
Chapter �

Inverse System

��� Approach

Some of the transmission system examples can be treated from the general viewpoint of the inverse
system concept� The idea is to control a chaotic system� the transmitter� with an information signal� The
output of the transmitter� a chaotic broad band signal where the information is hidden� becomes after
transmission the input of the receiver which has to retrieve the information signal� In order to do this�
the receiver has to have an input�output relation inverse to that of the transmitter� Therefore we call it
the inverse system� Note that both the transmitter and the receiver are nonlinear dynamic systems� the
former hiding the information in chaos and the latter extracting the information from chaos�
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Figure ���� Inverse system principle

In practice� the information can only be retrieved� if the inverse system reproduces the input of the
original system� at least asymptotically in time� irrespective of the initial conditions of the receiver� In
this case� we say that the inverse sysnchronizes with the original system� This principle provides the
exact retrieval of the original input signal under ideal transmission conditions as opposed to the other
proposed methods which only approximately recover the information signal �chaotic masking	 or can
transmit multi�level discrete signals only �chaotic switching	�

The inverse system concept applies to analog� discrete�time and digital systems as well� In this chapter
a uni
ed view on and a classi
cation of known nonlinear inverse systems is presented�

����� Relation to the Pecora�Carroll Scheme

In section ����� we already considered the Pecora�Carroll synchronization scheme� Since according to Fig�
��� the inverse system is also driven by a transmitted signal the reader might be tempted to compare
the synchronization of inverse systems with the Pecora�Carroll driving scheme�

We emphisize� There are fundamental di�erences between the excitation of an inverse system by a
controlled source and the driving of a slave as proposed by 
���� which are summed up in Tab� ���� �By
Pecora�Carroll driving we refer to driving of a subsystem and to the error feedback approach�

��
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Pecora�Carroll Scheme Inverse System Principle
Transmitter has no input has an input

is autonomous is non autonomous
The receiver only the states the non transmitted states
reconstructs common to and retrieves

slave and master the transmitter input signal
In terms of circuit realizations�

If an emitter state �e�g� a capacitor voltage	 is transmitted
at the the corresponding memory element the state of the memory element
receiver is replaced by a controlled source is imposed by a controlled source

or its motion is in�uenced without replacing it
without imposing its state

Table ���� Relation between the Pecora�Carroll scheme and the inverse system principle

����� De�nitions

For the purpose of this chapter� we need a general de
nition of the inverse system and of its synchro�
nization� In order to keep the concepts at a suitable level of generality� we choose an input � initial state
� output description of systems rather than directly the state equations� The signals are de
ned on the
real time interval IR� � 
���	 for analogue systems and on IN � f�� �� �� � � �g for discrete�time systems�
We limit the discussion to single�input single�output systems� For a given system not all signals are
admissible and not any arbitrary signal can be produced at the output�

In words� the inverse system can be described as follows� The original system transforms an input
signal u into an output signal y� This transformation depends on the initial state vector x��	 of the
system at time �� The inverse system retrieves u from y if a suitable initial state ���	 is chosen�

De�nition ��� �System� A system is a transformation

� � D � IRN � R ����	

where D is the set of admissible input signals� the signal domain of �� and R is the set of output signals�
the range of �� In case of an analogue system� the elements of D and R are continuous functions
u � IR� � IR� whereas in the case of discrete systems� they are arbitrary functions u � IN � IR�

In both cases� for �u�x��		 in the domain of �� u � D is called the input signal� x��	 the initial state�
and y� its image under �� is called the output signal or response of the system� Finally� N is the order
of the system�

This de�nition is illustrated in Fig� ���� Instead of continuous signals for analogue systems� we could
extend the signal space to discontinuous signals and even to distributions ���	�
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Figure ���� De
nition of a system

Remark ��� According to the de
nition above each system has its set of admissible signals D� This
could obey any admissibility criteria one is free to specify for the system� �Obviously� this speci
es also
the range R	 Such admissibibility creteria could require e�g� the existence and uniqueness of the soltution
for the whole future in case the system is described by ordinary di�erential equations �ODEs	� cf� section
������ The results to be derived in this section are valid for all such speci
cations� because they refer only
to this system de
nition�
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De�nition ��	 �Inverse System� A system ��� with signal domain D�� range R� and order N � is an
inverse of the system � of order N� if the following conditions are satis�ed
a
 D� � R and R� � D
b
 For every input signal u � D and every initial state x��	 � IRN of � there exists an initial state ���	
of ��� such that

����y� ���		 � u ����	

where y is the output signal of �� i�e�
y � ��u�x��		 ����	

c
 For every input signal v � D� and every initial state ���	 � IRN �

of ��� there exists an initial state
x��	 of � such that

��z�x��		 � v ����	

where z is the output signal of ���� i�e�

z � ����v� ���		 ����	

This de�nition is illustrated in Fig� ���
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Figure ���� De
nition of the inverse system

Remark ��	
a	 De
nition ��� is symmetric in � and ���� Therefore� � is always an inverse system of ����
b	 One could assume that in order to possess an inverse� the system should be given by an injective

mapping �� However� this is not necessary� Consider the di�erentiator� Its order is � and its signal
domain is composed of the continuously di�erentiable functions on IR�� Signals that di�er only by a
constant lead to the same response� and thus the di�erentiator is not injective� Its inverse is the integrator�
a system of order � �and olso of relative degree �� cf� section ���	�

