Machine Learning Introduction to Structural Models

Dmitrij Schlesinger WS2013/2014, 07.02.2014

The Dream ...

Color Shape Spatial relations Relation "consists of" Complete scene interpretation

Structural Models:

Data that consists of several parts, and not only the parts themselves contain information, but also the way in which the parts belong together.

A bit reality

- The set of parts is given (e.g. the set of pixels in low-level vision)
- An interpretation (label) should be assigned to each part
- There are only relations between parts, the description is not hierarchical – no relation "consists of" (at least not explicitly)

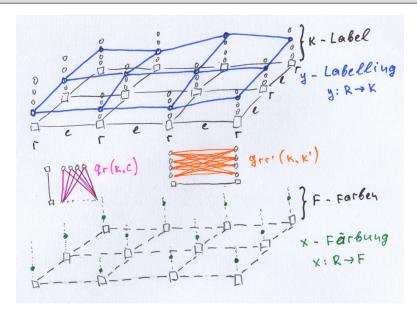
\Rightarrow Labeling Problems

These problems can be at least formulated :-), exact solutions are however very seldom :-(

A special case – the set of "pixels" is a chain \Rightarrow Markov Chains

Both formulations and algorithms are relatively simple

Markov Random Fields (simplified)



Markov Random Fields (simplified)

Graph
$$G = (R, E)$$
, K – label set,
 F – the set of "elementary" observation (e.g. colors)
 $y : R \to K$ – labeling, $y \in \mathcal{Y}$
 $x : R \to F$ – observation (coloring), $x \in \mathcal{X}$

An elementary event is a pair (x, y), the (negative) energy:

$$E(x,y) = \sum_{rr' \in E} g_{rr'}(y_r, y_{r'}) + \sum_{r \in R} q_r(x_r, y_r)$$

The joint probability:

$$p(x,y) = \frac{1}{Z} \exp\left[-E(x,y)\right]$$

Partition Function:

$$Z = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \exp \Bigl[-E(x, y) \Bigr]$$

Inference – Bayesian Decision Theory

The principle is the same as for unstructured models – **minimize the Bayesian Risk**, i.e. the expected loss:

$$R(e(x)) = \sum_{y} p(x, y) \cdot C(y, e(x)) \to \min_{e}$$

remember that y are labellings \rightarrow more complex algorithms Special case $D = \mathcal{Y}$, $C(y, d) = \delta(y \neq d)$ \rightarrow Maximum A-posteriori Decision

$$y^* = \arg \max_{y} p(x, y) = \arg \min_{y} E(x, y) =$$
$$= \arg \min_{y} \left[\sum_{rr' \in E} g_{rr'}(y_r, y_{r'}) + \sum_{r \in R} q_r(x_r, y_r) \right]$$

Such tasks are known as **Energy Minimization** problems.

Additive loss is widely used as well (even more often in some particular domains) \rightarrow leads to Marginal based decisions

Learning

Again, the basic principles are the same as for unstructured models:

- Statistical Learning Maximum (Conditional) Likelihood
 - Supervised gradient ascent (usually convex functions), stochastic gradient ...
 - Unsupervised Expectation-Maximization Algorithm, gradient ascent ...
- Discriminative Learning Empirical Risk minimization (sub-gradient algorithms), Large Margin learning (quadratic optimization) etc.

The difference to unstructured models – more complex algorithms, because for structured models practically nothing can be computed exactly :-(

The energy can be written in form of scalar product

$$E(x, y; \theta) = E(x, y; w) = \langle \phi(x, y), w \rangle$$

it is sometimes called "overcomplete" representation (see the board for an example).

 \rightarrow For almost any kind of learning the sufficient statistics $\phi(x,y)$ are crucial.

Interesting: the Perceptron Algorithm (that is indeed very simple) is applicable for some tasks of discriminative learning.

Large Margin, SVM, Kernels etc. are possible as well

Some popular MRF-s

... of second order over the pixel grid, 4-neighborhood (because simple) – segmentation, denoising, deconvolution, stereo, motion fields etc.

... with **continuous** label spaces – denoising, stereo

... with **dense** neighborhood structure – shape modeling (e.g. curvature), segmentation

... of higher order – all the stuff above

Conditional Random Fields (CRF) – MRF-s that model posterior distributions of labellings instead of the joint ones

Energy Minimization \rightarrow Hopfield Networks

(Hopfield) Networks with stochastic Neurons \rightarrow MRF-s also known as **Bolzmann Machines** (Feed-Forward as well)

Labeling Problems – a generalization

Constraint Satisfaction Problems (CSP) - OrAnd

$$\bigvee_{y} \left[\bigwedge_{r \in R} q_r(y_r) \land \bigwedge_{rr' \in E} g_{rr'}(y_r, y_{r'}) \right]$$

Energy Minimization – MinSum

$$\min_{y} \left[\sum_{r} q_r(y_r) + \sum_{rr'} g_{rr'}(y_r, y_{r'}) \right]$$

Partition Function – SumProd

$$\sum_{y} \left[\prod_{r} q_r(y_r) \cdot \prod_{rr'} g_{rr'}(y_r, y_{r'}) \right]$$

Generalized formulation

$$\bigoplus_{y} \left[\bigotimes_{r} q_{r}(y_{r}) \otimes \bigotimes_{rr'} g_{rr'}(y_{r}, y_{r'}) \right]$$

Labeling Problems – state-of-the-art

All labeling problems are NP-complete in general

All labeling problems can be solved exactly and efficiently by Dynamic Programming, if the graph is simple (chains, trees, cycles, partial *w*-trees of low tree-width)

For OrAnd problems over general graphs there is a dichotomy (polynomial \leftrightarrow NP) with respect to the properties of g-functions

Submodular MinSum Problems are exactly solvable

There are many (good) approximate algorithms for MinSum over general graphs – relaxation based, search based, partial optimality etc.

There are also approximations for SumProd

There is also a dichotomy for MinSum and SumProd (?)

... see you in summer semester at "Computer Vision II" ...

