Pattern Recognition

Maximum Likelihood Principle



Learning

Let a parameterized class (family) of probability distributions be
given, i.e. p(z;0) € P

Example — the set of Gaussians in R"

plz;p,0) = ! exp {— Iz — ,u.HQ}
o (v 2mo)n 202

parameterized by the mean p € R™ and standard deviation o € R
l.e. © = (__u..,G')

Let the training data be given, e.g. L = (z1,22,... zIFl) , 2l e R

One have to decide for a particular probability distribution from the
given family, i.e. for a particular parameter (e.g. ©* = (p*, ™) for
Gaussians).
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Maximum Likelihood Principle

Assumption: the training data is a realization of the unknown
probability distribution — it is sampled according to it.

—> What is observed should have a high probability

—> Maximize the probability of the training data with respect to the
unknown parameter

p(L;©) — max
G
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General discrete probability distributions
The free parameter is a “vector”

© = p(k) e RIKl, p(k) >0, %", p(k) =1

Training data L = (K1, k2,... kIl Kl e K

Assumption (very often): independent examples

p(L; ©) HM)—H Hpk) pr

kol kl=

with the relative frequencies n(k) in the training data

np(L;:0) = E n(k)In p(k) — max
p
k

or (for infinite training data)

In p(L;O) Z p*(k)Inp(k) — max
p
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Shannon Lemma

E a; Inr; = max, s.t. xz; >0 Vi, E ;=1 mit a; > 0
I
i i

Method of Lagrange coefficients:

F = E a; In z; + )\( E T; — 1) — min max
A T
i

1

dF i

N
dz; T
T = C- ag

g
E c-a;—1=0 Ti = =
o gt
D o G

Solution for general discrete probability distributions: count the
frequencies of £, normalize to sum to 1.
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Probability densities

Example — Gaussians

. T) = ! eX —lh —ﬁHZ
p(x;p,0) = (v/27o)" p{ 202 }

i.e. © = (u,o)with p e R", 0 € R .

I _ 2
Inp(L;p, o) = Z {—nlna — I=” — el } —

202
l

| .
= —|L|-n-Inoc— — 2! — p||? = max
202
o 1,0

d ] L: e, 1
n p( ,ﬁ,ﬂ)zo N F‘:—Zi‘i

dp |L| E
dinp(L;p, o) 1 ; 5
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“Mixed” models for recognition
p(z, k;©) = p(k; O4) - p(z|k; Of)

with k& € K (classes, discrete) and =z € X (observations, general)
Unknown parameters are ©, — p(k) and class-specific 0,

Training data consists of pairs L = (( LEY), (22, k2), ..., (alF] EIED)

np(L;0) = Z {111 p(ktz) + In p(:ztg\k‘.g; S )} —
z
_ l -
= Zn(k ) In p( U—I—Y Y In p(z'|k; ©) — 111;?{)&
Lkl=k
—> can be optimized independently with respectto ©,, ©1, ... , Ok

This was a supervised learning.
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Unsupervised learning

Expectation-Maximization Algorithm:

The task:
Probability model is p(z, k;: ©) as before,
training data are incomplete, i.e. [ = (2!, 22 ... 2)

— classes are never observed.

Maximum-Likelihood:

mp(L;:©) = Z In p(;zt‘{_: ©) y In Y p(a Lk ) — 11151}{
[
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EM-Algorithm (idea)

An iterative approach:
(nInt X e ” .
Lerhsﬂcﬁ}oroé’e ‘:X"E rkeuuu “g {*—r st
U gec weeh{exs @/p Ml
L er ey ala e

)

1. “Recognition” (complete the data): (z1, 2% ... 2!, © = “classes’
2. Supervised learning: “classes”+ (z1, 2% ... z!) = ©

Note:
Bayesian recognition is impossible, since there is no loss-function !!!
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EM-Algorithm (derivation)

Inp(L;O)

We introduce a “redundant 1” and re-write it as

)3

Zlnp E)—Z]]IZ}O z', k; O)—Hnax

p(k, z'; ©)

[

) a(k) In p(k, ' e) — a(k)In
> b

k k

with a;(k) >0, ) (k) =1 forall I.

The two above expressions are equivalent !!!
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EM-Algorithm (derivation)

Proof the equivalence for just one example:

) k. zh: (—))
E ag (k) Inp(k, - 0) — E ay(k) In p(

k

Z {a; (k)In p(k, ', ©) [ag(k )In p(k, 2% ©) — ay(k) lnzp(k" T O)H —
k

A’F

Z ag(k)In Z p(K', 7! Q) = lnz p(K, ! Q) - Z ai(k) =
k K K k
— In Z p(K', 2t O)
k."
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To summarize (shorthand): we have

Inp(L;0) = F(O,a) — G(O, a)

with

F(©,a)= Z Za;(k) In p(k, z'; ©)
[ k

B p(k,zh©) 3
G(O,a) = Z;: Xk: a;(k) In S o) Z: Zk: ay(k) In p(k|z'; ©)




EM-Algorithm
np(L;0) =F(O,a) — G(O,a)

Start with an arbitrary ©(9), repeat:

1. Expectation step: “complete the data”.
Choose a(?) so that G(©, ) reaches its maximum with respect
to © at the actual value ©(%) ., Note: this is not an optimization,
this is the estimation of an upper bound of G !!!
According to the Shannon Lemma:

o (k) = p(klzt;00)

2. Maximization step: “supervised learning”.
O+ — arg max F(O, a—-(t))
)
Note: since G(©, o) reaches its maximum at ©(*) | the second
addend may only decrease = the likelihood is maximized!!!
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Some comments to Maximum Likelihood

Maximum Likelihood estimator is not the only estimator — there are
many others as well.

Maximum Likelihood is consistent, i.e. it gives the true parameters for
infinite training sets.

Consider the following experiment for an estimator:

1. We generate infinite numbers of training sets each one being finite;
2. For each training set we estimate the parameter;

3. We average all estimated values.

If the average is the true parameter, the estimator is called unbiased.

Maximum Likelihood is not always unbiased — it depends on the
parameter to be estimated. Examples — mean for a Gaussian is
unbiased, standard deviation — not.
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Some comments to Expectation-Maximization

EM always converges, but not always to the global optimum ®

A “commonly used” technique:

((Lf,k‘)\‘
4L x(
(x il ) ot Jﬁr(?%mu‘«ﬂ?‘"’? X
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U gec we th 42]

(2t Lry

The expectation step is replaced by a “real” recognition. It becomes
similar to the K-Means algorithm and is often called “EM-like
schema”. It is wrong!!! It is no EM. It is an approximation of the
Maximum Likelihood — the so called Saddle-Point approximation.
However it is very popular because in the practice it is often simpler
to do recognition as to compute posterior probabilities «.
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