Machine Learning

Probability Theory

Probability space

is a three-tuple (Ω, σ, P) with:

- Ω - the set of elementary events
- σ - algebra
- P - probability measure
σ-algebra over Ω is a system of subsets,
 i.e. $\sigma \subseteq \mathcal{P}(\Omega)$ (\mathcal{P} is the power set) with:
- $\Omega \in \sigma$
- $A \in \sigma \Rightarrow \Omega \backslash A \in \sigma$
- $A_{i} \in \sigma i=1 \ldots n \Rightarrow \bigcup_{i=1}^{n} A_{i} \in \sigma$
σ is closed with respect to the complement and countable conjunction. It follows: $\emptyset \in \sigma, \sigma$ is closed also with respect to the countable disjunction (due to the De Morgan's laws)

Probability space

Examples:

- $\sigma=\{\varnothing, \Omega\}$ (smallest) and $\sigma=\mathcal{P}(\Omega)$ (largest) σ-algebras over Ω
- the minimal σ-algebra over Ω containing a particular subset $A \in \Omega$ is $\sigma=\{\emptyset, A, \Omega \backslash A, \Omega\}$
- Ω is discrete and finite, $\sigma=2^{\Omega}$
- $\Omega=\mathbb{R}$, the Borel-algebra (contains all intervals among others)
- etc.

Probability measure

$P: \sigma \rightarrow[0,1]$ is a ",measure" (Π) with the normalizing $P(\Omega)=1$
σ-additivity: let $A_{i} \in \sigma$ be pairwise disjoint subsets, i.e. $A_{i} \cap A_{i^{\prime}}=\emptyset$, then

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

Note: there are sets for which there is no measure.
Examples: the set of irrational numbers, function spaces \mathbb{R}^{∞} etc.

Banach-Tarski paradoxon (see Wikipedia ©): $^{\text {(s }}$

(For us) practically relevant cases

- The set Ω is „good-natured", e.g. \mathbb{R}^{n}, discrete finite sets etc.
- $\sigma=\mathcal{P}(\Omega)$, i.e. the algebra is the power set
- We often consider a (composite) „event" $A \subseteq \Omega$ as the union of elemantary ones
- Probability of an event is

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Random variables

Here a special case - real-valued random variables.

A random variable ξ for a probability space (Ω, σ, P) is a mapping $\xi: \Omega \rightarrow \mathbb{R}$, satisfying

$$
\{\omega: \xi(\omega) \leq r\} \in \sigma \quad \forall r \in \mathbb{R}
$$

(always holds for power sets)

Note: elementary events are not numbers - they are elements of a general set Ω

Random variables are in contrast numbers, i.e. they can be summed up, subtracted, squared etc.

Distributions

Cummulative distribution function of a random variable ξ :

$$
F_{\xi}(r)=P(\{\omega: \xi(\omega) \leq r\})
$$

Probability distribution of a discrete random variable $\xi: \Omega \rightarrow \mathbb{Z}$:

$$
p_{\xi}(r)=P(\{\omega: \xi(\omega)=r\})
$$

Probability density of a continuous random variable $\xi: \Omega \rightarrow \mathbb{R}$:

$$
p_{\xi}(r)=\frac{\partial F_{\xi}(r)}{\partial r}
$$

Distributions

Why is it necessary to do it so complex (through the cummulative distribution function)?

Example - a Gaussian

Probability of any particular real value is zero $\rightarrow \mathrm{a}$ „direct" definition of a „probability distribution" is senseless $*$

It is indeed possible through the cummulative distribution function.

Mean

A mean (expectation, average ...) of a random variable ξ is

$$
\mathbb{E}_{P}(\xi)=\sum_{\omega \in \Omega} P(\omega) \cdot \xi(\omega)=\sum_{r} \sum_{\omega: \xi(\omega)=r} P(\omega) \cdot r=\sum_{r} p_{\xi}(r) \cdot r
$$

Arithmetic mean is a special case:

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{n} x_{i}=\sum_{r} p_{\xi}(r) \cdot r
$$

with

$$
x \equiv r \text { and } p_{\xi}(r)=\frac{1}{N}
$$

(uniform probability distribution).

