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Abstract. Maintenance of the quality of the railway track is crucial for the safety and the comfort of
travelers on high speed trains. We believe it is possible to detect deterioration of the track by means of a
constant monitoring of the dynamic vehicle response to track features. Our project is worked out in close
cooperation with Deutsche Bahn AG (German Rail).

Keywords: Dynamic diagnosis, vehicle - track interaction, signal processing, proper orthogonal decomposi-
tion.

1. Introduction

High speed traffic on the Deutsche Bahn AG (German Rail) network has continuously
increased in recent years. This additional use of the network raises questions about the
maintenance of the quality of the trackage, which is essential for the safety and comfort
of high speed travelers.

It is known that the more frequently applied dynamic loads due to the interaction between
railway vehicles, the track and the sub-grade can lead to degradation of track quality and,
sometimes, premature track failure. To prevent such failures or degradation in ride quality,
the Deutsche Bahn AG performs expensive, frequent inspections of the railway tracks by
means of special trains designed to perform measurements on the trackage.

Track geometry is assessed by bi—-monthly measurements with an especially designed car
filled with measurement systems at 200 km/h. In addition, vehicle reactions are measured
with the ICE-S (Intercity Express-S), at high speed, every four months, Figure 1.

Decisions about what maintenance operations are necessary, and when, are based on em-
pirically established threshold values of some parameters of track geometry. So far, however,
there are no reliable means to predict actual rail failure based on variations of track geometry
or the actions of excessive forces on the track by the train. Thus, it is difficult to schedule
maintenance because one cannot predict where a failure will occur. Furthermore, there is no
continuous assessment of small changes of track features, in an attempt to predict when the
relevant parameters will reach limiting values.

We propose a program to monitor track condition constantly, at low cost, on regularly
scheduled trains. It is our belief that we can correlate the dynamic response of a vehicle with
changes in track and support geometry, and thus we can assess track conditions by regularly
measuring vehicle behavior.

We start with a description of the problem from a dynamic system point of view and
present first results of measurements from a real railway track. Then we turn to a signal
processing point of view. We present the Karhunen-Loéve-transformation as a tool for
information compression for the expected huge amount of data resulting from the con-
stant monitoring. Finally, we demonstrate the successful application of the Karhunen—Loeve—
transformation to data obtained in a small scale laboratory experiment.
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Figure 1. Special measurement train ICE-V, predecessor of ICE-S.

2. Dynamic System

The model we have used is shown schematically in Figure 2. As has been shown in [2], with
such a model we can expect fairly good correlation between measured loads on a train and
simulations based on this model.

ma,ly,lp

Figure 2. Multibody system: coach, bogie, wheelset, primary and secondary suspension and track.
Although this model neglects the contact dynamics between the wheels and the rails, and

compresses the whole track structure (rail, rail pad, sleeper, ballast, sub—ballast, sub—grade)
to a single spring damper system, the simulation based on this model allowed a fairly good
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prediction of track settlement due to accumulated dynamic loads. Therefore, we choose this
model for our consideration.

In [2] it was found that spatial stiffness variations along the track play an important role
for differential track settlement (which results in a rough vertical profile or geometry). Thus,
it would be highly desirable to reconstruct the track stiffness from the dynamic response of
the vehicle along the track.

Let us consider the vertical profile and the varying stiffness along the track as input
to the dynamic system and the measured signals within the vehicle as output y. The task
described above requires an inversion of the dynamic system, Figure 3. The output of the
inverse system u' asymptotically copies the original input signal u if and only if the inverse
system has unique asymptotic behavior [1].

u ) Yy
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Figure 3. Inversion of a dynamic system: the output y of the system becomes the input of the inverse system.
z(0),£(0) are the initial states of the system and its inverse.

