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Probabilistic Learning

Let a parameterized class (family) of probability distributions
be given, i.e. p(z;0) € P

Example — the set of Gaussians in R"

p(x;p, o) = (\/Q_jm)n exp{—sz_afHT

parameterized by the mean y € R™ and standard deviation
ceR, ie 0= (u,o0).

Let the training data be given, e.g. L = (2!, 22,..., 2!'),
e.g. v € R" for Gaussians

One have to decide for a particular probability distribution
from the given family, i.e. for a particular (the “best”)
parameter, e.g. 0* = (u*, 0*) for Gaussians.
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Maximum Likelihood Principle

Assumption: the training data is a realization of the unknown
probability distribution — it is sampled according to it.

— what is observed should have a high probability

— maximize the probability of the training data with respect
to the unknown parameter

p(L;0) — max

All further staff are just examples/special cases ...
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Discrete Probability Distributions

The free parameter is a “vector” of probability values

0 =p(k) e R¥ pk) >0, > pk) =

Training data: L = (k' k%,.. kM) K e K
Assumption (very often): independent examples

=II») =11 H p(k) =TT p(k)"™®

k k=

with the frequencies n(k) in the training data

In P(L;0) =Y n(k)Inp(k) — max

or (for infinite training data)
In P(L;0) Zp )Inp(k) — max
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Shannon Lemma

Zailnxi%mxax, s.t. x; >0 Vi, inzlwith a; >0
i i

7

Method of Lagrange coefficients:
F = ;ailnxi + )\(ZZ::EZ - 1) — minmax
oF ;
=% ia=0 //Note: X is common for all i
81‘,‘ €T;
z; = c-a; and chzi:l

Q;

> Qi

T; =

Solution for general discrete probability distributions:
count the frequencies of k£, normalize to sum to 1.
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Probability Densities

Example — Gaussians

i o) = i esp 17
7 (V2mo)n 202 ’
L _ 2
Inp(L; p, 0) = ;[_mna _ W} _
=—|L|-n- ln0_72||1’ 2 - max
dInp(L;p, o) 1 l
— =0 = p=
i 7%
dInp(L; p,0) 1 l 2
CRET —g 5 o= B
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“Mixed” models for recognition

p(z, k;0) = p(k; 0,) - p(x|k; 0r), with k € K (classes, usually
discrete) and « € X (observations, general)

Unknown parameters are 6, = p(k) and class-specific 0

Training data consists of pairs L = ((:701, kY, ..., (2!, k:'“))

mp(L;0) = S [np(k") + Inp(a'[k'; 00)] =

= > n(k)Inp(k) + > Y Inp(a'|k;0x) — max

can be optimized independently with respect to 6,, 0; ... 0k

This was a supervised learning
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Unsupervised Learning

The task:
The probability model is p(x, k; 0) as before,

training data are incomplete, i.e. L = (2,22, ...,z
— classes are not observed.

Maximum Likelihood reads:

Inp(L;0) = Zlnpx 0) Zanp(xl,k;H)%mgmx
I 2

Problem — “Y"In "
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Expectation Maximization Algorithm (idea)

An iterative approach:

(x'%2.x¢) : :
Lerusdickprobe B beuuung L

Ufer weehies prarauif r/er)

Ler ey

1. “Recognition” (complete the data):
(x',2%...),0 = “classes”

2. Supervised learning:
“classes”, (z',2%...) = 0

Note: Bayesian recognition is not possible, since there is no
loss-function !l
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Expectation Maximization Algorithm (derivation)

The task:

Inp(L;0) = Zlnpx 0) Zanpxkl —>maX

We introduce a “redundant 1" and re-write it as
p(k, " 0)
Z Zal YInp(k, 2% 0) — Zal(k’)lnm

k

with a;(k) > 0 and >, ay(k) = 1 for all [.

With such a-s the two above expressions are equivalent !!!
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Expectation Maximization Algorithm (derivation)

Proof of the equivalence for one example:
p(k, a";0)
Zal ) Inp(k, 2 6) Zal(k)lnm:
= Z[O‘l YInp(k, 2t 0) —
_[ (B Inp(k, 2" 0) — oy(k anp H
Sap(k)Ind p(K, 2" 0) = pk,250) - > (k) =
K k!

k ks
=Ind p(k, "0
k/

(for many ! just sum up)
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Expectation Maximization Algorithm

To summarize (shorthand) we have:

Inp(L;0) = F(0,a) — G(0,a) — max

with
F0,0) = Y3 ai(k)Inp(k,z';0)
Ik
B (i1 PR 50
GO,a) = ;Zk: (k)1 S o 28]
— lezk:al(k)lnp(k\xlﬂ)
Note:

both F' and G are usually concave but not their difference.
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Expectation Maximization Algorithm

Inp(L;0) = F(0,a) — G(0, ) — max

Start with an arbitrary 60 repeat:
1. Expectation step: “complete the data".

Choose a' so that G(f, a) reaches its maximum with
respect to 6 at the actual value #®). Note: this is not an
optimization, this is the estimation of an upper bound
of G!!I' According to the Shannon Lemma:

a (k) = p(k|a';09)

. Maximization step: “supervised learning"”.

0+ — argmax F(#, o)
0

Note: as G(f, ) reaches its maximum at §(*), the second
addend may only decrease (the likelihood is maximized)!!!
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Some comments to the Maximum Likelihood

Maximum Likelihood estimator is not the only estimator —
there are many others as well.

Maximum Likelihood is consistent, i.e. it gives the true
parameters for infinite training sets.

Consider the following experiment for an estimator:
1. We generate infinite numbers of training sets each one
being finite;
2. For each training set we estimate the parameter;
3. We average all estimated values.

If the average is the true parameter, the estimator is called
unbiased. Maximum Likelihood is not always unbiased — it
depends on the parameter to be estimated. Examples — the
mean for a Gaussian is unbiased, the standard deviation — not.
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Some comments to the EM-Algorithm

EM always converges, but not always to the global optimum :-(

A “commonly used” technique:

(x*R.x) clee)y
E cKeunu X
Lzrhsﬂcllaroo’( HX: rleuuu “g Al ‘a{};kj N ;3_}]—7
\:(éer weeh fex .
e /Paratup /er)

Lerury

The expectation step is replaced by a “real” recognition. It
becomes similar to the K-Means algorithm and is often called
“EM-like schema”. It is wrong!!! It is no EM. It is an
approximation of the Maximum Likelihood — the so called
Saddle-Point approximation. However, it is very popular
because in the practice it is often much simpler to do
recognition as to compute posterior probabilities «.
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