Mean

The probability of an event $A \in \Omega$ can be expressed as the mean value of a corresponding ,indicator"-variable

$$
P(A)=\sum_{\omega \in A} P(\omega)=\sum_{\omega \in \Omega} P(\omega) \cdot \xi(\omega)
$$

with

$$
\xi(\omega)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { otherwise }\end{cases}
$$

Often, the set of elementary events can be associated with a random variable (just enumerate all $\omega \in \Omega$).

Then one can speak about a "probability distribution over Ω " (instead of the probability measure).

Example 1 - numbers of a die

The set of elementary events:
Probability measure:
Random variable (number of a die):
Cummulative distribution:
Probability distribution:
Mean value:

$$
\Omega=\{a, b, c, d, e, f\}
$$

$$
P(\{a\})=\frac{1}{6}, P(\{c, f\})=\frac{1}{3} \ldots
$$

$$
\xi(a)=1, \xi(b)=2 \ldots \xi(f)=6
$$

$$
F_{\xi}(3)=\frac{1}{2}, F_{\xi}(4.5)=\frac{2}{3} \ldots
$$

$$
p_{\xi}(1)=p_{\xi}(2) \ldots p_{\xi}(6)=\frac{1}{6}
$$

$$
\mathbb{E}_{P}(\xi)=3.5
$$

Another random variable (squared number of a die)

$$
\xi^{\prime}(a)=1, \xi^{\prime}(b)=4 \ldots \xi^{\prime}(f)=36
$$

Mean value:

$$
\mathbb{E}_{P}(\xi)=15 \frac{1}{6}
$$

Note: $\mathbb{E}_{P}\left(\xi^{\prime}\right) \neq \mathbb{E}_{P}^{2}(\xi)$

Example 2 - two independent dice numbers

The set of elementary events (6×6 faces):

$$
\Omega=\{a, b, c, d, e, f\} \times\{a, b, c, d, e, f\}
$$

Probability measure: $P(\{a b\})=\frac{1}{36}, P(\{c d, f a\})=\frac{1}{18} \ldots$

Two random variables:

1) The number of the first die: $\xi_{1}(a b)=1, \xi_{1}(a c)=1, \xi_{1}(e f)=5 \ldots$
2) The number of the second die: $\xi_{2}(a b)=2, \xi_{2}(a c)=3, \xi_{2}(e f)=6 \ldots$

Probability distributions:

$$
\begin{aligned}
& p_{\xi_{1}}(1)=p_{\xi_{1}}(2)=\cdots=p_{\xi_{1}}(6)=\frac{1}{6} \\
& p_{\xi_{2}}(1)=p_{\xi_{2}}(2)=\cdots=p_{\xi_{2}}(6)=\frac{1}{6}
\end{aligned}
$$

Example 2 - two independent dice numbers

Consider the new random variable: $\xi=\xi_{1}+\xi_{2}$

The probability distribution p_{ξ} is not uniform anymore -

$$
p_{\xi} \propto(1,2,3,4,5,6,5,4,3,2,1)
$$

Mean value is $\mathbb{E}_{P}(\xi)=7$

In general for mean values:

$$
\mathbb{E}_{P}\left(\xi_{1}+\xi_{2}\right)=\sum_{\omega \in \Omega} P(\omega) \cdot\left(\xi_{1}(\omega)+\xi_{2}(\omega)\right)=\mathbb{E}_{P}\left(\xi_{1}\right)+\mathbb{E}_{P}\left(\xi_{2}\right)
$$

Random variables of higher dimension

Analogously: Let $\xi: \Omega \rightarrow \mathbb{R}^{n}$ be a mapping ($n=2$ for simplicity), with $\xi=\left(\xi_{1}, \xi_{2}\right), \xi_{1}: \Omega \rightarrow \mathbb{R}$ and $\xi_{2}: \Omega \rightarrow \mathbb{R}$

