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General form

p(x; θ) = h(x) exp
[
〈η(θ), T (x)〉 − A(θ)

]
with
– x is a random variable
– θ is a parameter
– η(θ) is a natural parameter, vector (often η(θ) = θ)
– T (x) is a sufficient statistic
– A(θ) is the log-partition function

Almost all probability distributions you can imagine are
members of the exponential family

Example – Gaussian (board)
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Our models
Let x be an observed variable and y be a hidden one

1. The joint probability distribution is in the exponential
family (a generative model):

p(x, y;w) = 1
Z(w) exp

[
〈φ(x, y), w〉

]
Z(w) =

∑
x,y

exp
[
〈φ(x, y), w〉

]
2. The conditional probability distribution is in the exponential
family (a discriminative model):

p(x, y;w) = p(x) · p(y|x;w)

p(y|x;w) = 1
Z(w, x) exp

[
〈φ(x, y), w〉

]
Z(w, x) =

∑
y

exp
[
〈φ(x, y), w〉

]
∀x
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Our learning schemes

– Generative model, supervised → Maximum Likelihood,
Gradient

– Discriminative model, supervised → Maximum
Conditional Likelihood, Gradient

– Generative model, unsupervised → Maximum Likelihood,
Expectation Maximization, Gradient for the M-step
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Generative model, supervised
Model:

p(x, y;w) = 1
Z(w) exp

[
〈φ(x, y), w〉

]
Z(w) =

∑
x,y

exp
[
〈φ(x, y), w〉

]

Training set: L =
(
(xl, yl) . . .

)
Maximum Likelihood:∑

l

[
〈φ(xl, yl), w〉 − lnZ(w)

]
→ min

w

Gradient:
∂

∂w
= 1
|L|

∑
l

φ(xl, yl)− ∂ lnZ(w)
∂w
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Generative model, supervised
Partition function:

Z(w) =
∑
x,y

exp
[
〈φ(x, y), w〉

]
Gradient of the log-partition function:

∂ lnZ(w)
∂w

=

= 1
Z(w)

∑
x,y

exp
[
〈φ(x, y), w〉

]
· φ(x, y)

=
∑
x,y

p(x, y;w) · φ(x, y) = Ep(x,y;w)[φ]

The Gradient is the difference of expectations:
∂

∂w
= 1
|L|

∑
l

φ(xl, yl)− Ep(x,y;w)[φ] = EL[φ]− Ep(x,y;w)[φ]
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Discriminative model (posterior), supervised
Model:

p(y|x;w) = 1
Z(w, x) exp

[
〈φ(x, y), w〉

]
Z(w, x) =

∑
y

exp
[
〈φ(x, y), w〉

]
∀x

Training set: L =
(
(xl, yl) . . .

)
Maximum Conditional Likelihood:∑

l

[
〈φ(xl, yl), w〉 − lnZ(w, xl)

]
→ min

w

Gradient:
∂

∂w
= 1
|L|

∑
l

φ(xl, yl)− 1
|L|

∑
l

∂ lnZ(w, xl)
∂w
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Discriminative model (posterior), supervised
Partition function:

Z(w, x) =
∑

y

exp
[
〈φ(x, y), w〉

]
Gradient of the log-partition function for a particular xl:

∂ lnZ(w, xl)
∂w

=

= 1
Z(w, xl)

∑
y

exp
[
〈φ(xl, y), w〉

]
· φ(xl, y)

=
∑

y

p(y|xl;w) · φ(xl, y) = Ep(y|xl;w)

[
φ(xl)

]
The Gradient is again the difference of expectations:

∂

∂w
= EL[φ]− 1

|L|
∑

l

Ep(y|xl;w)

[
φ(xl)

]
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Generative model, unsupervised
Model:

p(x, y;w) = 1
Z(w) exp

[
〈φ(x, y), w〉

]
Z(w) =

∑
x,y

exp
[
〈φ(x, y), w〉

]

Training set (incomplete): L =
(
xl . . .

)
Expectation:

αl(y) = p(y|xl;w) ∀l, y

Maximization: ∑
l

∑
y

αl(y) ln p(x, y;w)→ max
w
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Generative model, unsupervised
Maximization:∑

l

∑
y

αl(y) ln p(x, y;w) =

=
∑

l

∑
y

αl(y)
[
〈φ(xl, y), w〉 − lnZ(w)

]
=

=
∑

l

∑
y

αl(y)〈φ(xl, y), w〉 −
∑

l

∑
y

αl(y) lnZ(w) =

=
∑

l

∑
y

αl(y)〈φ(xl, y), w〉 − |L| · lnZ(w)

The gradient is again a difference of expectations:
∂

∂w
= 1
|L|

∑
l

∑
y

αl(y)φ(xl, y)− Ep(x,y;w)[φ] =

= 1
|L|

∑
l

Ep(y|xl)[φ(xl)]− Ep(x,y;w)[φ]
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Conclusion

In all variants the gradient of the log-likelihood is a difference
between expectations of the sufficient statistic:

∂ lnL
∂w

= Edata[φ]− Emodel[φ]

→ the likelihood is in optimum if they coincide

In supervised cases the “data” expectation is the simple
average over the training set → Edata does not depend on w
→ the problem is concave → global optimum.
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