Z
� �y� ���		� z ����	

where

z�t	 � ���	 �

Z t

�

y��	d� ����	

Given an output y of the di�erentiator� the integrator can reproduce the right input signal of the di�er�
entiator by choosing the appropriate initial condition ���	�

c	 Even though by de
nition the signal domain and the range of the inverse system are uniquely
de
ned� the inverse system itself is not unique� The relation between di�erent inverses will be clari
ed
later in this section�

d	 It is not unusual that the order of an inverse system is di�erent from the order of the original
system� The next section discusses this point in detail�

e	 Note that the inverse system reproduces the input signal of the original system only if the correct
initial state is chosen� For any other initial state� the output of the inverse system u��t	 will be di�erent�
at least for some time� If� after some transient oscillations have died out� the inverse system always
reproduces the input signal� we say that it synchronizes with the original system�
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����� Synchronization versus Unique Asymptotic Behaviour of the Inverse

System

De�nition ��� �Synchronization of Inverse Systems� The inverse system ��� synchronizes with
the original system � if for every input signal u � D� every initial state x��	 � IRN of � and every initial

state ���	 � IRN �

of ���

ju�t	� u��t	j �� � as t�� ����	

where
u� � ����y� ���		 ����	

and y is given by Equ� ����
�

Remark ���
a	 De
nition ��� is not symmetric in � and ���� If ��� synchronizes with �� it may well be that �

does not synchronize with ���� This actually is the case for the systems we are interested in�
b	 Synchronization can be expressed in terms of the behaviour of the inverse system alone� without

extra reference to the original system� This will be the essence of proposition ���� This proposition relies
strongly on part a	 and c	 of de
nition ���� namely that only such signals� which can be �produced� by
the original system� are by de
nition admissible to the inverse system� Thus no extra reference to the
original system is needed� in order to specify the input� This and the fact� that for every admissible
input at least one initial state leads to perfect signal reconstruction� allows to give the amazing statement
above �cf� also to remarks ��� and ���	�

De�nition ��
 �Unique Asymptotic Behaviour� A system � � D�IRN � R has unique asymptotic
behaviour if for all input signals u � D and any two initial states x��	�x���	 � IRN the corresponding
output signals y� y� � R satisfy

jy�t	� y��t	j �� � as t�� �����	

Proposition ��� �Synchronization �� Unique Asymptotic Behaviour� An inverse system ���

synchronizes with its original � if and only if ��� has unique asymptotic behaviour�

Proof�
Let � � D � IRN � R and ��� � R� IRN �

� D
�Only if� part of the proposition�

Suppose that ��� synchronizes with �� Consider an input signal v � R and two initial states ���	� ����	 �

IRN �

of ���� Let the corresponding output signals of ��� be z and z�� According to part c	 of de
nition
��� for the inverse system there exists an initial state x��	 � IRN of � such that

��z�x��		 � v �����	

Furthermore� according to de
nition ��� for synchronization� applied to the initial state ����	 of ���� it
follows that

jz�t	� z��t	j �� � as t�� �����	

This proves that ��� has unique asymptotic behaviour�
�if� part of the proposition�

Suppose that ��� has unique asymptotic behaviour� Consider an input signal u � D and an initial state

x��	 � IRN of � and an initial state ���	 � IRN �

of ���� Let y be the output signal of � corresponding
to u and x��	 and z the output signal of ��� corresponding to y and ���	 � According to part b	 of

de
nition ��� for the inverse system� there exists an initial state ����	 � IRN �

of ��� such that the output
signal of ��� corresponding to y and ����	 is precisely u� On the other hand� according to de
nition ���
for unique asymptotic behaviour�

jz�t	� u�t	j �� � as t�� �����	

This proves that ��� synchronizes with ��
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In the next section� we will analyse the inverse by using a certain system transformation� For this
purpose� we need the notion of equivalent systems�

����� Equivalence of Systems

De�nition ��� �Equivalence of Systems� Two systems � � D� IRN � R and �� � D�� IRN �

� R�

are equivalent� if the following conditions are satis�ed a
 D � D


b
 For each input u � D and initial state x��	 � IRN of � there exists an initial state x���	 � IRN �

of
�� such that �� excited by u produces the same output as �� i�e�

��u�x��		 � ���u�x���		 �����	

c
 For each input u� � D� and initial state x���	 � IRN �

of �� there exists an initial state x��	 � IRN of
� such that � excited by u� produces the same output as �� � i�e�

���u��x���		 � ��u��x��		 �����	

In this case� we shall write � � �� �

Remark ��

a	 Conditions b	 and c	 imply the existence of a bijective transformation between the states of �

and ��� Conversely� any transformation of the states de
nes an equivalent system� Note that this
transformation may depend on the input signal�

For any reasonable example� this implies that the orders N and N� of the systems are the same�
Otherwise the map between the states were not di�erentiable and the existence of a system motion
describing vector 
eld is questioned� However� often the purpose of such transformation is to elucidate
certain properties of the system by features of a special equivalent system� which is required to be
described by a ODEs� Actually� this is what we intend too� cf� section ������

b	 Equivalent systems have the same behaviour modulo the state transformation equivalence implies�
Proposition ��� is one aspect of this fact� Its proof is obvious�

Proposition ��	 If two systems � and �� are equivalent� then � has unique asymptotic behaviour if and
only if �� has unique asymptotic behaviour�

Proposition ��� All inverses of a system are equivalent� Furthermore� they either all synchronize with
the original system� or they all fail to synchronize�

Proof�
Let � � D� IRN � R be a system� Let ��� � R� IRM � D and �

�
�� � R� IRM �

� D be two inverses
of �� Consider an input signal v � R and an initial state ���	 � IRM of ��� and let the corresponding
output signal be z� i�e�

z � ����v� ���		 �����	

We have to show that there exists an initial state ����	 � IRM �

of �
�
�� such that

z � �
�
���v� ����		 �����	

According to condition c	 of de
nition ���� there exists an initial state x��	 of � such that

v � ��z�x��		 �����	

Applying now part b	 of de
nition ���� there exists an initial state ����	 of �
�
�� such that Equ� �����	

holds�
A similar argument can be given when the roles of ��� and �

�
�� are interchanged� This proves that

��� and �
�
�� are equivalent�

To prove the second part of proposition ���� we note that proposition ��� implies that either ��� and
�

�
�� both have unique asymptotic behaviour or they both do not� Finally� proposition ��� implies that

either ��� and �
�
�� both synchronize with � or they both do not�
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��� Relative Degree

In order to 
nd out whether an inverse system synchronizes� i�e� whether it recovers the original input
u� the usual method is to investigate whether the states of the inverse system converge to those of the
original system� It is natural to consider the di�erence system� i�e� the di�erence between the transmitter
and the receiver states� and the global asymptotic stability of its origin� The reader might suppose that
the dimension of the di�erence system is N � the order of the original system� However in the following we
will show that the inverse system can be of lower dimensionality than the original system� In such a case�
the correspondance between the states of the original and the inverse system is not obvious� Fortunately�
by proposition ���� synchronization can be shown by establishing the unique asymptotic behaviour of the
inverse system� This corresponds to considering the di�erence system for two solutions of the inverse
system� Thus� establishing synchronization may lead to a lower dimensional di�erence system�

����� Analogue Systems

The notion of the relative degree and the later used state transformation originate from 
��� whereas the
other results are derived by us�

First Idea

As a 
rst example� consider the system of Fig� ���� It consists of a pure integrator chain� a feedback
and an input� Assume that the last state of the system is the output then the inverse of this system has
the form depicted in Fig� ���� Note that it obviously has no proper dynamics anymore since it does not
contain any integrator� The inverse simply realizes a static function of the input and its derivatives�

. . .
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nonl inea r
func tion

u

Figure ���� Analogue system consisting of a pure integrator chain
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Figure ���� Inverse of the system in Fig� ��� realizing a static function of the input and its derivatives

Usually chaotic analogue systems have not such an ideal integrator chain structure� In the sequel
we will determine how many integrators from a given chaotic system with chosen input and output are
converted into di�erentiators in the inverse system� This is also the number by which the dimension N
of the original system is decreased in the inverse system� It turns out that this number is independent
of the particular realization of the original and the inverse system� We will show that it is the relative
degree r of the original system�
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De�nition of the Relative Degree

In order to have a precise mathematical framework� we consider systems that are given by global state
equations and we restrict our analysis to single�input single�output systems� The relative degree is de
ned
for systems� the ODEs of which are linear with respect to the input 
���� Therefore� we will call them
inputlinear systems in the sequel� Most examples published so far in the context of communication with
chaotic signals belong to this category� The state equations of an analogue inputlinear system of order
N are of the form

�x � f�x	 � g�x	 	 u

y � h�x	 �����	

u�t	� y�t	 � IR�� x�t	 � IRN

where u is the input� y the output and x�t	 is the state vector�

De�nition ��
 �Relative Degree� An inputlinear system has the relative degree r at the point x� if

LgL
k
f h�x	 � � �����	

for all x in a neighborhood of x� and all k � r � � and

LgL
r��
f h�x�	 
� � �����	

where Lab denotes the Lie�derivative�
See appendix A for a more detailed consideration� It turns out that�
The relative degree� r� indicates exactly which is the lowest output derivative that is directly in�uenced
by the input� i�e� the number of times one has to di�erentiate the output y�t	 to have the input u�t	
explicitely appearing� Equivalently� r is the minimal number of integrations the input signal undergoes
until it reaches the output�

Remark ��� �About the De�nition of the Relative Degree�
�a	 One could extend the de
nition of the relative degree� r� to other systems in the sense that it

still indicates the lowest output derivative that is directly in�uenced by the input� But if the system
motion does not depend linearly on the input� then r can depend on the input value� The restriction to
inputlinear systems provides the possibility to determine the lowest� input�in�uenced output derivative
irrespective of the speci
c input� i�e� as a feature of the system at all�

�b	 Because f �g and h are function of x the lowest� input�in�uenced output derivative� can depend
on the system state x� Namely� a �dependence factor� can vanish at only a singular point of state
space� Therefore the de
nition of the relative degree considers not just single points but neighborhoods�
Consequently� there can be points of state space� where the relative degree is not de
ned� However� for
sake of simplicity we restrict our further considerations to systems� the relative degree of which is de
ned
for all x�

�c	 In case the output function h depends directly on the input signal we say the relative degree is ��

Well�De�ned Systems

In order to assure that Equs� �����	 determine a well�de�ned system� i�e� it serves our purposes� we
suppose that�

� u � D � C��IR�	� i�e� that the input signals are continuous functions de
ned on IR�� additionally
we require them to be bounded�

� that the functions f �g � IRN � IRN and h � IRN � IR belong to C��IRN 	� the functions that can
be di�erentiated any number of times�

� and that the solutions of Equs� �����	 exist for all times t � 
���	�
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Under these conditions� the system � realizes a map D�IRn � R � C��IR�	 �continuously di�erentiable
functions	 de
ned by � � �u�x��		 � y� where the output signal y is obtained from the unique solution
x of the state equations with initial condition x��	� This follows directly from the theory of the existence
and uniqueness of solutions of ordinary di�erential equations �ODEs	 
��� We could relax the requirements
on fand g to simple di�erentiability� or Lipschitz continuity� but the determination of the relative degree�
which we require to be de
ned� uses repeated di�erentiation �cf� appendix A	�

Remark ��
 Note� the conditions we require to hold for a well�de
ned system ensure that the system
solution exists for t � 
���	 and that the relative degree is de
ned for any input�output situation� Since
the condition concerning the input signal is su�cient but not necessary it possibly constrains the domain
D which would serve our purposes too� This constrains necessarily the range R as well� But since the
propositions of the last section hold for any speci
cation of the domain nothing is changed with respect
to the application of the propositions�

Remark ��� Practical realizations of analogue systems are often circuits� But circuits are described by
di�erential algebraic equations �DAEs	� The above requirements for a well�de
ned system imply that the
circuit motion is described by ODEs which neither have forward impass points nor have a changing order�
In chapter � we will describe how the dimension of the state space depends on the network structure� It
follows that the order of the describing ODEs can change� when circuit elements provide characteristics�
the parts of which lead to di�erent structures� Fig� ��� depicts a circuit example where the order of
the system changes resp� where the system has a forward impass point 
���� Namely� it is an C��impass
point� i�e� the ciruit possesses a solution but which is not bounded di�erentiable� In both cases the circuit
system does not meet our requirements�

s( t )

v

i

i

v

a)

i

v

b)

P

Figure ���� Circuit example� in case the nonlinear resistor has the characteristic �a	� the outer parts
of the characteristic provide a one dimensional system� while the inner part implies a zero dimensional
system �the signals of which depend also on �s�t		� case �b	� the vertical tangent in P �which corresponds
to a voltage source	 provides� that the dimension of the linearized circuit changes at this point� This
indicates an impass point

Chain Structure and Its Inverse

Proposition ��
 The system of Equs� �����
 with relative degree r is equivalent to the system in Fig�
��� where the output and its �rst r�� derivatives are states�
This proposition is a crucial result of 
���� It is based on the state transformation given in appendix B�

The transformation of states given in appendix B is a clue to the understanding why under system
inversion the dimension is decreased by r� Assuming that this transformation is a di�eomorphism� an
equivalent system �cf� De
nition ���	 can be considered� It has the structure of Fig� ����

Since the system of Fig� ��� contains a pure integrator chain of length r we call it the chain structure�
The system of Fig� ��� is obviously an inverse of the system of Fig� ���� It shows that r integrators of
the original system are converted into di�erentiators� The non vanishing term of Equ� �����	 is the real
valued function a�z	 in Figs� ���� ���� as derived in appendix B� Thus the invertibility is guaranteed
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Figure ���� The structure into which every inputlinear system can be transformed
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Figure ���� Inverse of the chain structure in Fig� ��� realizing a N � r dimensional dynamic system
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if Equ� �����	 holds in the whole state space� Therefore we required the relarive degree to be globally
de
ned �remark ���b	�

The time evolution of the inverse chain structure depends on y and its 
rst r � � derivatives� This
corresponds to the generalized state representation in 
���� The input is to be recovered as a function of
the 
rst r derivatives of y and the n� r rest states� We conclude�

Proposition ���

�� The inverse of a relative degree equal to r system is N�r dimensional and it is therefore su�cient to
consider an N�r dimensional di�erence system in order to decide whether the systems synchronize
or not�

�� If the relative degree of an analogue system �assumed to be represented by state equations
 is not
zero then its inverse system has a generalized state representation� in which the state derivatives
depend also on derivatives up to the r � ��th order of the input y� The output is a function of the
rest states and the �rst r derivatives of y�

The proof follows directly from proposition ���� the fact� that the system structure of Fig� ��� is according
to de
nition ��� obviously an inverse of the structure in Fig� ��� and proposition ����

����� Discrete�time Systems

The state equations �����	 become� in the discrete�time case

x�n� �	 � f�x�n		 � g�x�n		 	 u�n	 � xn���xn� un	

y�n	 � h�x�n		 � yn�xn	 �����	

u�n	� y�n	 � IR�� x�n	 � IRN and f� g� h � C��IRN 	

Remark ��� �Translation of the term �relative degree� to discrete�time systems�
Translated to discrete�time systems the relative degree gives the number of time steps the current input
is delayed until it directly in�uences the output�

For analogue systems the relative degree is determined by repeated derivatives of h with respect to f
and g at each point of state space� But in order to determine the relative degree for discrete�time systems
one derives the output after repeated mapping steps yn�i�xn�i�xn�i���xn�i���� � �	� un�i��	� un�i��		
with respect to un� Therefore� the requirements on f �g and h are relaxed to simple continuous di�eren�
tiability in �����	�

Note� the derivatives on f �g were to be calculated at di�erent points of state space� namely those
following each other under the system �ow� It clearly depends on the input signal and can therefore not be
assigned to one point� In any case these conditions are su�cient to provide the possibility to determine
the relative degree� They are by no means necessary for systems to serve our purposes �information
coding � decoding	�

However� we omit further consideration of these things since we will stick to zero relative degree
discrete�time systems for the reasons explained below�

In the following we will show that discrete�time systems with non zero relative degree cannot be
directly inverted� since� as opposed to analogue systems� there is no practical realization of an inverse of
a memory element� i�e� there does not exist a causal inverse of a time delay�

Consider the simple example given in Fig� ���a� It has the relative degree one and clearly the inverse
�Fig� ���b	 requires an inverse of a time delay� Of course� from the application point of view� we can
be satis
ed by recovering a time�delayed version of the input� For this purpose� we delay in the original
system all signals �Fig� ����	 except the output� This corresponds to a shift of the time delay element
over the operation node in Fig� ���a� The inverse of this modi
ed system is depicted in Fig� ����b and
does not require an inverse of a time delay� Therefore� this system is also an inverse of a system with
relative degree zero �Fig� ����a	� It follows�
Having inversion in mind it is reasonable to consider only zero relative degree discrete�time systems�
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Figure ���� �a	 A discrete�time system with relative degree � �b	 Inverse of the system in �a	� requiring
the inverse of the time delay

T
u ( n - 1 ) x ( n ) = y ( n )u ' ( n )

f ( x ( n - 1 ) ) f ( . )T

Figure ����� System of Fig� ���a with the time delay shifted over the summation node and thereby
decreasing the time index of the signals at the summation node

u ' ( n ) = u ( n - 1 ) x ( n ) = y ( n )

f ( x ( n - 1 ) ) f ( . )
T

u ' ( n ) = u ( n - 1 ) x ( n ) = y ( n )

f ( x ( n - 1 ) ) f ( . )
T

a ) b )

Figure ����� Systems with relative degree zero �a	 inverse of the inverse of the system in Fig� ���� with
input u��n	 � u�n� �	� �b	 inverse of the system in Fig� ���� with output u��n	 � u�n� �	
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����� Relation to the Inversion of Linear Systems

Linear systems can be described �provided they are controllable and observable	 by transfer functions
in the complex domain� It is well known that the inverse of a linear system is described by the inverse
of the transfer function� We demonstrate this with one realization of a linear system with the transfer
function�

G�s	 �
�
Pm

i�� bis
i

PN

i�� ais
i

�����	

Without loss of generality we can assume aN � �� The corresponding obeserver canonical form �all
feedback comes from the output	 is depicted in Fig� ����a�
In terms of linear systems the relative degree is exactly the di�erence between the degree of the denominator
and the numerator polynomial of the transfer function� r � N �m� Clearly the system in Fig� ����b is
an inverse of the system in a	� An equivalent structure for discrete�time systems is obtained when all
intergrators are replaced by time�delays�

a 0 a 1 a n - r a n -1

b 0 b 1 b n - r

. . . . . .

. . .

. . . . . .

u

y

a )

a 0 a 1 a n - r a n -1

b 0 b 1 1 / b n - r

. . . . . .

. . .

. . . . . .

u '

y

b)

d  
d t

d  
d t

Figure ����� a	 Observer canonical form of a linear system� b	 its inverse� all integrators replaced by time
delays gives the structure for discrete�time systems

The realization of the linear inverse system has the same features as just derived for the general case�
If the relative degree� r� of the original system is � �� i�e� the degree of the denominator polynomial

is larger than the degree of the nominator� then�
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analogue systems� the inverse system contains r di�erentiators�

discrete�time systems� the inverse system is not directly realizable because of the dead time property
implied by r � ��

As for the relative degree in general� the di�erence of the degrees of the transfer function polynomials
indicate the number of di�erentiations an input siganl undergoes until it in�uences the output� whereas
for discrete time systems it is the number of time delays until the actual input value in�uences the output
�its dead time� Consequently� the inversion of the transfer function demands non causal elements in case
of discrete�time systems� The mentioned dead time property cannot occur for analog systems which are
described by ODEs� because it demands systems with distributed parameters�

Unique asymptotic behaviour of the inverse system corresponds �provided it is observable	 in terms
of linear systems to the fact� that the zeros of the transfer function of the original system are situated
in case of

analogue systems in the left complex half�plane� and in case of

discrete�time systems inside the unit circle�

�Such systems are minimum phase systems�	 This guarantees that the inverse system is asymptotically
stable �cf� also section �����	�

����� Equivalent Approach for the Determination of the Relative Degree

Since the relative degree is the minimal number of integrations the input signal undergoes until it in�
�uences the output it can be usually recognised from the block diagram of the original system� As an
example we consider the block diagram of 
��� which represents the Chua�s circuit with an input u realized
by a current source in parallel to the capacitotor C� �Fig� ����	�

R

L

i(t)

C 2C 1R N

Figure ����� Example for a transmitter system� Chua�s circuit driven by a current source

Clearly� choosing the capacitor voltage vC� 
 x� as output� the minimal number of integrators between
input and output is one� But choosing the other capacitor voltage vC� 
 x� resp� the inductor current
iL 
 x� as output leads to r � � resp� � �Fig� ����	� �We use here the customary normalisation of Chua�s
circuit� cf� e�g� 
��	� The nonlinear static function corresponds to the nonlinear resistor	

This gives an idea that the relative degree is a feature of the structure of a system� That means not
the speci
c functions on the right side of the ODE of the original system determine the relative degree
but the structure� i�e� which state is in�uenced by the input and by which other states� In chapter � we
will give an approach suitable for determination of the relative degree of analogue systems in terms of
the structure of the circuit realization�
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α
x 1

non linea r
s ta tic func tion  g

u y

x 2

x 3

−β

1/α
x 1

no nlin ear
s ta tic  funct ion  g

u y

x 2 '

x 3 '
−β

d 
dt

a) b )

y

y

x 1

x 2

x 3

.

.

.

x 1
.

x 2 '
.

x 3 '
.