For nonlinear systems, inversion is solved in case they are input-linear [1], i.e., that the
input u appears only as a linear term in the state equations & = f(z) + g(x) - u. Our system
is, however, not input—linear, as products of the varying stiffnesses and the vertical profile
occur in the state equations,
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with the state vector x = [yl Y o Yyr OFr YB YB ZF WF ZB WB ] The state space vari-
ables together with parameters of the model are shown in Figure 2, [ is the distance between
the rails. The input of the vehicle multibody system can be viewed as an excitation by means
a track which moves underneath the nonmoving vehicle. This results in time dependent
functions of the track stiffness k;; and the vertical profile y;;, ¢ = F,B j = R, L. They are
related to their spatial variation via the velocity of the vehicle. We do not present the vector
f(x,x) explicitly which summarizes the forces and moments of the multibody system imposed
by the springs and dampers which are either linear or nonlinear.
It is an open question whether such input—quadratic systems are dynamically invertible.
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Since we cannot infer from system inversion the track features (stiffness and vertical
profile) explicitly, we want to detect the variation or deterioration of the track implicitly
via the variation of the vehicle response. That means that we expect the vehicle responses
at subsequent journeys under the same conditions (track features) to be the same. Thus, we
expect variations of the vehicle response to result from actual variations of track features.

This is not necessarily the case because in a chaotic system, e.g., departing from different
initial states would produce diverging responses to the same input signal. Thus, we require
that the dynamic system have unique asymptotic behavior (UAB), i.e., the system response
to the same input signal, but possibly departing from different initial states, converge to each
other.

The UAB can be checked by considering the difference between any two solutions. Thus,
one must prove the asymptotic stability of the origin of the difference system,

A% = % — %o = £(x1,%1) — £(x2,%2). (2)

This nonlinear difference system can often be put into a linear time-varying form. The asymp-
totic stability of this system can be proven by the application of the Kalman—Yacubovitch
Lemma [5]. The proof of UAB of our system is difficult because of the high dimension of the
state space. It is the subject of ongoing research.

Next we present some measurement results in order to check UAB with real world data.

3. Measurements

We collected bi—weekly measurements with a specific vehicle on a selected piece of track in
order to evaluate continuous monitoring. We installed an inertial measurement unit (IMU)
from IMAR Company, Germany, on the floor of the coach. The IMU measures three trans-
lational accelerations and three angular velocities. In this way all six degrees of freedom are
determined.

As we are especially interested in the effects on the vertical dynamics of the track, we
concentrate on measurements of the pitch angle a and the vertical displacement y;. See
Figure 4 for a representative sample of the pitch angular velocity ¢ of two subsequent journeys
along the same track at the same speed (200 km/h) and under presumably the same track
conditions. The signal-to—distance correspondence along the track was determined by means
of an additionally recorded signal (50 pulses/m) and the reproducibly unique yaw—signal. As
the two signals in Figure 4 are hardly distinguishable, the dynamic system actually seems to
have the UAB property.

Figure 5 shows the measured pitch anglular velocity & and vertical acceleration ¢; of the
coach in higher resolution with respect to the distance. Again the measurements of both
journeys nearly coincide. The signals represent the response of the coach to the onset of
a curve at km 21.2 of the selected piece of the track. Apparently, an impact excites some
oscillations, which are clearly visible. They have a frequency of about 1 Hz (speed was 160
km/h), which presumably corresponds to an eigenfrequency of the system (in case it is linear).

It is our belief that changes of the track, e.g., changes of the magnitude of the impact, will
cause noticeable changes of the response of the coach.

Our bi-weekly measurements cover so far only a short period of time and we do not have
enough data to estimate whether small deteriorations of the track are actually detectable in
the coach response. Nevertheless, we performed small scale laboratory experiments, whereby
it is easy to collect as much data as desired and to simulate deteriorations of the track by
appropriate manipulations.
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Figure 4. Two measurements of pitch angular velocity & along the same track.

It is clear that, however, constant monitoring will result in a collection of a substantial
amount of data, and will require an efficient compression and evaluation process. We pro-
pose to apply the Karhunen—Loéve—Transformation (KLT) for this purpose. Therefore,
we briefly present the basic idea of the KLT as well as its essential ingredients and then
demonstrate its successful application to data of our laboratory experiments.

