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Abstract — The inverse system approach is an
uniform view on hiding in and retrieving informa-
tion from chaotic signals. A clue to the under-
standing of the system inversion is the relative de-
gree and in connection with it a state transfor-
mation into a normal form, both presented in the
paper. We point out the differences between the
Pecora-Carrol scheme and the inverse system ap-
proach. Experimental results from a circuit real-
ization are given as well as new designed examples,
representing as far as we know the first two port
realizations. A general structure for system inver-
sion is introduced and applied in a novel circuit
example.

I. INTRODUCTION

Recently, the idea to use chaotic systems for informa-
tion transmission has attracted much attention. Some
of the transmission system examples can be treated
from the general viewpoint of the inverse system con-
cept. The idea is to control a chaotic system, the
transmitter, with an information signal. The output
of the transmitter, a chaotic broad band signal where
the information is hidden, becomes after transmission
the input of the receiver which has to retrieve the in-
formation signal. Note that both the transmitter and
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Fig. 1: Inverse system principle

the receiver are nonlinear dynamic systems, the for-
mer hiding the information in chaos and the latter
extracting the information from chaos.

In practice, the information can only be retrieved,
if the inverse system reproduces every input of the
original system, at least asymptotically in time, irre-
spective of the initial conditions of the receiver. In
this case, we say that the inverse synchronises with
the original system.

Morover, it can be shown that an inverse system
synchronises with its original if and only if it has
unique asymptotic behaviour. It follows that in or-
der to serve our purpose the inverse system has to
have unique asymptotic behaviour while the original
has to produce a chaotic signal (which is the opposite

extreme) and can obviously not synchronise. A more
thorough discussion is given in [10].

II. RELATIVE DEGREE

In the following we will show that the inverse system
can be of lower dimensionality than the original sys-
tem. Thus it may be sufficient to investigate a lower
dimensional difference system. The number by which
the system dimension is decreased by inversion is the
relative degree of the original system.

A. Analogue Systems

The relative degree, r, defined for bilinear systems, in-
dicates, roughly speaking, the lowest output derivative
that is directly influenced by the input. It is defined
as follows [1]:

LeLY 'h(x) #0and LeLL ?h(x) =0 (1)

where L2b(z) is the n-th Lie derivative. Equs.l ex-
press that the r-th derivative of the output is and the
(r-1)th is not influenced by the input.

A clue to the understanding of the system inversion
is a state transformation into a normal form according
to the relative degree, r , where the output and its
first -1 derivatives are states [1]. This Transformation
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Fig. 2: The structure into which every bilinear system can
be transformed

leads again to a bilinear system which is equivalent
to the original. The system of Fig. 3 is obviously
an inverse of the system of Fig. 2. It shows that r
integrators of the original system are converted into
differentiators. We conclude:

(i) The inverse of a N-dimensional system with rel-
ative degree equal to r is N-r dimensional.

(ii) If the relative degree of an analogue system (rep-
resented by state equations) is not zero then its inverse
system has a generalised state representation, in which
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Fig. 3: Inverse of the chain structure, where r former inte-
grators have become differentiators

the state derivatives depend also on derivatives up to
the r-1-th order of the input y.

B. Discrete-time Systems

Translated to discrete-time systems the relative de-
gree gives the number of time steps the current input
value is delayed until it directly influences the output.
However, discrete-time systems with non zero relative
degree cannot be directly inverted, since there is no
practical realisation of an inverse of a memory ele-
ment. Therefore it is reasonable (having inversion in
mind) to consider only zero relative degree discrete-
time systems.

C. Equivalent Approach

Since the relative degree is the minimal number of inte-
grations the input signal undergoes until it influences
the output it can be recognised from the block diagram
of the original system. As an example we consider the
block diagram of [2] which represents the Chua’s cir-
cuit with an input u realized by a current source in
parallel to the capacitotor C1 (Fig. 4). Clearly, choos-

Fig. 4: Example for system inversion: Transmitter and
receiver circuit with Vi transmission at Chua’s circuit

ing the capacitor voltage X1 as output, the minimal
number of integrators between input and output is one
(Fig. 5) but choosing the inductor current X3 as out-
put leads to r = 3. This gives an idea that the relative
degree is a feature of the structure of a system. That
means not the specific functions on the right side of
the ODE of the original system determine the relative
degree but the structure, i.e. which state is influenced
by the input and by which states.

