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ABSTRACT

The inverse system approach is an uniform view on hiding
and retrieving information from chaotic signals. A clue to
the understanding of the system inversion is the relative
degree and in connection with it a state transformation
into a normal form, both presented in the paper. Inverse
system examples published so far are classified with re-
spect to this uniform view. A general structure for sys-
tem inversion is introduced and applied in a novel circuit
example.

I. INTRODUCTION

Recently, the idea to use chaotic systems for information
transmission has received much attention. Some of the
transmission system examples can be treated from the
general viewpoint of the inverse system concept. It ap-
plies to analog, discrete-time and digital systems as well.
The idea is to control a chaotic system, the transmitter,
with an information signal. The output of the transmitter,
a chaotic broad band signal where the information is hid-
den, becomes after transmission the input of the receiver
which has to retrieve the information signal. In order to
do this, the receiver has to have an input-output relation
inverse to that of the transmitter. Therefore we call it the
inverse system. Note that both the transmitter and the
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Figure 1: Inverse system principle

receiver are nonlinear dynamic systems, the former hid-
ing the information in chaos and the latter extracting the
information from chaos. Assume both are described by
differential equations in case of analogue systems and by
difference equations in case of discrete time systems. Fur-
ther let the signals u(t) and y(t) belong to suitable signal
spaces where the solution exists and is unique. Then the

original system ¥ and the inverse system Y ~! realise the
following transformations of an input signal u(t) into an
output signal y(t) and vice versa:

y = 2(u,%o) (1)

u' =371 (y, &) (2)

Thise transformations depend obviously on the initial
state vector xg and & respectively. Further inverse sys-
tems meet by definition the following conditions:

Vu,xo 3o : u =X (y,&) withy = Z(u,x0)  (3)

Vy,& Ixo 1y = (v, x0) withu' =27 (y, &%) (4)

i. e. an inverse system retrieves the original input exactly,
at least if a suitable initial state is chosen.

In practice, the information can only be retrieved, if
the inverse system reproduces every input of the original
system, at least asymptotically in time, irrespective of the
initial conditions of the receiver. In this case, we say that
the inverse synchronises with the original system.

|lu —u'| — 0 ast — oo (5)

Notice that the notation of inverse is symmetric in both
systems, i. e. the original is the inverse of the inverse. But
the notation of synchronisation is not symmetric, i. e. the
original system does not necessarily synchronise with the
inverse if the latter does.

Morover, an inverse system synchronises with its orig-
inal if and only if it has unique asymptotic behaviour.
This is clear having in mind that in case of unique asymp-
totic behaviour all solutions of the inverse system converge
to each other and therefore also converge to the solution
corresponding to the 'right’ initial condition according to
equ. 3. It follows that in order to serve our purpose the
inverse system has to have unique asymptotic behaviour
while the original has to produce a chaotic signal (which is
the opposite extreme) and can obviously not synchronise.



This principle provides the exact retrieval of the orig-
inal input signal under ideal transmission conditions as
opposed to other proposed methods which only approx-
imately recover the information signal (chaotic masking)
or can transmit binary signals only (chaotic switching). A
more thorough discussion is given in [12].

II. RELATIVE DEGREE

As mentioned above one has to establish unique asymp-
totic behaviour of the inverse system in order to realise
synchronisation. It is straight forward to regard the dif-
ference between any two solutions of the inverse system,
i. e. to investigate whether the origin of the difference
system is globally asymptotically stable.

In the following we will show that the inverse system
can be of lower dimensionality than the original system.
Thus it may be sufficient to investigate a lower dimen-
sional difference system. The number by which the system
dimension is decreased by inversion is the relative degree
of the original system.

A. Analogue Systems

The relative degree, r, defined for bilinear systems, indi-
cates, roughly speaking, the lowest output derivative that
is directly influenced by the input. Equivalently, it is the
minimal number of integrations the input signal undergoes
until it reaches the output. Consider a bilinear system:

x=f(x)+g(x) u (6)
y = h(x) (7)

Then the relative degree, r, is defined as follows [2]:
Le¢Ly 'h(x) # 0 and L¢L} %h(x) = 0 (8)

where L2b(z) is the n-th Lie derivative, i. e. the n-th
derivative of a real valued function b(x) along the vector
field a(x). Equs.8 express that the r-th derivative of the
output is and the (r-1)th is not influenced by the input.

A clue to the understanding of the system inversion is
a state transformation into a normal form according to
the relative degree, r , where the output and its first r-1
derivatives are states [2]. This Transformation leads again
to a bilinear system which is equivalent to the original in
the sense that it has (provided a certain transformation
between the initial states) the same input/output relation.
The system of Fig. 3 is obviously an inverse of the system
of Fig. 2. It shows that r integrators of the original system
are converted into differentiators. We conclude:

(i) The inverse of an N-dimensional, relative degree
equal to r system is N-r dimensional and it is therefore
sufficient to consider an N-r dimensional difference system
in order to decide whether synchronisation takes place or
not.
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Figure 2: The structure into which every bilinear system
can be transformed
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Figure 3: Inverse of the chain structure, where r former
integrators have become differentiators

(ii) If the relative degree of an analogue system (as-
sumed to be represented by state equations) is not zero
then its inverse system has a generalised state represen-
tation [1], in which the state derivatives depend also on
derivatives up to the r-1-th order of the input y. The out-
put is a function of the rest states and the first r derivatives
of y.