4. Karhunen-Loéve—Transformation

The Karhunen—Loeve-Transformation (KLT) or Proper Orthogonal Decomposition originally
stems from the field of stochastic processes. An engineering presentation can be found in
[3] and an application to a mechanical system is discussed in [4]. The KLT detects basic
components of a set of stochastic signals by means of its covariance function. An aim can be
to separate significant components from less significant ones (e.g. noise).

We intend to apply the KLT to signals to what are presumed to be a deterministic data.
The purpose is also to separate the significant information from possibly added noise but
mainly to extract from a huge set of signals its dominant components.

Given a set of signals

u(n,x) with x € [a, b] — Distance and, n — No. of measurement (3)

the KLT provides a decomposition
o0
u(n,z) = Zai(”)@bi(ﬂﬂ) (4)
i=1

where the characteristic functions (CF), 1;(z), represent basic patterns and the amplitudes,
a;(n), are their contribution in each signal.
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Figure 5. Above pitch anglular velocity & and below vertical acceleration ¢; of the coach response to the onset
of a curve (at km 21.2).

This resembles the well known Fourier transform (FT), where a signal is described as a
superposition of basic functions (sin(z) resp. cos(x)) multiplied by certain amplitudes. The
important difference between KLT and FT is that the basic functions of the FT are fixed,
whereas the characteristic functions of the KLT are determined by and thus are specific to
the set of signals u(n, z).

The two basic requirements of the KLT are:

First, the characteristic functions 1);(x) form an orthogonal basis:

b
wmwmmz/wmwmmz%- (5)

Second, the amplitude functions a;(n), which are the projections of the signals onto this
base,

b
Mmzwmmwmmz/ummwwm (6)
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are uncorrelated
En(ai(n)aj (n)) = Aiéi]-, (7)

where E,, is the expected value over n.
These requirements are met by 1;(z), which are the eigenfunctions of the integral operator

b
[ a0 o)z = 50 ®)
a
where 7, (z', ) is the autocorrelation function of the signals
run(z’, 1) = Bp(u(n, 2" )u(n, x)). (9)

Next, we consider the approximation

un(n,z) =Y ai(n)ihi(z). (10)

i=1
The energy contents covered by the approximation uy(n,x) is

N

N
E,(u(n,z)u(n,z)) = Y Eu(af(z)) = Y_ N (11)
=1

=1

Thus, if one chooses the characteristic functions ; belonging to the N largest A; for the
approximation then it covers the highest possible information content of the set of signals,
and the mean square approximation error is as small as possible.

The efficiency of the KLT arises from the fact that it is optimal in the sense that for all
N the approximation with the first N characteristic functions covers the most information
contents of the signals (or the mean square approximation error is a minimum) amongst all
possible other bases ¢;(z),i = 1,...N. We employ this optimality feature for the purpose of
best information compression.

All this carries quite directly over to the discrete Karhunen—Loeéve—transformation which
we will apply, because every measurement naturally is a discrete set of data, where

u(n,z;) = u(n) withi = 1,...,d and u € R? (12)
and the characteristic functions, 9, € R%, are the eigenvectors of the covariance matrix
(Cuuw — AD)p; =0 (13)

with
Cuu = E,(u(n)u’ (n)). (14)

5. Small Scale Experiment

We performed small scale laboratory experiments, Figure 6. We installed angular velocity
sensors in the coach.

We present measurements along a 2 m test section. The sleepers are spaced at 20 cm and
we varied the height of the sleepers no. 6 and 7 at 1 m and 1.2 m, Figure 7.
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Figure 6. Small scale laboratory experiment.
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Figure 7. Measured angular velocity (pitch) of the coach under varying track conditions, journey there. The
arrow indicates the direction of the train velocity along the track.

The measured response is of course a dynamic reaction of the system to the impact of
track failure. This is also obvious by comparison of the responses of the journey there and
the return journey, Figure 8, to the same impact.

The information contained in this set of signals has to be compressed and evaluated
efficiently. We apply the Karhunen-Loéve-transformation in order to detect the basic com-
ponents of this set of signals and their contribution to every single signal.
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Figure 8. Measured angular velocity (pitch) of the coach under varying track conditions, return journey.

Often the KLT is applied to the mean—value free signal E,,(u(n)) = 0 in order to pronounce
the actual variations in the set. We are especially interested, however, in variations with
respect to the initial signal. Therefore, we apply the KLT to the difference signal with respect

to the first signal:
u(n) = a(n) — a(1). (15)

First we calculate the covariance matrix, C,,, of the signal set, Figure 9. The eigenvec-
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Figure 9. Covariance matrix Cy,: a) contour—plot the z, y—axes represent the matrix indices corresponding to
the piece of track, the value of the matrix entry is color—coded, b) perspective view on C,, onto its diagonal.

tors of this covariance matrix are the basic components of the set u(n,x); the eigenvalues
corresponding to the eigenvectors are a measure of their significance (energy contribution).
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The KLT reveals the major features of what we see in Figure 7. The set of signals seems to
consist of only one basic pattern, which is contained in each signal, with different ’amplitudes’.
Analysis of the eigenvalues of C,, confirms that only one eigenvector is significant. This
eigenvector covers already 96% of the energy of the set. The second resp. third eigenvector
covers merely 3.4% resp. 0.6% of the energy. Figure 10 shows the first eigenvector, i.e., the
first characteristic function, 4,. Thus, the whole set of signals is well approximated by the
first eigenvector, and its information compressed to a single characteristic function and its
amplitude function.
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Figure 10. First characteristic function ), of the set of signals in Figure 7.

The height of the sleepers no. 6 and 7 was decreased until journey 10 and then it was
increased again. We conducted two measurement journeys per height. Figure 11 shows the
first amplitude function, i.e., the contribution of the first CF, 1), to each signal.
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Figure 11. First amplitude function: a) a;(n) contribution of the first CF to each journey there, b) a; as a
function of the settling of the sleepers in mm, ¢) same as b) but for the return journey.

The first amplitude function reveals: First, it is nearly identical for identical track con-
ditions (for the two journeys per height). Second, a; is nearly independent of the history of
the height of the sleepers, i.e., there is no hysteresis in Figure 11 b,c. Third, a; is nearly a
linear function of the settling of the sleepers in mm. Fourth, although the first characteristic
function of the return journey is completely different from the one of the journey there, its
amplitude reflects the severeness of the failure in the same way.

The application of the KLT to the data of our small scale laboratory experiment shows
that the Karhunen—Loeve—transformation is an efficient tool for information compression. It
is also capable of displaying the severity of a track failure.

6. Conclusion

This article describes an approach for a continuous track survey in the Deutsche Bahn AG
railway network. With this approach a systematic and comparative inspection and assessment
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of railway tracks will be possible. Instead of expensive special measurement trains, we need
only relatively inexpensive equipment installed in the coach of a wagon.

The first idea is to detect the track settlement due to accumulated dynamic loads by means
of an inverse dynamic system that reconstructs the original input, the track features, from
measurements in the coach. Due to the input-quadratic character of the system, however,
this approach is not applicable.

We present real world measurements. They indicate that the dynamic vehicle-track system
has unique asymptotic behaviour, such that we can expect variations of the vehicle response
to stem actually from variations of the track or the vehicle.

It is understood that the dynamic response of the vehicle, i.e. the measured signals, are
influenced by track irregularities and vehicle features like worn wheels and damged bogies. It
is our belief that the variation of the vehicle response contains significant information about
the variation of the vehicle-track system. The specific response (e.g. a certain periodicity for
worn wheels) should allow to separate different kinds of failures from each other.

In order to handle the enormous amount of data obtained from the measurements we apply
Karhunen-Loéve-transformation (KLT) for data compression. The successful application of
KLT to a small scale experiment shows that efficient information compression is possible and
it enables us to measure the severeness of a failure.
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