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The Dream ...

Color Shape Spatial relations Relation “consists of”

Complete scene interpretation

Structural Models:
Data that consists of several parts, and not only the parts
themselves contain information, but also the way in which the
parts belong together.
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A bit reality

– The set of parts is given (e.g. the set of pixels in low-level
vision)

– An interpretation (label) should be assigned to each part
– There are only relations between parts, the description is
not hierarchical – no relation “consists of” (at least not
explicitly)

⇒ Labeling Problems
These problems can be at least formulated :-),
exact solutions are however very seldom :-(

A special case – the set of “pixels” is a chain
⇒ Markov Chains
Both formulations and algorithms are relatively simple
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Markov Random Fields (simplified)
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Markov Random Fields (simplified)
Graph G = (R,E), K – label set,
F – the set of “elementary” observation (e.g. colors)
y : R→ K – labeling, y ∈ Y
x : R→ F – observation (coloring), x ∈ X

An elementary event is a pair (x, y), the (negative) energy:

E(x, y) =
∑

rr′∈E

grr′(yr, yr′) +
∑
r∈R

qr(xr, yr)

The joint probability:

p(x, y) = 1
Z

exp
[
−E(x, y)

]
Partition Function:

Z =
∑

x∈X ,y∈Y
exp

[
−E(x, y)

]
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Inference – Bayesian Decision Theory
The principle is the same as for unstructured models –
minimize the Bayesian Risk, i.e. the expected loss:

R
(
e(x)

)
=
∑

y

p(x, y) · C
(
y, e(x)

)
→ min

e

remember that y are labellings → more complex algorithms
Special case D = Y , C(y, d) = δ(y 6= d)
→ Maximum A-posteriori Decision

y∗ = arg max
y

p(x, y) = arg min
y

E(x, y) =

= arg min
y

[ ∑
rr′∈E

grr′(yr, yr′) +
∑
r∈R

qr(xr, yr)
]

Such tasks are known as Energy Minimization problems.
Additive loss is widely used as well (even more often in some
particular domains) → leads to Marginal based decisions
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Learning
Again, the basic principles are the same as for unstructured
models:
– Statistical Learning – Maximum (Conditional) Likelihood

- Supervised – gradient ascent (usually convex functions),
stochastic gradient ...

- Unsupervised – Expectation-Maximization Algorithm,
gradient ascent ...

– Discriminative Learning – Empirical Risk minimization
(sub-gradient algorithms), Large Margin learning
(quadratic optimization) etc.

The difference to unstructured models – more complex
algorithms, because for structured models practically nothing
can be computed exactly :-(
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MRF-s are members of the Exponential Family

The energy can be written in form of scalar product

E(x, y; θ) = E(x, y;w) = 〈φ(x, y), w〉

it is sometimes called “overcomplete” representation
(see the board for an example).

→ For almost any kind of learning the sufficient statistics
φ(x, y) are crucial.

Interesting: the Perceptron Algorithm (that is indeed very
simple) is applicable for some tasks of discriminative learning.

Large Margin, SVM, Kernels etc. are possible as well
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Some popular MRF-s
... of second order over the pixel grid, 4-neighborhood
(because simple) – segmentation, denoising, deconvolution,
stereo, motion fields etc.
... with continuous label spaces – denoising, stereo
... with dense neighborhood structure – shape modeling
(e.g. curvature), segmentation
... of higher order – all the stuff above
Conditional Random Fields (CRF) – MRF-s that model
posterior distributions of labellings instead of the joint ones

Energy Minimization → Hopfield Networks
(Hopfield) Networks with stochastic Neurons → MRF-s
also known as Bolzmann Machines (Feed-Forward as well)

ML: Introduction to Structurel Models 07.02.2014 9



Labeling Problems – a generalization
Constraint Satisfaction Problems (CSP) – OrAnd

∨
y

∧
r∈R

qr(yr) ∧
∧

rr′∈E

grr′(yr, yr′)


Energy Minimization – MinSum

min
y

[∑
r

qr(yr) +
∑
rr′
grr′(yr, yr′)

]

Partition Function – SumProd∑
y

[∏
r

qr(yr) ·
∏
rr′
grr′(yr, yr′)

]

Generalized formulation⊕
y

[⊗
r

qr(yr)⊗
⊗
rr′
grr′(yr, yr′)

]
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Labeling Problems – state-of-the-art
All labeling problems are NP-complete in general
All labeling problems can be solved exactly and efficiently by
Dynamic Programming, if the graph is simple (chains, trees,
cycles, partial w-trees of low tree-width)
For OrAnd problems over general graphs there is a dichotomy
(polynomial ↔ NP) with respect to the properties of
g-functions
Submodular MinSum Problems are exactly solvable
There are many (good) approximate algorithms for MinSum
over general graphs – relaxation based, search based, partial
optimality etc.
There are also approximations for SumProd
There is also a dichotomy for MinSum and SumProd (?)
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So what?

... see you in summer semester at “Computer Vision II” ...
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