B. Discrete-time Systems

Translated to discrete-time systems the relative degree
gives the number of time steps the current input is delayed
until it directly influences the output. However, discrete-
time systems with non zero relative degree cannot be di-
rectly inverted, since, as opposed to analogue systems,
there is no practical realisation of an inverse of a memory
element, i. e. there does not exist a causal inverse of a
time delay. Therefore it is reasonable (having inversion in
mind) to consider only zero relative degree discrete-time
systems.

III. CLASSIFICATION OF KNOWN INVERSE SYSTEM
EXAMPLES

A. Clircuit Realisations

All examples published so far realize inversion by treating
current and voltage of a 1-port alternatively as input and
output. One of the two possible situations is depicted in



Fig. 4. The RLDiode circuit is such an example [3]. The
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Figure 4: Inverse system realisation with a 1-port: the
V — I — V method

block diagram of the original system is shown in Fig. 5
and its inverse in Fig. 6. Obviously it is an r=1 exam-
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Figure 5: Block diagram of the RLDiode circuit with I:
inductor current, Q: charge of the diode capacity and Vp
: diode voltage
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Figure 6: Inverse system of the RLDiode circuit

show with the Ljapunov function for the difference be-
tween two solutions:

W(Q1,Q2) = (Q1 — Q2)? 9)

The derivative of 9 is negative definite which follows eas-
ily from the strictly increasing characteristics Vp(Q) and
Id(Vp).

One simple way to realise synchronisation, i. e. unique
asymptotic behaviour of the inverse system, is to choose
it as an 'addition’ of a linear passive circuit and a resistive
element with unique response to the driving variable.

In case the inverse system is voltage driven ’addition’
means a linear passiv circuit in parallel with a nonlin-
ear voltage controlled resistor. This method was realised
actually in [4] and [5] and the dual case (current driven
inverse with such two elements in series) in [6] with the
predestined to this Chua circuit.
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Figure 7: Circuit with unique asymptotic behaviour

Even though all examples are 1-port realisations they
have different relative degrees, actually r=0 od r=1. This
can be verified by drawing the block diagrams.

B. Discrete-time Systems

All discrete time system examples represent a chain struc-
ture see Fig. 8. Even old scrambling systems [9] turn out
to belong to this class. The examples differ in the kind of
state space and in the used nonlinear map f(x,u).
While in [3] and [7] real valued signals and the logistic
map resp. the Henon map are used, in [8] and [9] digital
signals and the nonlinear modular characteristic is used.
Of course, due to the finiteness of state space the latter
cannot be chaotic, but pseudo- random signals also serve
the purpose. Since only zero relative degree systems make
sense, the input immedately influences the output. The
system inversion reduces to the inversion of the output
equation. Since the inverse system is nonrecursive, at least

Figure 8: Chain structure and its inverse of the discrete-
time system examples

after N time steps the states of both system are identical.
Therefore synchronisation is obvious.

IV. DESIGN OF INVERSE SYSTEMS

If a system has a relative degree r=N, its inverse is zero
dimensional and simply realises a nonlinear static function
of y and its derivatives. Since in this case one does not
have to care about asymptotic uniqueness it seems desir-
able to choose input and output of a chaotic system so
that r=N. However, in this case any added channel noise
leads to serious errors in signal recovery because it is dif-
ferentiated several times. Therefore we propose a zero
relative degree structure in the sequel.



Figure 9: Genaral structure and its inverse, bold lines:
vector instead of scalar, for discrete-time system the vec-
tor integrator has to be replaced by a vector delay

A. General Structure

Our proposed structure has the following features:

(1) Since it has zero relative degree, it is applicable to
discrete-time systems as well.

(2) It is invertible if f(x,u) is invertible with respect to
u.

(3) It contains a unique static nonlinear system which
is real valued, i. e. it is similar to a Lur’e system [10].

(4) Tts inverse and therefore also the difference system
is a linear system with only a nonlinear output.

Ax = (A -b-cT) - Ax (10)

Au=u—us = fH(x,y—c"x1)—f 1 (x,y—cTx2) (11)

(5) Synchronisation (asymptotic uniqueness of the in-
verse system behaviour) is because of (4) easy to estab-
lish.

(6) Provided A and b are controllable it is possible to
design the synchronisation speed by setting the poles of
the linear inverse system by applying the Ackermann for-
mula in order to choose ¢T [11].

Note an even more general structure is possible by re-
placing the linear function ¢ - Ax by a common function
g(x) provided the inverse system has unique asymptotic
bahaviour. At this point it becomes clear how the chaotic
beaviour can be transformed into asymptotic uniqueness
by system inversion:

While ¢T- Ax (resp. g(x)) serves in the original system
only as part of the output function (*forward’) it becomes
the recursive part in the inverse system, where it therefore
decisively influences the system motion. And the nonlin-
ear function f(x,u) obviously responsible for the chaotic
motion of the original system serves in the inverse only for
the output, i. e. the roles of the recursive part and the
forward’ part are exchanged under system inversion.

B. Design Example

Here we apply our general structure to Chua’s circuit,
which is evidently a Lur’e type system. Since its linear

part is already passive we choose ¢T = 0. The resulting
circuit and its inverse is depicted in Fig. 10. As opposed
to the circuit examples published so far it is a non-1-port
realisation. By simulation obtained good synchronisation
results even under assumption of nonideal OPAmps.
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Figure 10: Design example: genaral structure applied to
Chua circuit - a non-1-port realisation
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