Pattern Recognition

Bayesian Decision Theory

Recognition

The model

Let two random variables be given:

- The first one is typically discrete (i.e. $k \in K$) and is called "class"
- The second one is often continuous ($x \in \mathbb{R}^n$) and is called "observation"

Let the joint probability distribution p(x, k) be "given". As k is discrete it is often specified by $p(x, k) = p(k) \cdot p(x|k)$

The recognition task: given *x*, estimate *k*.

Usual problems (questions):

- How to estimate k from x? (today)
- The joint probability is not always explicitly specified.
- The set *K* is sometimes huge (remember the Hopfield-Networks)

Idea – a game

Somebody samples a pair (x, k) according to a p.d. p(x, k)

He keeps k hidden and presents x to **you**

You decide for some k^* according to a chosen **decision strategy**

Somebody penalizes your decision according to a **Loss-function**, i.e. he compares your decision to the "true" hidden *k*

You know both p(x, k) and the Loss-function (how does he compare)

Your goal is to design the decision strategy in order to pay as less as possible in average.

Bayesian Risk

Notations:

The **decision set** D. Note: it needs not to coincide with K !!! Examples – the decision "I don't know", "surely not this class" etc.

Decision strategy (mapping) $e: X \to D$

Loss-function $C: D \times K \to \mathbb{R}$

The Bayesian Risk – the expected loss:

$$R(e) = \sum_{x} \sum_{k} p(x,k) \cdot C(e(x),k) \to \min_{e}$$

(should be minimized with respect to the decision strategy)

Some special cases

General:

$$R(e) = \sum_{x} \sum_{k} p(x,k) \cdot C(e(x),k) \to \min_{e}$$

Almost always:

decisions can be made for different x independently (the set of decision strategies is not restricted). Then:

$$R(e(x)) = \sum_{k} p(x,k) \cdot C(e(x),k) \to \min_{e(x)}$$

Very often:

the decision set coincides with the set of classes, i.e. D = K

$$k^* = \underset{k}{\arg\min} \sum_{k'} p(x, k') \cdot C(k, k')$$

Maximum A-posteriori Decision (MAP)

The Loss is the simplest one:

 $C(k, k') = \mathbb{1}(k \neq k')$

i.e. we pay 1 if the answer is not the true class, no matter what error we make.

From that follows:

$$R(k) = \sum_{k'} p(k'|x) \cdot \mathbb{I}(k \neq k') =$$
$$= \sum_{k'} p(k'|x) - p(k|x) = 1 - p(k|x) \to \min_{k}$$
$$p(k|x) \to \max_{k}$$

A MAP example

Let $K = \{1, 2\}, x \in \mathbb{R}^2, p(k)$ be given. Conditional probability distributions for observations given classes are Gaussians:

$$p(x|k) = \frac{1}{2\pi\sigma_k^2} \exp\left[-\frac{\|x - \mu_k\|^2}{2\sigma_k^2}\right]$$

The loss-function is $\mathbb{I}(k \neq k')$, i.e. we wont MAP.

The decision strategy (the mapping $e : X \to K$) partitions the input space into two regions: the one corresponding to the first and the one corresponding to the second class. How this partition looks like?

A MAP example

For a particular x we decide for 1, if

$$p(1) \cdot \frac{1}{2\pi\sigma_1^2} \exp\left[-\frac{\|x-\mu_1\|^2}{2\sigma_1^2}\right] > p(2) \cdot \frac{1}{2\pi\sigma_2^2} \exp\left[-\frac{\|x-\mu_2\|^2}{2\sigma_2^2}\right]$$

Special case (for simplicity) $\sigma_1 = \sigma_2$ \rightarrow the decision strategy is (derivation on the board)

$$\langle x, \mu_2 - \mu_1 \rangle > const$$

 \rightarrow a linear classifier – the hyperplane that is orthogonal to $\mu_2 - \mu_1$

More classes, equal σ and $p(k) \rightarrow$ Voronoi-diagram More classes, equal σ and different $p(k) \rightarrow$ Fischer-classifier Two classes, different $\sigma \rightarrow$ a quadratic curve etc.

Decision with rejection

The decision set is $D = K \cup \{rw\}$, i.e. extended by a special decision "I don't know". The loss-function is

$$C(d,k) = \left\{ \begin{array}{ll} {1 \!\!\! 1} (d \neq k) & \text{ wenn } d \in K \\ \varepsilon & \text{ wenn } d = rw \end{array} \right.$$

- we pay a (reasonable) penalty if we are lazy to decide.

Case-by-case analysis:

- 1. We decide for a class $d \in K$, decision is MAP $d = k^*$, the loss for this is $1 p(k^*|x)$
- 2. We decide to reject d = rw, the loss for this is ε

→ Compare $p(k^*|x)$ with $1 - \varepsilon$ and decide for the variant with greater value.

Other simple loss-functions

Let the set of classes be **structured**

Example:

The probability distribution is p(x, y) with observations x and **continuous** hidden value $y \in \mathbb{R}$. Suppose, we know p(y|x) for a given x for which we would like to infer y^* .

The Bayesian Risk reads:

$$R(d(x)) = \int_{-\infty}^{\infty} p(y|x) \cdot C(d(x), y) dy$$

Other simple loss-functions

Simple delta-loss-function \rightarrow MAP (not interesting anymore)

Loss may account for differences between the decision and the "true" hidden value, for instance $C(d, y) = (d - y)^2$ i.e. we pay depending on the **distance**. Than (see board again):

$$e(x) = \arg \min_{d} \int_{-\infty}^{\infty} p(y|x) \cdot (d-y)^{2} dy$$
$$= \int_{-\infty}^{\infty} y \cdot p(y|x) dy = \mathbb{E}_{p(y|x)} y$$

Other choices:

 $C(d, y) = |d - y|, C(d, y) = \mathbb{1}(|d - y| > \delta)$, combination with "rejection" etc.

Additive loss-functions – an example

	A1	A2	A3	A4	
B1	1	1	1	1	
B2	1	0	0	1	
B3	1	0	1	0	
B4	0	0	1	1	
B5	1	1	1	0	
B6	0	1	1	1	
	*	*	*	*	

A – Aufgaben, B – Berater

"Berater" sind Zustandsfolgen,

"Aufgaben" sind statistische Variablen (z.B. Zeitpunkte in HMM)

Die entscheidende "Besonderheit":

die Menge der Entscheidungen (Klassen) ist strukturiert – die Menge der Zustandsfolgen

Variante 1:

- Wähle den besten Berater (und vergesse alle anderen)
- Übernehme seine Antworten

Variante 2:

- Betrachte jede Aufgabe extra
- Schaue (gewichtet), was **alle** Berater dazu sagen

Additive loss-functions

Die Klasse ist ein Vektor $\overline{k} = (k_1, k_2, \dots, k_n) \in K^n$, die Entscheidungsmenge sei $D = K^n$ Die a-posteriori Wahrscheinlichkeit $p(k_1, k_2, \dots, k_n | x)$ sei "bekannt".

Variante 1: MAP, d.h. $C(\bar{k}, \bar{k}') = \mathbb{1}(\bar{k} \neq \bar{k}')$

$$\bar{k}^* = (k_1, k_2, \dots, k_n)^* = \arg\max_{\bar{k}} p(k_1, k_2, \dots, k_n | x)$$

Die Kostenfunktion berücksichtigt nicht, in wieweit sich die Vektoren unterscheiden.

Variante 2: Kostenfunktionen gibt es für jeden Element k_i :

$$C(\bar{k},\bar{k}')=\sum_{i}c_{i}(k_{i},k_{i}')$$

$$R(\bar{k}) = \sum_{\bar{k}'} \left[p(\bar{k}'|x) \cdot \sum_{i} c_i(k_i, k'_i) \right] = \sum_{i} \sum_{\bar{k}'} c_i(k_i, k'_i) \cdot p(\bar{k}'|x) =$$
$$= \sum_{i} \sum_{k} \sum_{\bar{k}': k'_i = k} c_i(k_i, k) \cdot p(\bar{k}'|x) =$$
$$= \sum_{i} \sum_{k} c_i(k_i, k) \sum_{\bar{k}': k'_i = k} p(\bar{k}'|x) = \sum_{i} \sum_{k} c_i(k_i, k) p(k'_i = k|x)$$

Pattern Recognition: Bayesian Decision Theory

Additive loss-functions

$$R(\bar{k}) = \sum_{i} \sum_{k} c_i(k_i, k) p(k'_i = k | x) \to \min_{\bar{k}}$$
$$\sum_{k} c_i(k_i, k) p(k'_i = k | x) \to \min_{k_i} \quad \forall i$$

1) Man berechne

$$p(k_i = k) = \sum_{\bar{k}:k_i = k} p(\bar{k}) \quad \forall i, k$$

2) Man treffe die Entscheidung für alle Elemente "unabhängig"

$$k_i^* = \underset{k}{\operatorname{arg\,min}} \sum_{k'} p(k_i' = k) \cdot c_i(k, k')$$

Spezialfall: $c(k, k') = \mathbb{1}(k \neq k')$

 $C(\bar{k}, \bar{k}') = \sum_{i} \mathbb{I}(k_i \neq k'_i)$ heißt **Hamming-Abstand** – die Anzahl der falsch klassifizierten Variablen

\Rightarrow Max-Marginal Entscheidung $k_i^* = \arg \max_k p(k_i' = k)$

Pattern Recognition: Bayesian Decision Theory