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Recognition

The model:
Let two random variables be given:

— The first one is typically discrete (k € K) and is called
“class”
— The second one is often continuous (z € X) and is called
“observation”
Let the joint probability distribution p(z, k) be “given”
As k is discrete it is often specified by p(z, k) = p(k) - p(z|k)

The recognition task: given z, estimate k
Usual problems (questions):

— How to estimate k from x ? (today)
— The joint probability is not always explicitly specified
— The set K is sometimes huge
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|dea — a game

Somebody samples a pair (z, k) according to a p.d. p(z, k)
He keeps k hidden and presents = to you

You decide for some k* according to a chosen decision
strategy

Somebody penalizes your decision according to a

Loss-function, i.e. he compares your decision to the true
hidden &k

You know both p(z, k) and the Loss-function
(how does he compare)

Your goal is to design the decision strategy in order to pay as
less as possible in average.
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Bayesian Risk

Notations:

The decision set D. Note: it needs not to coincide with K !l

Examples: decisions like “I don't know”, “not this class” ...
Decision strategy is a mappinge: X — D
Loss-function C': D x K — R

The Bayesian Risk of a strategy e is the expected loss:
R(e) =YY" p(x, k) - C(e(x), k) — min
Tk

It should be minimized with respect to the decision strategy
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Some variants

General:
R(e)=>_> plxzk)- C’(e(:v), k) — min

Almost always:
decisions can be made for different = independently (the set of
decision strategies is not restricted). Then:
Rie(x)) = x,k)-Cle(x), k) — min
(e(x)) > p(.k) (e(@), k) — miy
Very often: the decision set coincides with the set of classes,
ie. D =K
k* = argmin) p(z,k)-C(k, k) =
k k!
= argmin Y _p(k'|z) - C(k, k)
k

k/

&LD

ML: Bayesian Decision Theory November 5, 2013



Maximum A-posteriori Decision (MAP)

The Loss is the simplest one:

1 if k£ K

Clk, k) = { 0 otherwise o(k # )

i.e. we pay 1 if the answer is not the true class, no matter
what error we make.

From that follows:
R(k) = Z (K|x) - o(k # k) =

. / — _ 1
= Zp (K'|x) — p(klz) =1 — p(k|x) — min

p(k|x) — max
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A MAP example

Let K = {1,2}, x € R?, p(k) be given. Conditional probability
distributions for observations given classes are Gaussians:

p(z|k) =

exp
210}

]

207
The loss-function is d(k # k'), i.e. we want MAP.

The decision strategy ¢ : X — K
partitions the input space into two re-
gions: the one corresponding to the
first and the one corresponding to the
second class.

How does this partition look like?
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A MAP example

For a particular = we decide for 1, if

1 Hﬂf—ulHj 1 [ Hx—uaHT
1) — —— | >p(2)— -
p(l) 2no? exp{ 207 p2) 202 P 202

Special case (for simplicity) o1 = o9
— the decision strategy is (derivation on the board)

(x, o — 1) > const

— a linear classifier — the hyperplane orthogonal to o — p1q

More classes, equal o and p(k) — Voronoi-diagram
More classes, equal o, different p(k) — Fischer-classifier
Two classes, different o — a general quadratic curve

etc.
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Decision with rejection

The decision set is D = K U {r}, i.e. extended by a special
decision “l don't know". The loss-function is

can - {14#H 1Ak

i.e. we pay a (reasonable) penalty if we are lazy to decide.

Case-by-case analysis:
1. We decide for a class d € K, then the decision is MAP
d = k* = argmax,, p(k|x), the loss for this is 1 — p(k*|x)
2. We decide to reject d = r and pay ¢ for this

The decision strategy is:
Compare p(k*|z) with 1 — € and decide for the greater value.
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Other simple loss-functions
Let the set of classes be structured (in some sense)

Example:

We have a probability density p(z,y) with an observations x
and a continuous hidden value y. Suppose, we know p(y|z)
for a given z, for which we would like to infer y.

Q(alx)
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Other simple loss-functions

Simple J-loss-function — MAP (not interesting anymore)

Loss may account for differences between the decision and
the “true” hidden value, for instance C'(d,y) = (d — y)?,
i.e. we pay depending on the distance.

Than (see board again):

oo

e(z) = argjnin/ p(ylx) - (d —y)*dy =

(e o]

= /_ Y p(yle)dy = Byl [y]

Other choices: C(d,y) = |d —y|, C(d,y) = d(|d —y| > ¢),
combination with “rejection” etc.

&LD ML: Bayesian Decision Theory November 5, 2013

11



Additive loss-functions — an example

Ql QQ Qn
Pl 110 1
P | 0] 1 0
P, 1 0
DIEARABARE
Strategy 1:

Consider a "questionnaire”:

m persons answer n. questions.
Furthermore, let us assume that
persons are rated — a “reliability”
measure is assigned to each one.

The goal is to find the “right”
answers for all questions.

Choose the best person and take all his/her answers.

Strategy 2:

— Consider a particular question

— Look, what all the people say concerning this, do

(weighted) voting
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Additive loss-functions — example interpretation

People are classes k, reliability measure is the posterior p(k|z)

Specialty:
classes consist of “parts” (questions) — classes are structured

The set of classes is k = (k1, ko ... k) € K™, it can be seen
as a vector of m components each one being a simple answer
(0 or 1 in the above example)

The “Strategy 1" is MAP

How to derive (consider, understand) the other decision
strategy from the viewpoint of the Bayesian Decision Theory?

&LD ML: Bayesian Decision Theory November 5, 2013

13



Additive loss-functions

Consider the simple C'(k, k") = d(k # k') loss for the case
classes are structured — it does not reflect how strong the
class and the decision disagree

A better (?) choice — additive loss-function

O(k’, k’,) S Z Ci(k‘i, k’;)

)

i.e. disagreements of all components are summed up

Substitute it in the formula for Bayesian Risk, derive and look
what happens ...
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Additive loss-functions — derivation

R(k) = Z{ (K'|z) - ch(k‘l,k;)] = / swap summations

k./

= ZZCZ (ki, k2) - p(K'|x) = / split summation

= ZZ Z ci(ki, 1) - p(K'|x) = / factor out
i 1K K':k=

= > > {cl ki) > p(K|x ] = / red are marginals
i leK Kkl =

= Y Y clki,l) - p(K=lz) — min
i leK k
/ independent problems

= > ci(k;,l) - p(ki=l|z) — min Vi
leK ki
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Additive loss-functions — the strategy

1. Compute marginal probability distributions for values

p(ki=llz) = > p(K'|x)
Kk =1

for each variable 7 and each value [

2. Decide for each variable “independently” according to its
marginal p.d. and the local loss ¢;

(k1) - r— i
> ik, 1) - p(k; l\x)—)nilin

leK

This is again a Bayesian Decision Problem — minimize the
average loss
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Additive loss-functions — a special case

For each variable we pay 1 if we are wrong:
Ci(kia k;) = 5(’%‘ # k;)

The overall loss is the number of misclassified variables
(wrongly answered questions)

Ck, k') =D (ki # k)
and is called Hamming distance

The decision strategy is Maximum Marginal Decision

ki = argmax p(ki=l|x) Vi
I
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