D. Remark

According to section I. one has to establish unique
asymptotic behaviour of a driven N-r dimensional dif-
ference system (but may be only for driving signals
with certain features) in order to realize synchroniza-
tion. This is the case with all chaotic synchronization
schemes and might be nontrivial since the difference
system can be nonlinear.

static function g static function g
,7,.;0 .xl y Y .)'(1 .51 y
u? + m “rr E
X2 X - x2" X2
n

3 J | 3

a) b)

L
=
=

T

)
3

Fig. 5: Example showing that the minimal number of inte-
grators between input and output is converted into differ-
entiators by system inversion, a) original, b) inverse system

The common approach for such problems is the di-
rect method of Ljapunov which is rather restrictive,
since it does not admit the temporary increasing of
the sytems energy. In [3] the outweighing of expan-
sion by contraction was estimated for a one dimen-
sional difference system in order to establish synchro-
nization. However, in higher dimensional difference
systems divergence and convergence may occur in dif-
ferent ’directions’ of state space and the estimation of
their compensation is nontrivial. Therefore one has to
regard the worst case of expansion with respect to a
chosen Ljapunov function V' (x), i.e. its maximum, for
the whole difference state space. The Matriz Measure
induced by V [4] serves this purpose. It yields an up-
per bound of the systems energy. If one establishes
the mean value of the matrix measure to be negative
then the trivial solution of the difference system is
asymptotically stable and it exists a nonempty basin
of attraction, i.e. sychroizatiion can take place.

In case of a quadratic Ljapunov function we suggest
an upper bound estimation by means of eigenvalues.
However, further consideration and application of this
approch is beyond the scope of this paper.

ITII. RELATION OF THE INVERSE SYSTEM
TO THE PECORA-CARROL SCHEME

The experienced reader might be tempted to compare
the synchronization of inverse systems with the well
known Pecora-Carrol driving scheme [5], where a sub-
system of the original system is driven by a transmit-
ted state. As an example for driving we present the
circuit realization and the block diagram of its receiver
of [6] (Figs. 6, 7). The comparison with Fig. 4 and
Fig. 5 should make it clear that an inverse system is
completely different from a driven subsystem.
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Fig. 6: Example for Driving: Transmitter and receiver
circuit for V7 driving at Chua’s circuit

s

Allthough, in case r;0 the inverse system represents
a driven lower dimensional subsystem too, there are
crucial differences between both approaches:

1. Existence of an input to the transmitter in case
of the inverse system method while the transmitter of
the driving scheme of [5] is autonomous.
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Fig. 7: Block diagram of the driven subsystem of the re-
ceiver in Fig. 6

2. Driving only servs the purpose of reconstructing
the non transmitted states. The inverse system does
this and additionally retrieves the transmitter input
signal.

3. In terms of circuit realization driving is to re-
place the memory element belonging to the transmit-
ted state (e.g. a capacitor) in the receiver by a con-
trolled (e.g. voltage-) source, whereas in the inverse
system the controlled source has to impose the state
of a memory element, but without replacing it.

IV. CIRCUIT EXAMPLES
A. One Port Realizations

All examples published so far realize inversion by
treating current and voltage of a 1-port alternatively
as input and output. One of the two possible situa-
tions is depicted in Fig. 8(a). Even though all exam-

Fig. 8: (a) Inverse system realisation with a 1-port: the
V — I — V method (b) RLDiode one port excited by a
voltage signal e(t) (i(t): inductor current, q(t): charge of
the diode capacity)

ples we know about are 1-port realisations they have
different relative degrees, actually r=0 od r=1. This
can be verified by drawing the block diagrams.

The RLDiode circuit is such an example (Fig. 8(b))
[7] well known to produce a chaotic current when ex-
cited by a periodic voltage signal. Using an informa-
tion bearing voltage signal e(t) as input and the in-
ductor current as output leads to a r=1 system the in-
verse of which has unique asymptotic behaviour. This
is easy to show with a Ljapunov function for the one
dimensional difference system.