Figure ����� Example showing that the minimal number of integrators between input and output is
converted into di�erentiators by system inversion� a	 original� b	 inverse system in case x� was the output
of �a	� It is easy to check that in case x� resp� x� were the output the inverse has � resp� � di�erentiators

����� Extension to Multi�Input Multi�Output Systems

Actually� it is possible to extend the approach to multi�input multi�output systems� The results are
absolutely equivalent to those presented so far� The systems under consideration are assumed to be
inputlinear as well� i�e� Equs� �����	 hold with

g�x	 � �g��x	� � � � �gm�x		 �����	

h�x	 � �h��x	� � � � � hm�x		
T �����	

u�t	�y�t	 � IRm� x�t	� f�x	�gi�x	 � IRn� hi�x	 � IR� i � �� � � � �m

The relative degree r is due to the multi�output a vector which assigns to each output yi i � � � � �m
a real number ri which indicates that up to the ri � ��th derivative of yi none is in�uenced by any of
the input signals ui i � � � � �m� But the ri�th derivative of yi is in�uenced by at least one of the input
signals ui �the de
nition of the relative degree requires even more	 
����

De�nition ��� �Relative Degree of a MIMO System� An inputlinear system has the vector rela�
tive degree r � �r�� � � � � rm	 at the point x� if for i � �� � � � �m

��
LgjL

k
f hi�x	 � � for j � �� � � � �m and k � ri � � �����	

for all x in a neighborhood of x�

�� the m�m�Matrix

A�x	 �

�
��

Lg�L
r���
f h��x	 	 	 	 LgmL

r���
f h��x	

���
� � �

���

Lg�L
rm��
f h��x	 	 	 	 LgmL

rm��
f h��x	

�
�� �����	

is nonsingular at x � x�
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Equivalent to the SISO�system case there exists a transformation of states leading to a chain structure
depicted in Fig� ����� if additionally the spanfg�� � � � �gmg is involutive 
���� Every output yi corresponds
to a chain of length ri and there are a few rest states�

The MatrixA�x	 represents under the condition �����	 the Jacobian matrix ��
�r��
y� �����

�rm�
ym �T

�u
� Its position

in the chain structure clari
es why the de
nition of the relative degree requires u�y to be of the same
dimension m� In fact the nonsingularity of A�		 provides sort of a controllability of the original system�
On the other hand it allows the inversion of the matrix and therefore of the whole system� Fig� �����

. . .
y m y m

A(z ) B(z)

n- Σr i

d imen sio nal
subsystem

..
.

z r e s t

(r m )
u

n

u 1
u 2

u m

..
.

m mx

.. .
y 2 y 2
(r 2 )

. . .
y 1 y 1 y 1 y 1 y 1

. . .(r 1 ) (r 1 -1 )

..
.

..
.

..
.

..
.

m

1

Figure ����� System structure into which every inputlinear MIMO system with relative degree r �
�r�� � � � � rm	 can be transformed

If the number of inputs Nu were smaller than the number of outputs m or which is equivalent the
rank�A	 � m then not every control signal � IRm could be �produced� by A 	 u�

If Nu was bigger than m several input signals produce the same control signal� In terms of information
coding this corresponds to a loss of information�

In Fig� ���� we present a MIMO�circuit and its inverse� It is an r � ��� �	 system� In the inverse
system every original input branch is converted into a norator and every original output branch involves
a nullator� This clari
es in terms of circuits why system inversion requires the number of inputs to be
equal to the number of and outputs� Otherwise the inverse network had a di�erent number of nullators
and norators which implies its singularity�

��� Classi�cation and Analysis of Inverse System Examples

In this section we classify inverse system examples published so far with respect to their relative degree�
the kind of their inverse system and their circuit realization method �in case of analogue systems	� The
corresponding state equations can be read out of block diagrams or one could consult the references�

����� Circuit Realizations

We dealt with dynamical systems by means of block diagrams so far� We now show how the inverse
system can be realized by electrical circuits� All examples of this section realize the inversion by treating
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. . .
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m mx

. . .
y 2 y 2
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. . .
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Figure ����� Inverse of the system in Fig� ���� realizing a N �
P

ri�dimensional system

y 2

u 2

u 1

y 1

u 2 '

y 2

u 1 '

y 1

b)a)

Figure ����� Example of a MIMO system and its inverse� Chua�s circuit with r � ��� �	
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current and voltage of a one�port alternatively as input and output� A one�port which is driven with a
�information bearing	 voltage as input and whose current is taken as output can be inverted by driving
it with a current source and by using the port voltage as output �Fig� ����a	� We call this the v � i� v
method and the opposite case the i� v � i method� If synchronization takes place� the voltage on the
current source is a copy of the information signal�

i v 'v

i
-R i

i

R

v

R

v '

a) b)

Figure ����� one�port Inversion �a	 the v � i � v method �b	 circuit realization� The hatched box
represents the nonlinear dynamical one�port� whereas the white box is a reference resistor R

Remark ��� Note� circuit inversion is achieved by use of op�amps� e�g� the op�amps in Fig� ����b serve
as current � voltage resp� as voltage � current converters� Each op�amp� is supposed to work as an
ideal operational ampli
er� i�e� as a nullator�norator pair� In this section we consider synchronization
only for the ideal inversion i�e� the ideal op�amp� case� whereas section ����� is devoted to the in�uence
of nonideal op�amps�

RLDiode Circuit Example � Experimental Results

The RLDiode one�port �Fig� ����	 is used� which produces a chaotic current if excited by a periodical
voltage 
���� In order to transmit information the periodic driving voltage can be modulated� A signal
corresponding to the chaotic one�port current is to be transmitted� This example illustrates the v � i� v
method a circuit realization of which is depicted in Fig� ����b�

i(t ) L

D

R

v(t)
q (t)

