theory this is in
principle known as the comparison principle ��� and the
energy�like function is then called Curduneanu function ����
But we also propose a realization method of the outweigh�
ing approach �section III��

In section IV we illustrate the ideas of sections II and
III which should convince that the described approaches
can lead to better results� We hope this encourages the
reader to apply our methods to other stability problems�
In section V we demonstrate the application of the theorem
of section II with a synchronization example�
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II� A g�a�s� theorem and its application

A� The g�a�s� theorem based on the Kalman�Yacubovitch
Lemma �KYL�

We do not cite the KYL ����� itself but it is the basis of
the theorem following below� Its power arises from the fact
that the KYL provides a condition necessary and su��

cient for the existence of a quadratic Lyapunov function
without constructing it explicitely�
The theorem deals with a typical control theory setup�

A linear dynamic system with an m�dimensional input and
output and transfer matrix H�s� has a nonlinear static
feedback� This feedback can be time�varying but has to
obey a sector condition� see �gure �� In general the system
under consideration� e�g� ��� or ��� can be put into this
form�
Theorem � �Circle criterium� Consider the system in

�gure �� Suppose �i� the pair �A�B� is controllable� �ii�
the pair �C�A� is observable and �iii� each �scalar� com�
ponent of the nonlinear feedback belongs to a sector �ai� bi�
with

�gi�t�y� � ai � yi� � �bi � yi � gi�t�y�� � 
� i 
 �� � � �m ���

De�ne
Ha�s� 
 H�s��I�Diag�ai� �H�s���� ���

Suppose �iv� all poles of Ha�s� have negative real parts
and �v� the transfer matrix

T�s� 
 H�s��I�Diag�ai� �H�s����

�Diag����bi � ai�� ���

is positive real� Under these conditions� the origin of the
system is globally asymptotically stable�
We stated the theorem in a slightly di�erent form than in
��� �� The proof follows straight the one given there�
Thus the KYL converts our search for a suitable Lya�

punov function into a check of positive realness of a transfer
matrix T�s��
For m 
 � condition ��� requires a scalar transfer func�

tion to be positive real which has a graphical interpretation
in the Nyquist plot of the transfer function H�s�� This is
commonly known as the circle criterium�
Next we propose a method to check positive realness in

general�

B� A method to check positive realness analytically

First we recall some de�nitions and theorems on positive
realness and positive de�niteness�
De�nition � �Positive Realness �pr��� A complex matrix

T�s� is positive real if its hermitian part J�s� 
 �

�
�T�s� �

T��s�� � is positive de�nite �pdf�� on the imaginary axis�
i�e� for

T�s 
 j�� � Re�v�Tv� 
 v� �
�
�T �T��v � 


� v �
 �� � � � R ��
�

�On one hand we are more restrictive� since we require the inequal�
ity �g�t�y� � ay�� � �by � g�t�y� � � to hold componentwise� On
the other hand ��� admits di	erent sectors for the nonlinearity and
is thus more general�
�J is a hermitian matrix
 J � J�� All its eigenvalues are real�

� stands for the conjugated transpose of a vector or a ma�
trix and Re for the real part of the quadratic form�

Theorem 	 � pdf� 	
 �LPMs � 
�� A hermitian ma�
trix is positive de�nite if and only if all its leading principal
minors �LPMs� are positive ����

The leading principal minors of an m�square matrix are its
m �north�westerly� subdeterminants�

Consequently� in order to establish positive re�

alness of a transfer matrix we have to prove the

positiveness of m functions� the LPMs of its hermi�

tian part on the imaginary axis�

These appear to be polynomials of ���

P ���� 
 a� � a��
� � a��

� � a��
� � � � � � ai � R ����

Next we cite some criteria suitable to establish the pos�
itiveness of such a polynomial�

An obviously necessary condition for P ���� � 
� � � is

a� � 
 ����

If this is the case one has to establish that P ��� has no
positive real roots� A helpful criterium to decide this is the
so called�

Lemma � �Descarte�s Rule of Signs� The number of pos�
itive real roots of a polynomial P ��� with real coe�cients ai
is either equal to the number of variations of signs between
the ai in successive order or less than this number by an
even integer ���� �

Thus a second necessary condition for a nth� order prin�
cipal minor polynomial ���� to have no positive real roots
is

an � 
 ����

and we could �nish if all ai � 
�

In case they aren�t� the actual number of positive real
roots� which has to be zero for our purpose� can be deter�
mined by sign changes of so called Inners of matrices built
out of the polynomial coe�cients ai ����

This leads to conditions on characteristic expressions of
ai such as the Discriminants� as known for �nd and �rd
order polynomials� For higher order polynomials more and
more di�erent cases of sign changes have to be considered�
And this method becomes less handy�

Recall� we have to check the positive realness of a transfer
matrix� This transfer matrix possibly depends on system
parameters �the stability range of which we wish to detect�
and so do the coe�cients of the principal minor polynomi�
als of ���

Consequently we will detect the border of �analytically
established� g�a�s� �or e�g� synchronization� at those pa�
rameter value�s�� for which such positiveness criteria cease
to be ful�lled� All this will be demonstrated at examples
in sections IV and V�

�E�g� a �rd order polynomial with coe
cient signs ������� has
either � or � positive real roots�
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III� The Outweighing Approach

A� Approach

We think the outweighing approach is best applicable if
the system under consideration is in linear form ���� There�
fore we will use it throughout this section although the idea
could be formulated also more generally�
Recall� Lyapunov�s direct method requires decreasing

energy with respect to a Lyapunov function always and
everywhere� This leads with ��� and ��� to�

	V 
 z��A�P�PA�z 
 �z�Qz � 
� � z �
 � ����

Our idea now is to admit outweighing of temporary di�
vergence by appropriate convergence with respect to an
energy�like function� i�e� to relax the condition ���� and to
prove g�a�s� also in cases where Lyapunov�s direct method
fails�
In ��� this idea was applied to a one dimensional �dif�

ference� system ���� Dimension
� provides the advantage
that divergence and convergence occur in the same �only
one� direction of state space and their outweighing is there�
fore easy to estimate�
However� in more�dimensional systems diverging and

converging may occur in di�erent �directions� of state
space and the estimation of their outweighing is nontrivial�
Therefore we consider the worst�case of diverging� i�e�
the maximum divergence with respect to a Lyapunov func�
tion V �z� over all directions in state space at each moment
of time� And then we estimate its time average� �

De�nition 	 ��V �A�t��� The following quantity repre�
sents the maximum divergence of a system ��� with respect
to a Lyapunov function V �z� at time t�

�V �A�t�� 
 sup
z�Rn�f�g

� 	V �A�t�� z��V �z�� ����

If V is a norm on Rn then the quantity de�ned above is
the matrix measure induced by V �������
Simple integration of ���� yields an upper bound of the

system energy�

V �z�t�� � V �z�
�� exp�

Z t

�

�V �A����d� � ����

By means of ���� it is possible to estimate whether conver�
gence compensates temporary divergence�
Theorem 
� Let V be a Lyapunov function and �V �t� be

a function de�ned in ����� If

lim
T��

Z T

�

�V ���d� 
 �� ����

then the trivial solution of ��� is globally asymptotically
stable� �adapted from ����
Condition ���� holds if the mean value of �V �A�t�� is neg�
ative� In this case convergence predominates temporary

�Another approach ���� is in some sense dual
 it considers the max�
imum divergence over all times for each state direction� However this
method works so far only in two�dimensional state space�

divergence� Thus it is su�cient to inspect the mean value
of �V �A�t�� in order to prove g�a�s� To do this requires of
course knowledge about which proportion of time each pos�
sible matrix A�t� is valid� See section VI for a discussion
of this problem�

B� �V �A�

�V �A�t�� can be determined for a quadratic Lyapunov
function ��� in the following way�
Lemma 	� �V � de�ned in ����� with V 
 z�Pz and 	V 


�z�Qz is equal to the maximum generalized eigenvalue of
��Q�P��

	max��Q�P� 
 �V �A� ����

Proof� �V �A� is the maximum ratio between the two
quadratic forms 	V and V � We convert this into the follow�
ing conditional optimization problem which can be solved
by means of Lagrangian theory�

maximize 	V 
 �z�Qz over z � Rn�f�g

with V 
 z�Pz 
 constant ����

We introduce the Lagrangian L 
 	V � 	 � �V � constant�
and obtain the following conditions for the extremal value�

�Qz 
 	 �Pz ��
�

z�Pz 
 constant ����

��
� de�nes 	 to be a generalized eigenvalue of the pair of
matrices ��Q�P�� Multiplication of ��
� with the eigen�
vector z� belonging to the largest generalized eigenvalue
�which obeys ����� reveals that 	max��Q�P� is the maxi�
mum ratio of 	V and V which completes the proof�

C� Realization

In order to apply the outweighing approach �theorem ��
one still has to �nd a suitable Lyapunov function which
leaves the mean value of �V �t� negative� Next we explain�
how this problem can be converted into another problem�
which can be solved by means of the circle criterium�
First we introduce the useful notion of a common Lya�

punov function�
De�nition 
� A Lyapunov function V 
 z�Pz for which

���� holds for a set of matricesA is a common Lyapunov

function of this set of matrices�
The circle criterium �theorem �� essentially establishes the
existence of such a common Lyapunov function for all possi�
ble matrices A�t�� which occur when the system of �gure �
is transformed into the time�varying� linear form ����
We modify the matrices A�t� such that a common

Lyapunov function of the modi�ed matrices leads to a
�V �A�t�� that stays well below prescribed values�
Lemma 
� If V 
 z�Pz is a common Lyapunov function

for the matrices

B�t� 
 A�t��m�t�I m � R then ����

�V �A�t�� � �m ����
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Proof� If V 
 z�Pz is a common Lyapunov function for
all B�t� then

z��B�t��P�PB�t��z 
 �z�Q�t�z � 
� � z �
 �

and
	V 
 z��A�t��P�PA�t��z 
 �z�Q�t�z � �m�t� � z�Pz

� �m�t� � V ����

It follows 	V �V � �m�t� and thus �V �A�t�� � �m which
completes the proof�
If we choose m�t� such that m�t� 
 
 ���� denotes the

time average� then condition ���� in theorem � holds� In
section IV we demonstrate the realization if this method
with a very simple example�
Concluding this section we remark that a similar ap�

proach ���� also applies the outweighing idea and we dis�
cuss brie�y� why it must lead to weaker results than the
direct application of theorem �� �st� In ���� the Lyapunov
function is a vector norm� The authors also start with ���
but instead of dealing dircetly with �V �A� they separate
A 
 A� � A�� However� since V is a norm� �V �A� is
the matrix measure and it obeys the triangular inequality
�V �A� � �V �A����V �A��� This weakens the result which
aims to make the average of �V negative� �nd� In ���� A�

is constant with lets say �V �A�� 
 ��� The authors de�

mand �� � kA�k � 
 instead of �� � �V �A�� � 
 � where
k���k denotes the matrix norm� However� for all matrix
measures and matrix norms induced by the same vector
norm V � �V �A� � kAk ���� This weakens the result of
���� again�

IV� Two�dimensional Illustration

In this section we �rst introduce the set of possible Lya�
punov functions of a matrix� It allows an illustration of the
methods of sections II and III� Then we demonstrate the
application of theorems � and � and show that we can de�
tect a larger g�a�s� range than with a prechosen quadratic
e�g� diagonal Lyapunov function and that an even larger
g�a�s� range can be detected if knowledge is available about
which proportion of time each A�t� is valid in ����

A� Set of Possible Quadratic Lyapunov Functions of a Ma�
trix and its Modi�cation

In two�dimensional state space a quadratic Lyapunov
function ��� is represented by a symmetric� pdf� � � ��
matrix P� If p�� is normalized to � then a two�dimensional
quadratic form is described by two � parameters� p�� p��

P 


�
� p�
p� p�

�
����

We use the following lemma in order to detect the set of
pdf� matrices� i�e� the set of Lyapunov functions P�
Lemma �� A matrix M ceases to be pdf� if one of its

principal minors �not only the leading principal minors�
ceases to be positive ���� i�e� for a two�square matrix�

�m�� 
 
� or �m�� 
 
� or �m��m�� �m�

�� 
 
� ����

Thus the set of Lyapunov functions ���� is described by
p� � p�

�
with �p�� p�� � R�R�

The following theorem is the clue to the idea of possible
Lyapunov functions of a matrix�
Theorem �� For every Hurwitz matrix A and for each

pdf� matrix Q exists a pdf� matrix P such that

A�P�PA 
 �Q ����

This result is known as the Lyapunov Matrix Equation ����
Notice the close relation of ���� to �����
De�nition �� The set of possible Lyapunov func�

tions of the matrix A is the set of pdf� forms P into
which the whole set of pdf� matrices Q is mapped by �����
We determine the set of possible Lyapunov functions of

a given matrix A by application of the conditions ���� on
Q with ����� We illustrate this for two matrices�

M 


�

 �
�� ��

�
and

�M 
M� 
��I 


�
�
�� �
�� ����

�
����

The �rst two equations in ���� de�ne a straight line in the
�p�� p���space and the last one an ellipse� The regions of
positiveness belong to the corresponding halfspaces� �p� �

 and q�� 
 ��p� � �p� � 
� resp� to the region inside the
ellipse� which is also the intersection of the three regions�
All is nice above the parabola p� 
 p�� which limits the set
of pdf� matrices P� Figure ��a��
By means of such illustration we will visualize the term

common Lyapunov function of matrices A�t�� cf� de�ni�
tion �� namely a Lyapunov function which is common to
the set of possible Lyapunov functions for all matricesA�t��
i�e� a common point p�� p� of the corresponding ellipses�
Figure ��b� visualizes how modi�cations as in lemma �

modify the set of possible Lyapunov functions of a matrix�
By an argument similar to the proof of lemma � it is clear�
that every Lyapunov function ofM is a Lyapunov function
of �M too�

B� Application of the Circle criterium �Theorem ��

We consider an example of system ��� where the set of
matrices A�t� contains only two matrices A��A��

A� 


�
�� k �
�� ��

�
and

A� 
 A� � � � e�e
�
�



�
�� k �
�� ��

�
����

We want to detect an as large as possible range of the
parameter k for which the system is g�a�s�
We put the system into the feedback structure of �gure ��

Since both matrices in ���� di�er only by rank� we have�
m 
 � and A 
 A�� B 
 e�� C 
 e��� D 
 �� a 
 
� b 

� with

H�s� 

� � s

� � k � s� ks� s�
��
�



�

In this case conditions �i���iii� of theorem � hold� With
a 
 
 we haveHa�s� 
 H�s� in ��� and condition �iv� holds
if A� is Hurwitz� i�e� if trace�A�� � 
 and det�A�� � 
�
This gives

k � � ����

According to condition �v� of the circle criterium the sys�
tem is g�a�s� if

T �s� 
 H�s� � � is pr�� i�e� Re�T �s 
 j��� � 
� � � � R
����

We multiply T �s� with its denominator and its conjugate
and demand that the real part of the resulting nominator�
J�s�� is positive on the imaginary axis�

J�s� 
 �
 � �k � k� � �s� � �ks� � k�s� � s�

s���v

 �
 � �k � k� � ���� �k � k��v � v�����

Here we wrote the polynomial in �� 
 �s� as a polynomial
in v which must not have positive real roots� Conditions
���� and ���� are satis�ed for all k � �� cf� ����� since�

a� 
 �
 � �k � k� � 
� for k � �� or k � �� ����

a� 
 � � 
 ����

According to lemma � we could �nish if also a� � 
� In
this case the number of variations of signs of the ai would
be zero which would guarantee that there are no positive
real roots� However�

a� 
 ��� �k � k� � 
� for � ���� � k � ���� ����

For the case � � k � ����� cf� ���������� we have to inspect
the discriminant� dis 
 a�

�
� �a�a�� It has to be negative

in order to assure that there are no positive real roots�

dis 
 � � ��k � ��k� � �k� � k�


 ������ � k�����
� � k��
�
� � k������ � k�


 k � ��
� ����

Thus� for k � ��
�� J�v� has no positive real roots� J�s 

j�� is positive for all � � R and T �s� is positive real�

Figure ��a� illustrates that the sets of possible Lyapunov
functions of A��A� just touch each other for the critical
coupling value detected by means of the circle criterium�
����� Note� that this common Lyapunov function is not
a diagonal one �p� �
 
�� Thus� if one pre�chooses e�g� a
diagonal Lyapunov function one would not detect the whole
g�a�s� range� �����

Figure ��b� demonstrates that is not su�cient to require
all matrices A�t� to be Hurwitz� as done in ����� in order
to establish the existence of a common Lyapunov function�
Both sets have no common point for a coupling value be�
tween the Hurwitz border ���� and the value justi�ed by
the circle criterium ����

C� Application of Theorem 


We consider the same example as in section IV�B but as�
sume additionally� that knowledge is available about which
proportion of time the matrices A� and A� are valid in
���� be it q�� q� 
 �� q�� Under this condition we want to
detect an as large as possible g�a�s� range of the parameter
k� According to theorem � the system is g�a�s� if the mean
value of �V �A�t�� is negative� i�e��

q��V �A�� � q��V �A�� � 
 or ����

�V �A�� � �
q�
q�
�V �A�� 
 �q � �V �A��

A Lyapunov function with �V �A�� � �� and �V �A�� �
��q ��meets the condition in ����� According to lemma � a
common Lyapunov function V 
 z�Pz of the two modi�ed
matrices

