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Probabilistic Learning
Let a parameterized class (family) of probability distributions
be given, i.e. p(x; θ) ∈ P
Example – the set of Gaussians in Rn

p(x;µ, σ) = 1
(
√

2πσ)n
exp

[
−‖x− µ‖

2

2σ2

]

parameterized by the mean µ ∈ Rn and standard deviation
σ ∈ R, i.e. θ = (µ, σ).
Let the training data be given, e.g. L = (x1, x2, . . . , x|L|),
e.g. xl ∈ Rn for Gaussians

One have to decide for a particular probability distribution
from the given family, i.e. for a particular (the “best”)
parameter, e.g. θ∗ = (µ∗, σ∗) for Gaussians.
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Maximum Likelihood Principle

Assumption: the training data is a realization of the unknown
probability distribution – it is sampled according to it.

→ what is observed should have a high probability

→ maximize the probability of the training data with respect
to the unknown parameter

p(L; θ)→ max
θ

All further staff are just examples/special cases ...
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Discrete Probability Distributions
The free parameter is a “vector” of probability values

θ = p(k) ∈ R|K|, p(k) ≥ 0,
∑
k

p(k) = 1

Training data: L = (k1, k2, . . . , k|L|), kl ∈ K
Assumption (very often): independent examples

P (L; θ) =
∏
l

p(kl) =
∏
k

∏
l:kl=k

p(k) =
∏
k

p(k)n(k)

with the frequencies n(k) in the training data

lnP (L; θ) =
∑
k

n(k) ln p(k)→ max
p

or (for infinite training data)

lnP (L; θ) =
∑
k

p∗(k) ln p(k)→ max
p
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Shannon Lemma
∑
i

ai ln xi → max
x
, s.t. xi ≥ 0 ∀i,

∑
i

xi = 1 with ai ≥ 0

Method of Lagrange coefficients:

F =
∑
i

ai ln xi + λ
(∑

i

xi − 1
)
→ min

λ
max
x

∂F

∂xi
= ai
xi

+ λ = 0 //Note: λ is common for all i

xi = c · ai and
∑
i

c · ai = 1

xi = ai∑
i′ ai′

Solution for general discrete probability distributions:
count the frequencies of k, normalize to sum to 1.
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Probability Densities
Example – Gaussians

p(x;µ, σ) = 1
(
√

2πσ)n
exp

[
−‖x− µ‖

2

2σ2

]
,

i.e. θ = (µ, σ), with µ ∈ Rn, σ ∈ R.

ln p(L;µ, σ) =
∑
l

[
−n ln σ − ‖x

l − µ‖2

2σ2

]
=

= −|L| · n · ln σ − 1
2σ2

∑
l

‖xl − µ‖2 → max
µ,σ

d ln p(L;µ, σ)
dµ

= 0 ⇒ µ = 1
|L|

∑
l

xl

d ln p(L;µ, σ)
dσ

= 0 ⇒ σ = 1
n · |L|

∑
l

‖xl − µ‖2
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“Mixed” models for recognition
p(x, k; θ) = p(k; θa) · p(x|k; θk), with k ∈ K (classes, usually
discrete) and x ∈ X (observations, general)
Unknown parameters are θa = p(k) and class-specific θk
Training data consists of pairs L =

(
(x1, k1), . . . , (x|L|, k|L|)

)

ln p(L; θ) =
∑
l

[
ln p(kl) + ln p(xl|kl; θkl)

]
=

=
∑
k

n(k) ln p(k) +
∑
k

∑
l:kl=k

ln p(xl|k; θk)→ max
p(k),θk

can be optimized independently with respect to θa, θ1 ... θ|K|

This was a supervised learning
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Unsupervised Learning

The task:

The probability model is p(x, k; θ) as before,

training data are incomplete, i.e. L = (x1, x2, . . . , x|L|)
– classes are not observed.

Maximum Likelihood reads:

ln p(L; θ) =
∑
l

ln p(xl; θ) =
∑
l

ln
∑
k

p(xl, k; θ)→ max
θ

Problem – “∑ ln∑”
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Expectation Maximization Algorithm (idea)
An iterative approach:

1. “Recognition” (complete the data):
(x1, x2 . . .), θ ⇒ “classes”

2. Supervised learning:
“classes”, (x1, x2 . . .) ⇒ θ

Note: Bayesian recognition is not possible, since there is no
loss-function !!!
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Expectation Maximization Algorithm (derivation)

The task:

ln p(L; θ) =
∑
l

ln p(xl; θ) =
∑
l

ln
∑
k

p(x, kl; θ)→ max
θ

We introduce a “redundant 1” and re-write it as

∑
l

[∑
k

αl(k) ln p(k, xl; θ)−
∑
k

αl(k) ln p(k, xl; θ)∑
k′ p(k′, xl; θ)

]

with αl(k) ≥ 0 and ∑k αl(k) = 1 for all l.

With such α-s the two above expressions are equivalent !!!
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Expectation Maximization Algorithm (derivation)
Proof of the equivalence for one example:

∑
k

αl(k) ln p(k, xl; θ)−
∑
k

αl(k) ln p(k, xl; θ)∑
k′ p(k′, xl; θ)

=

=
∑
k

[
αl(k) ln p(k, xl; θ)−

−
[
αl(k) ln p(k, xl; θ)− αl(k) ln

∑
k′
p(k′, xl; θ)

]]
=

∑
k

αl(k) ln
∑
k′
p(k′, xl; θ) = ln

∑
k′
p(k′, xl; θ) ·

∑
k

αl(k) =

= ln
∑
k′
p(k′, xl; θ)

(for many xl just sum up)
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Expectation Maximization Algorithm
To summarize (shorthand) we have:

ln p(L; θ) = F (θ, α)−G(θ, α)→ max
θ

with

F (θ, α) =
∑
l

∑
k

αl(k) ln p(k, xl; θ)

G(θ, α) =
∑
l

∑
k

αl(k) ln p(k, xl; θ)∑
k′ p(k′, xl; θ)

=

=
∑
l

∑
k

αl(k) ln p(k|xl; θ)

Note:
both F and G are usually concave but not their difference.
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Expectation Maximization Algorithm
ln p(L; θ) = F (θ, α)−G(θ, α)→ max

θ

Start with an arbitrary θ(0), repeat:
1. Expectation step: “complete the data”.

Choose α(t) so that G(θ, α) reaches its maximum with
respect to θ at the actual value θ(t). Note: this is not an
optimization, this is the estimation of an upper bound
of G!!! According to the Shannon Lemma:

α
(t)
l (k) = p(k|xl; θ(t))

2. Maximization step: “supervised learning”.

θ(t+1) = arg max
θ

F (θ, α(t))

Note: as G(θ, α) reaches its maximum at θ(t), the second
addend may only decrease (the likelihood is maximized)!!!
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Some comments to the Maximum Likelihood
Maximum Likelihood estimator is not the only estimator –
there are many others as well.
Maximum Likelihood is consistent, i.e. it gives the true
parameters for infinite training sets.

Consider the following experiment for an estimator:
1. We generate infinite numbers of training sets each one

being finite;
2. For each training set we estimate the parameter;
3. We average all estimated values.

If the average is the true parameter, the estimator is called
unbiased. Maximum Likelihood is not always unbiased – it
depends on the parameter to be estimated. Examples – the
mean for a Gaussian is unbiased, the standard deviation – not.
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Some comments to the EM-Algorithm
EM always converges, but not always to the global optimum :-(
A “commonly used” technique:

The expectation step is replaced by a “real” recognition. It
becomes similar to the K-Means algorithm and is often called
“EM-like schema”. It is wrong!!! It is no EM. It is an
approximation of the Maximum Likelihood – the so called
Saddle-Point approximation. However, it is very popular
because in the practice it is often much simpler to do
recognition as to compute posterior probabilities α.
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