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Recognition
The model:
Let two random variables be given:
– The first one is typically discrete (k ∈ K) and is called
“class”

– The second one is often continuous (x ∈ X) and is called
“observation”

Let the joint probability distribution p(x, k) be “given”
As k is discrete it is often specified by p(x, k) = p(k) · p(x|k)

The recognition task: given x, estimate k
Usual problems (questions):
– How to estimate k from x ? (today)
– The joint probability is not always explicitly specified
– The set K is sometimes huge
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Idea – a game
Somebody samples a pair (x, k) according to a p.d. p(x, k)

He keeps k hidden and presents x to you

You decide for some k∗ according to a chosen decision
strategy

Somebody penalizes your decision according to a
Loss-function, i.e. he compares your decision to the true
hidden k

You know both p(x, k) and the Loss-function
(how does he compare)

Your goal is to design the decision strategy in order to pay as
less as possible in average.
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Bayesian Risk

Notations:

The decision set D. Note: it needs not to coincide with K !!!
Examples: decisions like “I don’t know”, “not this class” ...

Decision strategy is a mapping e : X → D

Loss-function C : D ×K → R

The Bayesian Risk of a strategy e is the expected loss:

R(e) =
∑

x

∑
k

p(x, k) · C
(
e(x), k

)
→ min

e

It should be minimized with respect to the decision strategy
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Some variants
General:

R(e) =
∑

x

∑
k

p(x, k) · C
(
e(x), k

)
→ min

e

Almost always:
decisions can be made for different x independently (the set of
decision strategies is not restricted). Then:

R
(
e(x)

)
=
∑

k

p(x, k) · C
(
e(x), k

)
→ min

e(x)

Very often: the decision set coincides with the set of classes,
i.e. D = K

k∗ = arg min
k

∑
k′
p(x, k′) · C(k, k′) =

= arg min
k

∑
k′
p(k′|x) · C(k, k′)
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Maximum A-posteriori Decision (MAP)
The Loss is the simplest one:

C(k, k′) =
{

1 if k 6= k′

0 otherwise = δ(k 6= k′)

i.e. we pay 1 if the answer is not the true class, no matter
what error we make.
From that follows:

R(k) =
∑
k′
p(k′|x) · δ(k 6= k′) =

=
∑
k′
p(k′|x)− p(k|x) = 1− p(k|x)→ min

k

p(k|x)→ max
k
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A MAP example
Let K = {1, 2}, x ∈ R2, p(k) be given. Conditional probability
distributions for observations given classes are Gaussians:

p(x|k) = 1
2πσ2

k

exp
[
−‖x− µk‖2

2σ2
k

]

The loss-function is δ(k 6= k′), i.e. we want MAP.

The decision strategy e : X → K
partitions the input space into two re-
gions: the one corresponding to the
first and the one corresponding to the
second class.

How does this partition look like?

ML: Bayesian Decision Theory November 5, 2013 7



A MAP example
For a particular x we decide for 1, if

p(1) · 1
2πσ2

1
exp

[
−‖x− µ1‖2

2σ2
1

]
> p(2) · 1

2πσ2
2

exp
[
−‖x− µ2‖2

2σ2
2

]

Special case (for simplicity) σ1 = σ2
→ the decision strategy is (derivation on the board)

〈x, µ2 − µ1〉 > const

→ a linear classifier – the hyperplane orthogonal to µ2 − µ1

More classes, equal σ and p(k) → Voronoi-diagram
More classes, equal σ, different p(k) → Fischer-classifier
Two classes, different σ – a general quadratic curve
etc.
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Decision with rejection
The decision set is D = K ∪ {r}, i.e. extended by a special
decision “I don’t know”. The loss-function is

C(d, k) =
{
δ(d 6= k) if d ∈ K
ε if d = r

i.e. we pay a (reasonable) penalty if we are lazy to decide.

Case-by-case analysis:
1. We decide for a class d ∈ K, then the decision is MAP
d = k∗ = arg maxk p(k|x), the loss for this is 1− p(k∗|x)

2. We decide to reject d = r and pay ε for this

The decision strategy is:
Compare p(k∗|x) with 1− ε and decide for the greater value.
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Other simple loss-functions
Let the set of classes be structured (in some sense)
Example:
We have a probability density p(x, y) with an observations x
and a continuous hidden value y. Suppose, we know p(y|x)
for a given x, for which we would like to infer y.

The Bayesian Risk reads:

R
(
e(x)

)
=
∫ ∞
−∞

p(y|x) · C
(
e(x), y

)
dy
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Other simple loss-functions
Simple δ-loss-function → MAP (not interesting anymore)

Loss may account for differences between the decision and
the “true” hidden value, for instance C(d, y) = (d− y)2,
i.e. we pay depending on the distance.

Than (see board again):

e(x) = arg min
d

∫ ∞
−∞

p(y|x) · (d− y)2dy =

=
∫ ∞
−∞

y · p(y|x)dy = Ep(y|x)[y]

Other choices: C(d, y) = |d− y|, C(d, y) = δ(|d− y| > ε),
combination with “rejection” etc.
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Additive loss-functions – an example
Q1 Q2 . . . Qn

P1 1 0 . . . 1
P2 0 1 . . . 0
. . . . . . . . . . . . . . .
Pm 0 1 . . . 0
“∑” ? ? . . . ?

Consider a “questionnaire”:
m persons answer n questions.
Furthermore, let us assume that
persons are rated – a “reliability”
measure is assigned to each one.
The goal is to find the “right”
answers for all questions.

Strategy 1:
Choose the best person and take all his/her answers.

Strategy 2:
– Consider a particular question
– Look, what all the people say concerning this, do
(weighted) voting
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Additive loss-functions – example interpretation

People are classes k, reliability measure is the posterior p(k|x)

Specialty:
classes consist of “parts” (questions) – classes are structured

The set of classes is k = (k1, k2 . . . km) ∈ Km, it can be seen
as a vector of m components each one being a simple answer
(0 or 1 in the above example)

The “Strategy 1” is MAP

How to derive (consider, understand) the other decision
strategy from the viewpoint of the Bayesian Decision Theory?
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Additive loss-functions

Consider the simple C(k, k′) = δ(k 6= k′) loss for the case
classes are structured – it does not reflect how strong the
class and the decision disagree

A better (?) choice – additive loss-function

C(k, k′) =
∑

i

ci(ki, k
′
i)

i.e. disagreements of all components are summed up

Substitute it in the formula for Bayesian Risk, derive and look
what happens ...
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Additive loss-functions – derivation

R(k) =
∑
k′

[
p(k′|x) ·

∑
i

ci(ki, k
′
i)
]

= / swap summations

=
∑

i

∑
k′
ci(ki, k

′
i) · p(k′|x) = / split summation

=
∑

i

∑
l∈K

∑
k′:k′

i=l

ci(ki, l) · p(k′|x) = / factor out

=
∑

i

∑
l∈K

[
ci(ki, l) ·

∑
k′:k′

i=l

p(k′|x)
]

= / red are marginals

=
∑

i

∑
l∈K

ci(ki, l) · p(k′i=l|x)→ min
k

/ independent problems

⇒
∑
l∈K

ci(ki, l) · p(k′i=l|x)→ min
ki

∀i
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Additive loss-functions – the strategy

1. Compute marginal probability distributions for values

p(k′i=l|x) =
∑

k′:k′
i=l

p(k′|x)

for each variable i and each value l

2. Decide for each variable “independently” according to its
marginal p.d. and the local loss ci∑

l∈K

ci(ki, l) · p(k′i=l|x)→ min
ki

This is again a Bayesian Decision Problem – minimize the
average loss
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Additive loss-functions – a special case
For each variable we pay 1 if we are wrong:

ci(ki, k
′
i) = δ(ki 6= k′i)

The overall loss is the number of misclassified variables
(wrongly answered questions)

C(k, k′) =
∑

i

δ(ki 6= k′i)

and is called Hamming distance

The decision strategy is Maximum Marginal Decision

k∗i = arg max
l

p(k′i=l|x) ∀i
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