Machine Learning

Probability Theory

WS2013/2014 – Dmitrij Schlesinger, Carsten Rother

Probability space

- is a three-tuple (Ω, σ, P) with:
- Ω the set of elementary events
- σ algebra
- *P* probability measure

σ-algebra over Ω is a system of subsets, i.e. σ ⊆ P(Ω) (P is the power set) with:

- $\Omega \in \sigma$
- $A \in \sigma \Rightarrow \Omega \setminus A \in \sigma$
- $A_i \in \sigma \ i = 1 \dots n \quad \Rightarrow \quad \bigcup_{i=1}^n A_i \in \sigma$

 σ is closed with respect to the complement and countable conjunction. It follows: $\emptyset \in \sigma, \sigma$ is closed also with respect to the countable disjunction (due to the De Morgan's laws)

Probability space

Examples:

- $\sigma = \{\emptyset, \Omega\}$ (smallest) and $\sigma = \mathcal{P}(\Omega)$ (largest) σ -algebras over Ω
- the minimal σ -algebra over Ω containing a particular subset $A \in \Omega$ is $\sigma = \{\emptyset, A, \Omega \setminus A, \Omega\}$
- Ω is discrete and finite, $\sigma=2^{\Omega}$
- $\Omega = \mathbb{R}$, the Borel-algebra (contains all intervals among others)
- etc.

Probability measure

 $P: \sigma \rightarrow [0,1]$ is a "measure" (Π) with the normalizing $P(\Omega) = 1$

 σ -additivity: let $A_i \in \sigma$ be pairwise disjoint subsets, i.e. $A_i \cap A_{i'} = \emptyset$, then

$$P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i})$$

Note: there are sets for which there is no measure.

Examples: the set of irrational numbers, function spaces \mathbb{R}^{∞} etc.

Banach-Tarski paradoxon (see Wikipedia 🙂):

(For us) practically relevant cases

- The set Ω is "good-natured", e.g. \mathbb{R}^n , discrete finite sets etc.
- $\sigma = \mathcal{P}(\Omega)$, i.e. the algebra is the power set
- We often consider a (composite) "event" $A \subseteq \Omega$ as the union of elemantary ones
- Probability of an event is

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Random variables

Here a special case – **real-valued** random variables.

A random variable ξ for a probability space (Ω, σ, P) is a mapping $\xi: \Omega \to \mathbb{R}$, satisfying

$$\{\omega: \xi(\omega) \le r\} \in \sigma \quad \forall r \in \mathbb{R}$$

(always holds for power sets)

Note: elementary events are **not numbers** – they are elements of a general set $\boldsymbol{\Omega}$

Random variables are in contrast numbers, i.e. they can be summed up, subtracted, squared etc.

Cummulative distribution function of a random variable ξ :

$$F_{\xi}(r) = P(\{\omega: \xi(\omega) \le r\})$$

Probability distribution of a **discrete** random variable $\xi: \Omega \to \mathbb{Z}$:

$$p_{\xi}(r) = P(\{\omega: \xi(\omega) = r\})$$

Probability density of a **continuous** random variable $\xi: \Omega \to \mathbb{R}$:

$$p_{\xi}(r) = \frac{\partial F_{\xi}(r)}{\partial r}$$

Distributions

Why is it necessary to do it so complex (through the cummulative distribution function)?

Example – a Gaussian

Probability of any particular real value is zero \rightarrow a "direct" definition of a "probability distribution" is senseless \mathfrak{S}

It is indeed possible through the cummulative distribution function.

Mean

A mean (expectation, average ...) of a random variable ξ is

$$\mathbb{E}_{P}(\xi) = \sum_{\omega \in \Omega} P(\omega) \cdot \xi(\omega) = \sum_{r} \sum_{\omega:\xi(\omega)=r} P(\omega) \cdot r = \sum_{r} p_{\xi}(r) \cdot r$$

Arithmetic mean is a special case:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{n} x_i = \sum_{r} p_{\xi}(r) \cdot r$$

with

$$x \equiv r$$
 and $p_{\xi}(r) = \frac{1}{N}$

(uniform probability distribution).

