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Problem – high feature dimension: 
 
• Feature is the (5x5) patch → feature vector is in 
• SIFT is composed of 16 histograms of 8 directions → vector in  

 
Idea – the feature space is represented in another basis. 

Assumption: the directions of small 
variances correspond to noise and can be 
neglected 
 
Approach: project the feature space onto 
a linear subspace so that the variances in 
the projected space are maximal 
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A simplified example: data are centered, the subspace is one-
dimensional, i.e. it is represented by a vector                 . Projection of 
an    on    is          . Hence, the task is 
 
 
 
Lagrangian: 
 
 
 
Gradient with respect to    : 
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→       is an eigenvector and     is the corresponding eigenvalue of 
the covariance matrix. Which one? 
 
For a pair     und      the variance is   
 
 
 
 
→ chose the eigenvector corresponding to the maximal eigenvalue. 
 
Similar approach: project the feature space into a subspace so that 
the summed squared distance between the points and their 
projections is minimal → the result is the same. 
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Summary (for higher-dimensional subspaces): 
 
1. Compute the covariance matrix 

 
2. Find all eigenvalues and eigenvectors 

 
3. Sort the eigenvalues in decreasing order 

 
4. Choose      eigenvectors for the      first eigenvalues (in the order) 

 
5. The              projection matrix consists of      columns, each one is 

the corresponding eigenvector. 
 
 

Are projections onto a linear subspace good? Alternatives? 
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The optimal direction vector can be expressed as a linear 
combination of data points, i.e. it is contained in the subspace that is 
spanned by the data points. 
 
 
 
Note: in high-dimensional spaces it may happen that all data points 
lie in a linear subspace, i.e. do not span the whole space (e.g. the 
dimension of the space is higher as the number of the data points). It 
will be important for the feature spaces (later). 
 
Why is it so? Proof by contradiction: Assume, it is not the case – the 
optimal vector is not contained in the subspace that is spanned by 
the data points. Project it into the subspace – the subject become 
better. 
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Let us do the task a bit more complicated  – consider projections 
of the direction vector onto all data vectors (instead of the vector 
itself): 
 
                                                  ↔ 
 
The right side follows from the left one directly. 
 
 
The opposite is less trivial (see the board). It holds only if     can be 
represented as a linear combination of      – here it is just the case 
(see the previous slide). 
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All together: 
 
 
 
 
 
 
 
Let       be the matrix of all pair-vise scalar products, i.e. 
then (in the matrix form)  
 
and finally 
 
 
The PCA can be expressed by scalar products only!!! 
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With an unknown vector  
→ basically the same task – find eigenvalues (this time however of 
the matrix     instead of the       ). 
 
 
Let the     be given (already found). At the test time new data points 
are projected onto    , the length of the projection is 
 
 
 
→ the quantity of interest can be computed using scalar products, 
the direction vector is not explicitly necessary. 
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Now we would like to find a direction vector in the feature space. 
 
All the matter remains exactly the  same, but with the Kernel matrix 
 
 
 
 
The projection onto the optimal direction is 
 
 
 
 
→ Kernel-PCA 
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A linear function in the feature 
space ↔ a non-linear function in 
the input space. 
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In the paper all the matter is presented immediately for the feature 
spaces and kernels. 
 
 
 
 
 
 
 
 
 
         Input space                   Polynomial kernel            Gaussian kernel 