B� 
 A� � �I and B� 
 A� � q�I� � � R ����

serves this purpose�
���� modi�es the sets of possible Lyapunov functions of

A��A�� cf� �gure �� One is enlarged and the other is made
proportionally smaller� i�e� ���� is relaxed for A� �tem�
porary divergence admitted� and A� has to obey a more
stringent condition �proportionally stronger convergence��
Again we detect the g�a�s� range by application of the

circle criterium� i�e� we establish a common Lyapunov
function for the modi�ed matrices B��B�� We assume
q� 
 ���� q� 
 ���� i�e� q 
 
�� and have

B� 


�
�� k � � �

�� ��� �

�
and

B� 


�
�� k � 
��� �

�� �� � 
���

�
��
�

Figure � illustrates the in�uence of the modi�cations on
the range of matrices� we need a common Lyapunov func�
tion for in terms of their diagonal elements� Since the ma�
trices in ��
� now di�er by rank � we have m 
 � in theo�
rem �� In this case theorem � establishes the existence of
a common Lyapunov function for all matrices depicted by
the square in �gure �� It follows that the sensible range of
� is

� � �
� ���� ����

Every other � would lead to a bigger range of matrices in
�gure ��
We put this example into the feedback structure of �g�

ure �� B 
 I� C 
 I� D 
 �� a� 
 
� b� 
 �� ����� a� 


� b� 
 ���� and

A 


�
�� k � � �

�� �� � 
���

�
����

Now the transfer function depends on two parameters k
and ��

H�s� 
 �

d

�
�� 
���� s �

�� �� � k � �� s

�
with

d 
 � � k � ��� 
��k�� 
���� � s� ks� 
���s� s�

����



�

In this case conditions �i���iii� of theorem � hold� And
condition �iv� is ful�lled if A is Hurwitz� This yields

k � �� 
��� ����

According to �v� of theorem � we now have to decide the
positive realness of the matrix
T�s� 
 H�s� � Diag���b�� ��b��� respectively the positive
de�nitness of its Hermitian part J�s� 
 �

�
�T�s� � T��s��

on the imaginary axis� Following theorem � this leads us to
consideration of the positiveness of the its leading principal
minors� namely j�� and det�J��

Again we obtain after multiplication with the common
denominator and its conjugate polynomials in even pow�
ers of �� namely up to power �� resp� �� i�e� �nd� resp�
�th�order polynomials in v� But now the coe�cients of vi

depend on two parameters� k� �� s� e�g� j���

j��
s���v

 �
 � �k � k� � �
�� ���k�� �k��� �����

� ����k�� � 
���k��� � 
���� � 
����k�� � 
������

� ���� �k � k� � ��� 
��k�� 
������v � v�

����
The positiveness of j�� and det�J� is established by anew
application of the method proposed in section II�B and al�
ready once demonstrated in section IV�B� I�e� we apply
the necessary and su�cient conditions for the root cluster
�no positive real roots� which are stated in terms of char�
acteristic expressions of the polynomial coe�cients ai� ����

It follows a scanning of the sensible range of �� cf� �����
For �xed � the characteristic expressions are again poly�
nomials in k� By inspection of their zeros we obtained the
largest g�a�s range of k for � 
 ����i�e� for the upper bound
of ���� ��

k � 
��� ����

Figure � depicts the situation for the smallest admis�
sible value of k �a� with and �b� without outweighing�
This should demonstrate how the sets of possible Lyapunov
functions� which just touch in �gure ��a�� are modi�ed by
outweighing�

This illustrates� by application of the outweighing ap�
proach it is possible to establish stability for a wider range
of parameters� compare ����������

�The upper bound depicts the case when the square of required
common Lyapunov function melts to a vertical line in �gure �

V� Example� Coupled Chua�s circuits

As sort of a benchmark example we consider the synchro�
nization of coupled chaotic Chua�s circuits ����� k describes
the scalar error feedback of the �rst component� And we
want to detect an as large as possible range of k� such that
the systems synchronize�

	x 
 Mx� e�g�e
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�
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	y 
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�
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The systems synchronize if the di�erence system� cf� ����
is g�a�s� We put the error system into the structure of
�gure � with m 
 � and have�

A 


�
� �
�� � g��� k 
 


� �� �

 �� 


�
A ��
�

B 
 e�� C 
 e��� D 
 �� a 
 
� b 
 ��� and

H�s� 

������ s� s�

��
����� �����k� ����s� ks� ���s� � ks� � s�
����

In this case conditions �i���iii� of theorem � hold� And
condition �iv� is ful�lled if A is Hurwitz� This yields k �
������

According to condition �v� of the circle criterium �theo�
rem �� the system is g�a�s� if the transfer function T �s� 

H�s� � ����� is positive real� Multiplication with the com�
mon denominator and its conjugate leads to a real part�J �
which is a polynomial in even powers of � up to order �
and thus a �rd order polynomial in v 
 �� 
 �s��

J 
 ����
���� ��
���k� ������k�

�������
�� �����k� �����k��v

��������� 
��k � k��v� � v� ����

Next we determine for which k J�s� is positive on the imag�
inary axis� i�e� for which k the polynomial J�v� has no
positive real roots�

a� 
 � � 
 and a� � 
 for k � ����� k � ���� I�e� the
conditions ���� and ���� are well ful�lled above the Hurwitz
border� However� a� � 
 �for k � ���� destroys our hope
to �nish with ai � 
� i 
 � � � � ��

The Descarte�s rule of sign �lemma �� applied to the
polynomial in �v gives exactly one variation of sign and
thus exactly one negative real root of J � no matter which
sign a� has�



�

By inspection of a characteristic expression� the discrim�
inant of a �rd order polynomial� we can exclude that J�v�
has � real roots and thus that it has positive real ones�

Q 

a�� � �a�

�
� R 


�a�� � �a�a� � ��a�
��

� dis 
 Q� �R�

����
If the discriminant is negative then the polynomial has not
� real roots ���� dis is a �th order polynomial in k and is
negative for k � ����� k � ������ Thus� T�s� is positive
real for

k � ����� ����

In ��� the analytically determined synchronization border
was k � �
 � a 
 ���� where the quadratic Lyapunov
function was pre�chosen to be diagonal�
As expected our result admits a bigger range of k since

it provides the existence of a quadratic Lyapunov function
which can have any form�

VI� Conclusions

We proposed the application of a g�a�s� theorem based on
the Kalman�Yacubovitch Lemma� Its power �compared to
other approaches� arises from the fact� that it provides the
existences of a quadratic Lyapunov function of any form
without constructing it explicitely� It converts the search
for a suitable Lyapunov function into a check of positive
realness of a transfer function� Some tools of linear algebra
suitable to establish this are recalled�
We described the outweighing approach which admits

outweighing of temporary divergence by appropriate con�
vergence with respect to an energy�like function� Thus we
relax criteria of conventional g�a�s� approaches� We also
presented a method to bring the outweighing back to the
need of a common Lyapunov function for modi�ed matri�
ces� In principle this can also be solved by means of the
Kalman�Yacubovitch based g�a�s� theorem ��
In order to demonstrate the power of the presented meth�

ods we showed some illustrations in two�dimensional state
space� For this purpose we introduced the set of possible
Lyapunov functions of a matrix� We hope this made the
advantages of the presented ideas visible and it encourages
the reader to apply the theorems also to other problems�
We demonstrated the application of the Kalman�

Yacubovitch based g�a�s� theorem to an exapmle of syn�
chronization of chaotic systems� We achieved better results
than others�
The application of the outweighing approach requires the

mean value of the quantity �V � s� ����� to be negative� In
case the matrix A�t� in ��� is not primarily a function of
time but basically a function of x�t� then the mean value
amounts to the time average of �V along x�t�� However�
such a mean value depends on the measure on the attrac�
tor� It could be negative for the natural measure of the
chaotic attractor in the invariant synchronization manifold
and positive if the measure is supported by an unstable
periodic orbit of this manifold� Such a situation can lead
to locally riddled basins of the synchronization manifold or
on�o� intermittency �����

We see that this limits the application of the outweighing
approach to cases where one can assume a somehow worst�
case measure� However� we defer this problem to future
discussion�
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Fig� �� Illustration of decreasing energy along a system �ow

dz/dt = Az+Bu
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Fig� �� Feedback scheme consisting of a linear dynamical system with a time�varying nonlinearity in the feedback path
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