Pattern Recognition

Probability Theory



Probability Space

is a three-tuple (€2, o, P) with:

. (2 -the set of elementary events
. o - algebra

. P - probability measure

o-algebra over Q2 is a system of subsets,
i.e. 0 CP(Q2) (P isthe power set) with:
. Qe o

. Aco = