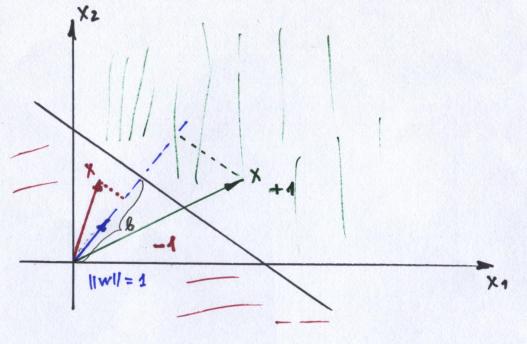
Pattern Recognition

Support Vector Machines

Linear Classifiers (recap)

A building block for almost all – a mapping $f : \mathbb{R}^n \to \{+1, -1\}$, a partitioning of the input space into half-spaces that correspond to classes.



Decision rule: $y = f(x) = \operatorname{sgn}(\langle x, w \rangle - b)$ w is the **normal** to the hyper plane $\langle x, w \rangle = b$ (Synonyms – Neuron model, Perceptron etc.)

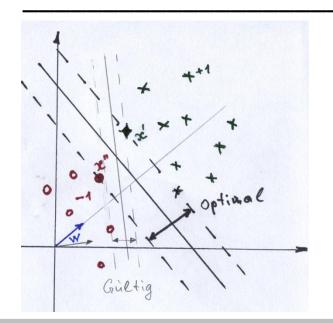
Two learning tasks

Let a training dataset $X = ((x_i, y_i)...)$ be given with

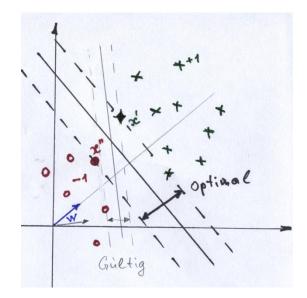
(i) data $x_i \in \mathbb{R}^n$ and (ii) classes $y_i \in \{-1, +1\}$

The goal is to find a hyper plane that separates the data (correctly)

 $y_i \cdot [\langle w, x_i \rangle + b] \ge 0 \quad \forall i$



Now: The goal is to find a "corridor" (stripe) of **the maximal width** that separates the data (correctly).



Remember that the solution is defined only up to a common scale \checkmark The **canonical** (with respect to the learning data) form:

 $\min_{i} |\langle w, x_i \rangle + b| = 1$

The margin:

$$\langle w, x' \rangle + b = +1, \quad \langle w, x'' \rangle + b = -1$$

$$\langle w, x' - x'' \rangle = 2$$

$$\langle w/||w||, x' - x'' \rangle = 2/||w||$$

The optimization problem:

$$\|w\|^2 \to \min_{w,b}$$

s.t. $y_i \cdot [\langle w, x_i \rangle + b] \ge 1 \quad \forall i$

The Lagrangian of the problem:

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_i \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1) \to \max_{\alpha} \min_{w, b} \alpha_i \ge 0 \quad \forall i$$

The meaning of the dual variables α :

- a) $y_i \cdot [\langle w, x_i \rangle + b] 1 < 0$ (a constraint is broken) \rightarrow maximization wrt. α_i gives: $\alpha_i \rightarrow \infty$, $L(w, b, \alpha) \rightarrow \infty$ (surely not a minimum)
- b) $y_i \cdot [\langle w, x_i \rangle + b] 1 > 0 \rightarrow \text{maximization wrt. } \alpha_i \text{ gives } \alpha_i = 0 \rightarrow \text{no influence on the Lagrangian}$
- c) $y_i \cdot [\langle w, x_i \rangle + b] 1 = 0 \rightarrow \alpha_i$ does not mater, the vector x_i is located "on the wall of the corridor" **Support Vector**

Lagrangian:

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1)$$

Derivatives:

$$\frac{\partial L}{\partial b} = \sum_{i} \alpha_{i} y_{i} = 0$$
$$\frac{\partial L}{\partial w} = w - \sum_{i} \alpha_{i} y_{i} x_{i} = 0$$
$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$

The solution is a **linear combination** of the data points.

Substitute $w = \sum_{i} \alpha_{i} y_{i} x_{i}$ into the decision rule and obtain $f(x) = \operatorname{sgn}(\langle x, w \rangle + b) = \operatorname{sgn}(\langle x, \sum_{i} \alpha_{i} y_{i} x_{i} \rangle + b) = \operatorname{sgn}(\sum_{i} \alpha_{i} y_{i} \langle x, x_{i} \rangle + b)$

 \rightarrow the vector w is not needed explicitly !!!

The decision rule can be expressed as a linear combination of **scalar products** with support vectors.

Only strictly positive α_i (i.e. those corresponding to the support vectors) are necessary for that.