Mean

The probability of an event $A \in \Omega$ can be expressed as the mean value of a corresponding "indicator"-variable

$$P(A) = \sum_{\omega \in A} P(\omega) = \sum_{\omega \in \Omega} P(\omega) \cdot \xi(\omega)$$

with

$$\xi(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{otherwise} \end{cases}$$

Often, the set of elementary events can be associated with a random variable (just enumerate all $\omega \in \Omega$).

Then one can speak about a "probability distribution over Ω " (instead of the probability measure).

Example 1 – numbers of a die

The set of elementary events:

Probability measure:

Random variable (number of a die):

Cummulative distribution:

Probability distribution:

Mean value:

$$\Omega = \{a, b, c, d, e, f\}$$

$$P(\{a\}) = \frac{1}{6}, P(\{c, f\}) = \frac{1}{3} \dots$$

$$\xi(a) = 1, \xi(b) = 2 \dots \xi(f) = 6$$

$$F_{\xi}(3) = \frac{1}{2}, F_{\xi}(4.5) = \frac{2}{3} \dots$$

$$p_{\xi}(1) = p_{\xi}(2) \dots p_{\xi}(6) = \frac{1}{6}$$

$$\mathbb{E}_{P}(\xi) = 3.5$$

Another random variable (squared number of a die)

$$\xi'(a) = 1, \xi'(b) = 4 \dots \xi'(f) = 36$$

Mean value:

VISION LAB DRESDEN

$$\mathbb{E}_P(\xi) = 15\frac{1}{6}$$

Note: $\mathbb{E}_P(\xi') \neq \mathbb{E}_P^2(\xi)$

Example 2 – two independent dice numbers

The set of elementary events (6x6 faces):

$$\Omega = \{a, b, c, d, e, f\} \times \{a, b, c, d, e, f\}$$
Probability measure: $P(\{ab\}) = \frac{1}{36}, P(\{cd, fa\}) = \frac{1}{18}$...

Two random variables:

1) The number of the first die: $\xi_1(ab) = 1$, $\xi_1(ac) = 1$, $\xi_1(ef) = 5$... 2) The number of the second die: $\xi_2(ab) = 2$, $\xi_2(ac) = 3$, $\xi_2(ef) = 6$...

Probability distributions:

$$p_{\xi_1}(1) = p_{\xi_1}(2) = \dots = p_{\xi_1}(6) = \frac{1}{6}$$

$$p_{\xi_2}(1) = p_{\xi_2}(2) = \dots = p_{\xi_2}(6) = \frac{1}{6}$$

Example 2 – two independent dice numbers

Consider the new random variable: $\xi = \xi_1 + \xi_2$

The probability distribution p_{ξ} is not uniform anymore \bigcirc

$$p_{\xi} \propto (1,2,3,4,5,6,5,4,3,2,1)$$

Mean value is $\mathbb{E}_P(\xi) = 7$

In general for mean values:

6	7	8	3	+	10	11	12	
5	6	7	8		9	10	1 .	
4	5	6	7		8	9	10	E {1+ {2
3	ч	5	6	1	7	8	9	
2	3	4		5	6	7	8	
{z = 1	2		3 4				7	
{2-'	5=	1	2	3	4	5	6	

$$\mathbb{E}_P(\xi_1 + \xi_2) = \sum_{\omega \in \Omega} P(\omega) \cdot (\xi_1(\omega) + \xi_2(\omega)) = \mathbb{E}_P(\xi_1) + \mathbb{E}_P(\xi_2)$$

Random variables of higher dimension

Analogously: Let $\xi: \Omega \to \mathbb{R}^n$ be a mapping (n = 2 for simplicity), with $\xi = (\xi_1, \xi_2), \xi_1: \Omega \to \mathbb{R}$ and $\xi_2: \Omega \to \mathbb{R}$