Cummulative distribution function:

$$
F_{\xi}(r, s)=P\left(\left\{\omega: \xi_{1}(\omega) \leq r\right\} \cap\left\{\omega: \xi_{2}(\omega) \leq s\right\}\right)
$$

Joint probability distribution (discrete):

$$
p_{\xi=\left(\xi_{1}, \xi_{2}\right)}(r, s)=P\left(\left\{\omega: \xi_{1}(\omega)=r\right\} \cap\left\{\omega: \xi_{2}(\omega)=s\right\}\right)
$$

Joint probability density (continuous):

$$
p_{\xi=\left(\xi_{1}, \xi_{2}\right)}(r, s)=\frac{\partial^{2} F_{\xi}(r, s)}{\partial r \partial s}
$$

Independence

Two events $A \in \sigma$ and $B \in \sigma$ are independent, if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Interesting: Events A and $\bar{B}=\Omega \backslash B$ are independent, if A and B are independent $;$

Two random variables are independent, if

$$
F_{\xi=\left(\xi_{1}, \xi_{2}\right)}(r, s)=F_{\xi_{1}}(r) \cdot F_{\xi_{2}}(s) \quad \forall r, s
$$

It follows (example for continuous ξ):

$$
p_{\xi}(r, s)=\frac{\partial^{2} F_{\xi}(r, s)}{\partial r \partial s}=\frac{\partial F_{\xi_{1}}(r)}{\partial r} \cdot \frac{\partial F_{\xi_{2}}(s)}{\partial s}=p_{\xi_{1}}(r) \cdot p_{\xi_{2}}(s)
$$

Conditional probabilities

Conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Independence (almost equivalent): A and B are independent, if

$$
P(A \mid B)=P(A) \quad \text { and/or } \quad P(B \mid A)=P(B)
$$

Bayes' Theorem (formula, rule)

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Further definitions (for random variables)

Shorthand: $p(x, y) \equiv p_{\xi}(x, y)$

Marginal probability distribution:

$$
p(x)=\sum_{y} p(x, y)
$$

Conditional probability distribution:

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}
$$

Note: $\sum_{x} p(x \mid y)=1$

Independent probability distribution:

$$
p(x, y)=p(x) \cdot p(y)
$$

Example

Let the probability to be taken ill be

$$
p(i l l)=0.02
$$

Let the conditional probability to have a temperature in that case is

$$
p(\text { temp } \mid \text { ill })=0.9
$$

However, one may have a temperature without any illness, i.e.

$$
p(\text { temp } \mid \overline{i l l})=0.05
$$

What is the probability to be taken ill provided that one has a temperature?

Example

Bayes' rule:

$$
p(\text { ill } \mid \text { temp })=\frac{p(\text { temp } \mid i l l) \cdot p(i l l)}{p(\text { tem })}=
$$

(marginal probability in the denominator)

$$
\begin{gathered}
=\frac{p(\text { temp } \mid \text { ill }) \cdot p(i l l)}{p(\text { temp } \mid \text { ill }) \cdot p(i l l)+p(\text { temp } \mid \overline{i l l}) \cdot p(\overline{i l l})}= \\
=\frac{0.9 \cdot 0.02}{0.9 \cdot 0.02+0.05 \cdot 0.98} \approx 0.27
\end{gathered}
$$

- not so high as expected © , the reason - very low prior probability $^{\text {a }}$ to be taken ill

Further topics

The model

Let two random variables be given:

- The first one is typically discrete (i.e. $k \in K$) and is called "class"
- The second one is often continuous $(x \in X)$ and is called "observation"

Let the joint probability distribution $p(x, k)$ be "given".
As k is discrete it is often specified by $p(x, k)=p(k) \cdot p(x \mid k)$

The recognition task: given x, estimate k.
Usual problems (questions):

- How to estimate k from x ?
- The joint probability is not always explicitly specified.
- The set K is sometimes huge.

Further topics

The learning task:
Often (almost always) the probability distribution is known up to free parameters. How to choose them (learn from examples)?

Next classes:

1. Recognition, Bayessian Decision Theory
2. Probabilistic learning, Maximum-Likelihood principle
3. Discriminative models, recognition and learning