Substitute

$$\sum_{i} \alpha_{i} y_{i} = 0$$
$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$

into the Lagrangian

$$L(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i} \alpha_i \cdot (y_i \cdot [\langle w, x_i \rangle + b] - 1)$$

and obtain the **dual task**

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle \to \max_{\alpha}$$

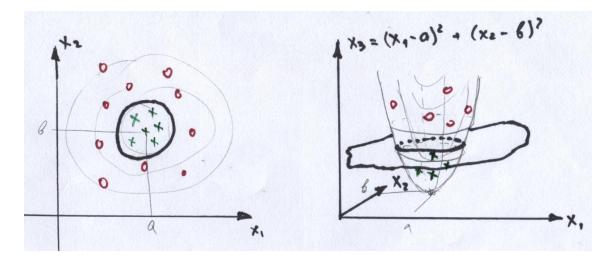
s.t. $\alpha_{i} \ge 0, \quad \sum_{i} \alpha_{i} y_{i} = 0$

 \rightarrow can also be expressed in terms of scalar products only, the data points x_i are not explicitly necessary.

Feature spaces

- 1. The input space \mathcal{X} is mapped onto a feature space \mathcal{H} by a nonlinear transformation $\Phi : \mathcal{X} \to \mathcal{H}$
- 2. The data are separated (classified) by a linear decision rule in the feature space

Example: quadratic classifier $f(x) = \operatorname{sgn}(a \cdot x_1^2 + b \cdot x_1 x_2 + c \cdot x_2^2)$



The transformation is $\Phi : \mathbb{R}^2 \to \mathbb{R}^3$ $\Phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ (the images $\Phi(x)$ are separable in the feature space)

Feature spaces

The images $\Phi(x)$ are not explicitly necessary in order to find the separating plane in the feature space, but their **scalar products**

 $\langle \Phi(x), \Phi(x') \rangle$

For the example above:

$$\left\langle \Phi(x_1, x_2), \Phi(x_1', x_2') \right\rangle = \left\langle (x_1^2, \sqrt{2}x_1 x_2, x_2^2), (x_1'^2, \sqrt{2}x_1' x_2', x_2'^2) \right\rangle = x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 = (x_1 x_1' + x_2 x_2')^2 = \langle x, x' \rangle^2 = k(x, x')$$

 \rightarrow the scalar product can be computed in the input space, it is not necessary to map the data points onto the feature space explicitly.

Such functions k(x, x') are called **Kernels**.

Kernels

Kernel is a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ that computes scalar product in a feature space

$$k(x, x') = \left\langle \Phi(x), \Phi(x') \right\rangle$$

Neither the corresponding space \mathcal{H} nor the mapping $\Phi : \mathcal{X} \to \mathcal{H}$ need to be specified thereby explicitly \to "Black Box".

Alternative definition: if a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel, then there exists such a mapping $\Phi : \mathcal{X} \to \mathcal{H}$, that ... The corresponding feature space \mathcal{H} is called the **Hilbert space induced** by the kernel k.

Let a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be given. Is it a kernel? \rightarrow Mercer's theorem.

Kernels

Let k_1 and k_2 be two kernels.

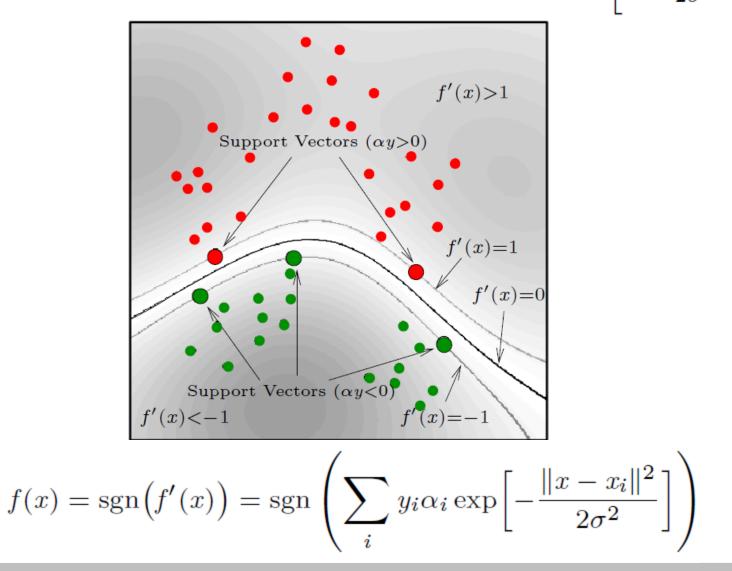
Than αk_1 , $k_1 + k_2$, $k_1 k_2$ are kernels as well (there are also other possibilities to build kernels from kernels).

Popular Kernels:

- Polynomial: $k(x, x') = (\langle x, x' \rangle + c)^d$
- Sigmoid: $k(x, x') = \tanh(\kappa \langle x, x' \rangle + \Theta)$
- Gaussian: $k(x, x') = \exp\left(-\|x x'\|^2/(2\sigma^2)\right)$ (interesting : $\mathcal{H} = \mathbb{R}^{\infty}$)

An example

The decision rule with a Gaussian kernel $k(x, x') = \exp \left| -\frac{\|x - x'\|^2}{2\sigma^2} \right|$



Conclusion

- SVM is a representative of **discriminative learning** i.e. with all corresponding advantages (power) and drawbacks (overfitting)
- The building block linear classifiers. All formalisms can be expressed in terms of scalar products – the data are not needed explicitly.
- Feature spaces make non-linear decision rules in the input spaces possible.
- **Kernels** scalar product in feature spaces, the latter need not be necessarily defined explicitly.

Literature (names):

- Bernhard Schölkopf, Alex Smola ...
- Nello Cristianini, John Shawe-Taylor ...
- Internet ...