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Discriminative models
There exists a joint probability distribution p(x, k; θ)
(observation, class; parameter). The task is to learn θ
On the other side (see the “Bayesian Decision theory”),

R(d) =
∑
k

p(k|x; θ) · C(d, k)

i.e. only the posterior p(k|x; θ) is relevant for the recognition.

The Idea: decompose the joint probability distribution into

p(x, k; θ) = p(x) · p(k|x; θ)

with an arbitrary p(x) and a parameterized posterior.
→ learn the parameters of the posterior p.d. directly
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Maximum Likelihood

Let the (complete) training data L =
(
(xl, kl) . . .

)
be given.

p(L; θ) =
∏
l

[
p(xl) · p(kl|xl; θ)

]
ln p(L; θ) =

∑
l

ln p(xl) +
∑
l

ln p(kl|xl; θ)

The first term can be omitted as we are not interested in p(x)

The second term is often called the conditional likelihood.
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Maximum Likelihood Example

1. We consider a joint probability distribution
p(x, k) = p(k) · p(x|k)

2. We derive the posterior p(k|x), i.e. we represent the joint
p.d. as p(x, k) = p(x) · p(k|x)

3. We forget p(x) (assume that it is arbitrary) – we enlarge
the family of considered p.d.-s

4. We look, how the Maximum Likelihood looks like

Example: two Gaussians of equal variance, i.e. k ∈ {1, 2},
x ∈ Rn,

p(x, k) = p(k) · 1
(
√

2πσ)n
exp

[
−‖x− µ

k‖2

2σ2

]
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Maximum Likelihood Example
Posterior:

p(k=1|x) = p(1)p(x|1)
p(1)p(x|1) + p(2)p(x|2) = 1

1 + p(2)p(x|2)
p(1)p(x|1)

=

= 1

1 + exp
[
−‖x−µ2‖2

2σ2 + ‖x−µ1‖2

2σ2 + ln p(2)− ln p(1)
] =

= 1
1 + exp

(
〈x,w〉+ b

) with w = (µ2 − µ1)/σ2

p(k=2|x) = 1− p(k=1|x) =
exp

(
〈x,w〉+ b

)
1 + exp

(
〈x,w〉+ b

)
Logistic regression model
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Maximum Likelihood Example
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Maximum Likelihood Example
Logistic regression (scalar products as simple multiplications):

p(k=1|x) = 1
1 + exp(wx+ b) , p(k=2|x) = exp(wx+ b)

1 + exp(wx+ b)

Conditional likelihood:

CL =
∑
l

ln p(kl|xl;w, b) =

=
∑
l:kl=1

− ln
(
1 + exp(wxl + b)

)
+

+
∑
l:kl=2

[
wxl + b− ln

(
1 + exp(wxl + b)

)]
=

= w ·
∑
l:kl=2

xl + b · n2 −
∑
l

ln
(
1 + exp(wxl + b)

)
→ max

w,b
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Maximum Likelihood Example

Gradient:

∂CL

∂w
=

∑
l:kl=2

xl −
∑
l

exp(wxl + b)
1 + exp(wxl + b)x

l =

=
∑
l:kl=2

xl −
∑
l

p(k=2|xl;w, b)xl

∂CL

∂b
= n2 −

∑
l

p(k=2|xl;w, b)

It is not possible to resolve it analytically :-(
Note: the subject is concave → Gradient-method leads to the
global solution :-)
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Generative vs. discriminative

Posterior p.d.-s have less free parameters as joint ones

Compare (for Gaussians):
– 2n+ 2 free parameters for the generative representation
p(k, x) = p(k) · p(x|k), i.e. p(1), σ, µ1, µ2

– n+ 1 free parameters for the posterior p(k|x), i.e. w and b

→ one posterior corresponds to many joint p.d.-s

Gaussian example again:
centers µ1 and µ2 are not relevant, but their difference
µ2 − µ1 (see the board for the explanation).
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Generative vs. discriminative

Consider two learning schemes for Gaussians:
1. We learn the joint p.d. using the “usual” Maximum

Likelihood (see the previous lecture). Then we derive the
parameters of the posterior w and b from the learned p,
σ, µ

2. We learn w and b by maximizing the Conditional
Likelihood

Question: do these two schemes lead to the same parameters?

ML: Discriminative Learning 15.11.2013 10



Generative vs. discriminative
Answer: “no” in general.
Counterexample: let there exist parameter values w and b for
which kl = 2⇔ p(k=2|xl) > p(k=1|xl) for all l

Conditional Likelihood maximizes p(1|xl) for l with kl = 1 and
p(2|xl) for l with kl = 2. The sigmoid-function becomes a
step-function, which corresponds to σ → 0 or |µ2 − µ1| → ∞
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Generative vs. discriminative

No fully unsupervised learning in the discriminative case :-(

For an incomplete training set L = (x1, x2 . . . xl)

ln p(L; θ) =
∑
l

ln
∑
k

p(xl, k; θ) =

=
∑
l

ln
∑
k

[
p(xl) · p(k|xl; θ)

]
=
∑
l

ln p(xl)

→ does not depend on the parameter at all.
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Discriminant functions
– Let a parameterized family of p.d.-s be given.
– If the loss-function is fixed, each p.d. leads to a classifier
– The final goal is the classification (applying the classifier)

Generative approach:
1. Learn the parameters of the p.d. (e.g. ML)
2. Derive the corresponding classifier (e.g. Bayes)
3. Apply the classifier for test data

Discriminative (non-statistical) approach:
1. Learn the unknown parameters of the classifier directly
2. Apply the classifier for test data

If the family of classifiers is “well parameterized”, it is not
necessary to consider the underlying p.d. at all !!!
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Linear discriminant functions
As before: two Gaussians of the same variance, known prior
Now: let the loss function be δ so the decision strategy is MAP
Remember the posterior:

p(k=1|x) = 1
1 + exp

(
〈x,w〉+ b

)
→ the classifier is given by 〈x,w〉 ≶ b

It defines a hyperplane orthogonal to w that is shifted from
the origin by b/||w||

Note: for the classifier it does not matter, how strong
(step-like) is the underlying sigmoid-function → the variance σ
is irrelevant → the classifier has even less free parameters then
the corresponding posterior
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Empirical Risk
How to find a good classifier ?
Bayesian risk:

Rb(e) =
∑
x

∑
k

p(k, x)C
(
e(x), k

)
→ min

e

But now it can not be computed because there is no p.d. !!!
We have only the training set L =

(
(xl, kl) . . .

)
The Bayesian risk is replaced by the Empirical one – average
loss over the training set instead of over the whole space:

Re(e) =
∑
l

C
(
e(xl), kl

)
→ min

e∈E

with a predefined classifier family E .

ML: Discriminative Learning 15.11.2013 15



Vapnik-Chervonenkis Dimension
Is the learning good (enough) ?
A reasonable measure would be the reached Bayesian risk.
However, it can not be computed since there is no probability
model. However, one can compute the Empirical risk.
→ The question: how fast (and whether at all) does the
Empirical risk converges to the Bayesian one with the increase
of the training set N ?
Upper bound for the difference (Vapnik, Chervonenkis, 1968):

P

|Rb −Re| <

√√√√h
(
log(2N/h) + 1

)
− log(δ/4)

N

 > 1− δ

“The probability (over all training sets) that the considered
difference is less then something is greater as something“.
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Vapnik-Chervonenkis Dimension

P

|Rb −Re| <

√√√√h
(
log(2N/h) + 1

)
− log(δ/4)

N

 > 1− δ

The convergence speed depends on a constant h, which is
called Vapnik-Chervonenkis Dimension. It reflects the ”power“
of the classifier family. The greater VC the worse the
generalization capabilities of the classifier family.
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Vapnik-Chervonenkis Dimension
A constructive definition:

A classifier family shatters the set of data points if, for all
classifications of these points, there exists a classifier such
that the model makes no errors when evaluating that set of
data points.

The VC-Dimension of the family is the maximal number of
points that can be arranged so that the family shatters them.

Alternative: The VC-Dimension is the smallest number of
data points so that for any arrangement there exists a
classification that can not be re-produced by the family.

Example: for linear classifiers in Rn the VC-dimension is
V C = n+ 1 (see the board).
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Vapnik-Chervonenkis Dimension

The VC-dimension is often related to the number of free
parameters (but not always, example – sinus, one free
parameter, infinite VC)

The lower is VC the more robust is the family of classifiers.

Dilemma: complex data → complex classifiers (to reach good
recognition rate) → many free parameters (high VC) → bad
generalization capabilities.

Overfitting:
the classifier specializes to a particular training set.
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Classifiers vs. generative models
Families of classifiers are usually ”simpler“ compared to the
corresponding families of probability distributions (lower
dimensions, less restricted etc.)

Often it is not necessary to care about the model consistency
(such as e.g. normalization) → algorithms become simpler.

It is possible to use more complex decision strategies, i.e. to
reach better recognition results.

However:

Large classified training sets are usually necessary,
unsupervised learning is not possible at all.

Worse generalization capabilities, overfitting.
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Conclusion – a ”hierarchy of abstraction“

1. Generative models (joint probability distributions)
represent the entire ”world“. At the learning stage (ML)
the probability of the training set is maximized, no loss
function.

2. Discriminative models represent posterior probability
distributions, i.e. only what is needed for recognition. At
the learning stage (ML) the conditional likelihood is
maximized, no loss function.

3. Discriminant functions: no probability distribution,
decision strategy is learned directly, the Empirical risk is
minimized.
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