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Neuron
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Hunan vs. Computer
(two nice pictures from Wikipedia)



Neuron (McCulloch and Pitt, 1943)
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Input:
Weights:
Activation:
Output:

Step-function

Sigmoid-function
(differentiable!!!)

If
otherwise



Geometric interpretation
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Let be normalized, i.e. 

the length of the
projection of     onto     .

Separation plane: 

Neuron implements a linear classifier



Special case − Boolean functions
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Input:

Output:

Find      and     so, that  

Disjunction, other Boolean functions, but XOR



Learning
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Given: training data 

Find:                            so that                                    for all   

For a step-neuron: system of linear inequalities

Solution is not unique in general !

if
if



“Preparation 1”
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Eliminate the bias:

The trick − modify the training data

0 0

1

Example in 1D

non-separable without the bias separable without the bias



“Preparation 2”
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Remove the sign:

The trick − the same

for all with

for all with 

All in all:

if

if



Perceptron Algorithm (Rosenblatt, 1958)
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Solution of a system of linear inequalities:

1. Search for an equation

that is not satisfied, i.e.

2. If not found − Stop

else update

go to 1. 

• The algorithm terminates if a solution exists (the training data 
are separable)

• The solution is a convex combination of the data points



Proof of convergence
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The idea: look for quantities that

a) grow/decrease quite fast,

b) are bounded.

Consider the length of            at n-th iteration:

with <0, because added by the algorithm



Proof of convergence

28/11/2013Machine Learning : Neuron 11

Another quantity − the projection of           onto the solution .   

With                                            − the Margin

>0, because of the solution



Proof of convergence
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All together:

But                                            (Cauchy-Schwarz inequality)

So                         and finally 

If the solution exists,

the algorithm converges after               steps at most.

and



An example problem

28/11/2013Machine Learning : Neuron 13

Consider another decision rule for a real valued feature           :

It is not a linear classifier anymore but a polynomial one.

The task is again to learn the unknown coefficients

given the training data 

Is it also possible to do that in a “Perceptron-like” fashion ?



An example problem
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The idea: reduce the given problem to the Perceptron-task.

Observation: although the decision rule is not linear with respect to

, it is still linear with respect to the unknown coefficients  

The same trick again − modify the data:

In general, it is very often possible to learn non-linear decision rules 
by the Perceptron algorithm using an appropriate transformation of 
the input space (further extension − SVM).



Many classes
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Before: two classes − a mapping  
Now: many classes − a mapping 

How to generalize ? How to learn ?
Two simple (straightforward) approaches:

The first one: “one vs. all” − there is 
one binary classifier per class, that 
separates this class from all others.

The classification is ambiguous in 
some areas.



Many classes
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Another one: 
“pairwise classifiers” − there is a classifier for each class pair

The goal:
• no ambiguities,
• parameter vectors

Less ambiguous, better separable.

However:

binary classifiers 
instead of     in the previous case.



Fisher Classifier
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Idea: in the binary case the output    is the more likely to be “1” 
the greater is the scalar product             → generalization:

The input space is partitioned into the set of convex cones.

Geometric interpretation
(let      be normalized)

Consider projections of an 
input vector     onto vectors



Fisher Classifier
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Given: training set 

To be learned: weighting vectors

The task is to choose       so that

It can be equivalently written as

− a system of linear inequalities, but a “heterogenic” one.

The trick − transformation of the input/parameter space.



Fisher Classifier
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Example for three classes: Consider e.g. a training example          ,
it leads to the following inequalities:

Let us define the new parameter vector as

i.e. we “concatenate” all        to a single vector.

For each inequality (see example above) we introduce a “data 
point”:

→ all inequalities are written in form of a scalar product 

Solution by the Perceptron Algorithm. 



Conclusion

Today:

• Neuron – linear classifier

• Perceptron Algorithm – simple update rule, convergence

• Fisher classifier – „Multiclass Perceptron“

Next Lecture – Neuronal networks:

• Feed-Forward networks

• Nopfield networks

• Clustering, Cohonen networks
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