Figure ����� RLDiode�circuit

Next we determine the relative degree of this example� establish its synchronization and present
experimental results�

Relative Degree�
The diode is modelled by a nonlinear resistor and a nonlinear capacitor connected in parallel� We suppose
that both the nonlinear resistor characteristic id�vd	 and the nonlinear capacitor characteristic vd�q	 are
strictly increasing� The circuit motion is described by the state equations�

�q � i� id�vd�q		

�i �
v � vd�q	�R 	 i

L
�����	

�����	

where the one�port voltage v is the input and its current i is the output�
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Here we will determine the relative degree by pure inspection of the block diagram� The determination
according to the de
nition by means of Lie�derivatives is performed in appendix A�� and leads to the
same result�

The block diagrams of the original and the inverse system are depicted in Fig� ���� and Fig� �����
They show clearly that this example has relative degree r � �� since between input and output there
is one integrator� namely the inductor� which is converted into a di�erentiator in the inverse system�
Therefore the inverse system is a nonlinear dynamic one�port of order n� r � ��

1/L
iv(t)

i(0 )

i

R i d (v d ) v d (q)

Inpu t Ou tput

q

q(0 )

q
. .

Figure ����� Block diagram of the RLDiode circuit where i is the inductor current� q is the charge of
the diode capacity and vd�q	� id�vd		 are the characteristics of the nonlinear capacitor and the nonlinear
resistor of the diode

L
iv( t) i

R i d (v d ) v d (q)

In putOutput
q '

q (0)

q '
..

d 
d t

Figure ����� Inverse system of Fig� ����

Synchronization�
According to proposition ��� we have to establish unique asymptotic behaviour of the inverse system in
order to assure synchronization� i�e� the perfect recovering of the information signal�

In order to prove unique asymptotic behaviour we simply apply a Ljapunov function for the one
dimensional di�erence system�

V �q�� q�	 �
�q� � q�	

�

�
�����	

�V �q�� q�	 � ��q� � q�	
id�vd�q�		� id�vd�q�		� � � for q� 
� q� �����	

Since the nonlinear resistor characteristic id�vd	 and the nonlinear capacitor characteristic vd�q	 are
strictly increasing� the function id�vd�q		 is also strictly increasing� which implies �����	

Experimental Results�
We present some experimental resuts which will show that�
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�� The principle works with a certain robustness against parameter mismatch between transmitter
and receiver�

�� The information can be fairly well hidden in the transmitted broad band signal�

Fig� ���� shows experimental results under laboratory conditions� The signal retrieved at the receiver
coincides quite good with the original input signal� But the transmitted chaotic signal seems to be
uncorrelated to the information signal� These facts are also con
rned by Fig� ����� The frequency spectra
of the information and the transmitted signal are depicted in Fig� ����� Although the main frequency is
still distinguishable in the transmitted signal the due to the amplitude modulation information bearing
part is not detectible there�

�a	 �b	

Figure ����� Experimental results of the RLDiode inverse system realization� wave forms� ch �� input
�a	 AM�signal� �b	 PSK�signal� ch� �below	� transmitted chaotic signal� ch� �middle	� retrieved signal

Figure ����� left� a fairly good transfer characteristic� retrieved signal versus input signal� right� trans�
mitted signal versus input signal� when the information was an AM signal

Saito and Chua�s Circuit Example

Saito Circuit Example�
Another inverse system realization is proposed in 
���� It treats the Saito�circuit as a one�port �Fig� ����	�

The output of the transmitter is the one�port voltage vout�

vout � �r�i� iL	 �����	

Equ� �����	 indicates clearly that it is a zero relative degree system since the input i directly in�uences
the output �cf� remark ���c	�

The circuit as given in Fig� ���� does not have a conventional state representation because the
hysteretic element does not provide a single valued function� For such systems the synchronization
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Figure ����� Frequency spectra showing a fairly well hidden information in the tansmitted signal� ch��
input AM�signal� ch��transmitted chaotic signal �representing the current	

R

C

RLi( t ) i L

i ' ( t )

C
-r

L

v h(v) -r h(v' )v '
v

h(v)

a) b)

Figure ����� �a	 The Saito circuit treated as one�port and its inverse from 
��� �b	 the nonlinear element
of the Saito circuit� the hysteretic voltage controlled voltage source

cannot be established directly by means of a unique asymptotic solution of an ODE because it is not
described by such� However� one can consider the system with an additional state introduced by a one�
pole model of the operational ampli
er which realizes the hysteretic �function� h�v	 �cf� 
���	� But even
for this extended system synchronization is di�cult to prove analytically� Nevertheless� synchronization
has been observed by simulation in this example�

Examples using the Chua�s Circuit�
The following three realizations of inverse systems use Chua�s circuit� Their characteristics are given in
Tab� ����

Example Relative Realization Kind of the
degree method inverse system


��� � i� v � i passive linear circuit k nonlinear vc�resistor
one�port � voltage driven �


��� � i� v � i passive linear circuit k nonlinear vc� resistor
one�port � voltage driven �
i� v � i �� nonlinear vc� resistor�


��� � v � i � � � i� v �� passive linear circuit in series
with a nonlinear cc� resistor

� times one�port� �� � voltage driven � � �� � current driven �

Table ���� Features of the examples using the Chua�s circuit� vc�� cc� resp�k stand for voltage�� current
controlled resp� for �in parallel with�
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i 2 ' ( t )