Next we present some experimental resuts, when the
input is an AM signal, which should convince that:

1. The principle works with a certain robustness
against parameter mismatch between transmitter and
receiver.

2. The information can be fairly good hidden in the
transmitted broad band signal.

B. Two Port Realizations

It is possible to overcome the restriction to one port
realizations of inverse systems by use of an ideal op-
erational amplifier (op.-amp.) i.e. a nullator-norator

Fig. 9: left: a fairly good transfer characteristic: retrieved
signal versus input siganl; right: transmitted signal versus
input signal

1. 1 f=39.9KHz amp1--5.80 dB '
E 1 3

PO SN R |

it Loasa Ls .,.AJL_,A.J“;J Jasaatana diaaados Laaaad
Y/Div: 20.0 dB TRACE: =FFT (ch1)
Timebase: 12.2kHz 2 =FFT (th2)

Fig. 10: Frequency spectra showing a fairly good hid-
den information in the tansmitted signal: chl-input AM-
signal, ch2-transmitted chaotic signal (representing the
current)

pair. One of the four possible situations is depicted
in Fig. 11. Next we give an two port example which
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Fig. 11: Two port realization of system inversion, in case

of voltage input and current output at another branch, by
means of an ideal op.-amp. i.e. a nullator-norator pair

is designed such that its relative degree is equal to
the original system dimension i.e. r=N. Following sec-
tion II. this leads to a zero dimensional inverse system
which simply realizes a static function of the transmit-
ted signal and its derivativs.

As discussed in section II.C. choosing the induc-
tor current X3 as output in the Chuas circuit of Fig.
4 leads to r=3=N. The circuit realization of the ap-
propriate inverse system is depicted in Fig. 12. In
practical realizations the nonideal characteristics of
the op.-amp. have to be taken into account, which
could provide an additional state in the inverse sys-
tem. A paper concernig the correct functioning of
nonideal op.-amps. is in preparation.

V. DESIGN OF INVERSE SYSTEMS

If a system has a relative degree r=N, its inverse is zero
dimensional. Since in this case one does not have to
care about asymptotic uniqueness it seems desirable
to choose input and output of a chaotic system so that
r=N. However, in this case any added channel noise
leads to serious errors in signal recovery because it is
differentiated several times. Therefore we propose a
zero relative degree structure in the sequel.
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Fig. 12: Two port realization of an inverse system (for

r=3=N ie. a static inverse) by means of a) a nullator-
norator pair b) appropriate use of an op.-amp.

A. General Structure

Fig. 13: Genaral structure: original system; bold lines:
vector instead of scalar, for discrete-time system the vector
integrator has to be replaced by a vector delay

At this point it becomes clear how such a crucial sys-
tem feature as chaotic motion (in the autonomous
case u=0) can be converted into unique asymptotic
behaviour by system inversion:

Consider the different roles of f(x)) and g(x).
While f(x)) represents the recrsive, i.e. the feed-back
part, g(x)) serves only as part of the output function,
i.e. as feed-forward part. Obviously, the (nonlinear)
function f(x) is responsible for the chaotic motion of
the original system whereas g(x) does not influence
it at all. In the inverse system the roles of f(x) and
g(x) are exchanged. Therefore by choosing them of
different nature one can achieve qualitatively different
behaviour in the original and inverse system.

Our goal is an inverse system with unique asymp-
totic behaviour. Since this is easy to establish for
linear systems, we choose g(x) as a linear function of
states g(x) = cT - x (Fig. 14).
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Fig. 14: Genaral structure and its inverse, bold lines: vec-
tor instead of scalar, for discrete-time system the vector
integrator has to be replaced by a vector delay

Our proposed structure has the following features:

(1) Since it has zero relative degree, it is applicable
to discrete-time systems as well.

(2) Tt is invertible if f(x,u) is invertible with respect
to u.

(3) It contains a unique static nonlinear system
which is real valued, i. e. it is similar to a Lur’e
system [8].

(4) Tts inverse and therefore also the difference sys-
tem is a linear system with only a nonlinear output

function.
Ax=(A-b-cT) Ax (2)

(5) Synchronisation (asymptotic uniqueness of the
inverse system behaviour) is because of (4) easy to
establish.

(6) Provided the pair (A, b) is controllable it is pos-
sible to design the synchronisation speed by setting
the poles of the linear inverse system by applying the
Ackermann formula in order to choose cT [9].

B. Design Example

Here we apply our general structure to Chua’s circuit,
which is evidently a Lur’e type system. Since its linear
part is already passive we choose ¢T = 0. The result-
ing circuit and its inverse is depicted in Fig. 15. It
represents again a two port realization. By simulation
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Fig. 15: Design example: genaral structure applied to
Chua circuit - a two port realization

we obtained good synchronisation results even under
assumption of a nonideal op.-amp., where we used a
one-pole modell.
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