Cummulative distribution function:

$$F_{\xi}(r,s) = P(\{\omega:\xi_1(\omega) \le r\} \cap \{\omega:\xi_2(\omega) \le s\})$$

Joint probability distribution (discrete):

$$p_{\xi=(\xi_1,\xi_2)}(r,s) = P(\{\omega:\xi_1(\omega)=r\} \cap \{\omega:\xi_2(\omega)=s\})$$

Joint probability density (continuous):

$$p_{\xi=(\xi_1,\xi_2)}(r,s) = \frac{\partial^2 F_{\xi}(r,s)}{\partial r \,\partial s}$$

14

Two events $A \in \sigma$ and $B \in \sigma$ are **independent**, if

$$P(A \cap B) = P(A) \cdot P(B)$$

Interesting: Events A and $\overline{B} = \Omega \setminus B$ are independent, if A and B are independent S

Two random variables are independent, if

$$F_{\xi=(\xi_1,\xi_2)}(r,s) = F_{\xi_1}(r) \cdot F_{\xi_2}(s) \quad \forall r,s$$

It follows (example for continuous ξ):

$$p_{\xi}(r,s) = \frac{\partial^2 F_{\xi}(r,s)}{\partial r \partial s} = \frac{\partial F_{\xi_1}(r)}{\partial r} \cdot \frac{\partial F_{\xi_2}(s)}{\partial s} = p_{\xi_1}(r) \cdot p_{\xi_2}(s)$$

Conditional probabilities

Conditional probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Independence (almost equivalent): A and B are independent, if

$$P(A \mid B) = P(A)$$
 and/or $P(B \mid A) = P(B)$

Bayes' Theorem (formula, rule)

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Further definitions (for random variables)

Shorthand: $p(x, y) \equiv p_{\xi}(x, y)$

Marginal probability distribution:

$$p(x) = \sum_{y} p(x, y)$$

Conditional probability distribution: $p(x|y) = \frac{p(x,y)}{p(y)}$

Note: $\sum_{x} p(x|y) = 1$

Independent probability distribution: $p(x, y) = p(x) \cdot p(y)$

Example

Let the probability to be taken ill be

p(ill) = 0.02

Let the conditional probability to have a temperature in that case is

p(temp|ill) = 0.9

However, one may have a temperature without any illness, i.e.

$$p(temp|\overline{ill}) = 0.05$$

What is the probability to be taken ill provided that one has a temperature?

Example

Bayes' rule:

$$p(ill|temp) = \frac{p(temp|ill) \cdot p(ill)}{p(temp)} =$$

(marginal probability in the denominator)

$$= \frac{p(temp|ill) \cdot p(ill)}{p(temp|ill) \cdot p(ill) + p(temp|\overline{ill}) \cdot p(\overline{ill})} = \frac{0.9 \cdot 0.02}{0.9 \cdot 0.02 + 0.05 \cdot 0.98} \approx 0.27$$

– not so high as expected \odot , the reason – very low **prior** probability to be taken ill

Further topics

The model

Let two random variables be given:

- The first one is typically discrete (i.e. $k \in K$) and is called "class"
- The second one is often continuous $(x \in X)$ and is called "observation"

Let the joint probability distribution p(x, k) be "given". As k is discrete it is often specified by $p(x, k) = p(k) \cdot p(x|k)$

The recognition task: given *x*, estimate *k*.

Usual problems (questions):

- How to estimate k from x ?
- The joint probability is not always explicitly specified.
- The set *K* is sometimes huge.

Further topics

The learning task:

Often (almost always) the probability distribution is known up to free parameters. How to choose them (learn from examples)?

Next classes:

- 1. Recognition, Bayessian Decision Theory
- 2. Probabilistic learning, Maximum-Likelihood principle
- 3. Discriminative models, recognition and learning

...