R

C 1

R

L L
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Figure ����� Three realizations of inverse systems with Chua�s circuit� a	 from 
���� b	 from 
��� and c	
from 
���



CHAPTER �� INVERSE SYSTEM ��

Relative Degree�
All examples represent one�port realizations of inverse systems �see below for detailed argumentation	�
But the relative degree is either � or �� This is due to the di�erent relations between one�port voltage
and current in the system descriptions�

As already discussed in section ����� the block diagram of example 
���� Fig� ����� reveals that there is
one intergrator between the one�port current and its voltage� The 
��� example is somewhat equivalent�
The signal is injected by a source voltage e�t	� The current through the voltage source and the resistor
Rs is

i�t	 �
e�t	� vC�

Rs

�����	

Imagining that this current is injected by a source� we have the same situation as before� The i� v � i�
method is applied at the same one�port� Thus the relative degree is also �� The determination of the
relative degree according to its de
nition ��� stops at the 
st step� i�e� already Lgh�x	 
� ��

The 
��� example is not an inputlinear system� However� the extension of the de
nition of the relative
degree according to remark ���a	 allows to establish a zero relative degree� It is obvious again with the
output equation� y�t	 � vC��t	 � e�t	� i�e� the input directly in�uences the output� This holds also when
the one�port current was the output because it is related via the static nonlinear resistor characteristic
to the voltage�

Synchronization�
According to the zero resp� one relative degree of these original three dimensional systems the inverse
systems are � resp� � dimensional� However here we do not consider state equations in order to establish
synchronization but will argue with circuit theoretic ideas�

For the 
rst two examples� which represent the i � v � i� method� the inverse system is a voltage
driven one�port� which consists of a voltage controlled resistor in parallel with a linear passive circuit�
Thus� the currents of both parallel branches have a unique steady state and their sum� the one�port
current as well� This proves that the system synchronizes and the current i is asymptotically retrieved�
In case of the 
��� example by adding the resistor Rs in parallel to the one�port� the one�port current
becomes e��t	�Rs �cf� Equ� �����		 which is proportional to the desired information signal e�t	�

The 
��� example can be considered as the dual case to the 
��� example in the sense that a one�
port consisting of a nonlinear current controlled resistor �if the well known ��segment characteristic is
assumed	 in series with a linear passive circuit is excited by a voltage signal e�t	� The direct inverse
would be the same series circuit with a signal injecting current source i�t	� replacing the voltage source
e�t	� However� the practical realization of the nonlinear resistor has a ��segment characteristic which is
not current controlled� Therefore the current that is to be transmitted in the v � i� v method is 
rst
converted into a voltage by another one�port� namely the nonlinear resistor� This realizes a unique map
when the system evolves within the range of the ��segment charcteristic as is provided in this realization�
This voltage is transmitted and reconverted into a current at the receiver by the nonlinear resistor� Again�
the output of the inverse system is a sum of signals that are asymptotically identical to the corresponding
signals in the original system� as discussed above for the dual case �currents instead of voltages	�

Note� the nonlinear resistor in Chua�s circuit is supposed to be voltage and current controlled under the
above mentioned restriction� We noted always only that property� which was just necessary to establish
unique signals�

����� Discrete�time System Realizations

All discrete time system examples to be considered here contain the chain structure of Fig������ Since
the input immediately in�uences the output the zero relative degree is evident�

According to section ����� it must be a zero relative degree structure in order to be invertible� There
is only one exception� 
��� with relative degree �� cf� Fig� �����

As explained in section ����� the system from 
��� is invertible by converting it into a zero relative
degree structure� i�e� by delaying the input u and the state xN�� another time in the original system�
This corresponds again to a shift of the delay element between input and output over the summation



CHAPTER �� INVERSE SYSTEM ��

f( x ,u ) f   ( x ,y )
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Figure ����� Chain structure and its inverse of the discrete time system examples� f�x� u	 has to be
invertible with respect to u
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Figure ����� �a	Structure from 
��� with relative degree � �therefore not directly invertible	 �b	 its �inverse�
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node thereby decreasing the time index of the signals there� This way only the time delayed input is
retrieved in the inverse system and it would have been reasonable to choose a zero relative degree system
right from the beginning�

In Tab� ��� the features of the discrete�time system examples are listed�

Example Relative Inverse State Used map�
degree system space f�x� u	 � y


�� � non IR� logistic map �x	 � u
recursive


�� � non IR� mod� Henon map�
recursive bx� � �� ux��


��� � non fIN�mod�n	g� fu�
P�

i�� cixig�mod�n	
recursive


��� � non fIN mod pgN fu�
PN

i�� cixig mod p
recursive


��� � non fIN mod pgN f
PN

i�� cixig mod p
recursive

Table ���� Features of the discrete time systems� p is a natural number

In the last three examples the transmitted signal y�k	 cannot be chaotic due to the 
niteness of the
state space� However� when the state space is su�ciently large� these pseudo�random signals are very
similar to chaotic signals 
���� A special case which is interesting for digital realization is the use of binary
signals leading to a shift register structure� The coe�cients ci�i � ����N	 have to be chosen in such a
way that a maximum sequence is obtained in the autonomous case u � �� This aspect and the spectral
properties of the transmitted signal y are discussed in detail in 
����

The main feature of all these systems is that their inverse is non recursive� i�e� what is called FIR
systems when they are linear� The extension of FIR to nonlinear systems might be called deadbeat
systems according to 
��� This means that after a �nite time the in�uence of the initial conditions
vanishes and the signal u is exactly recovered�


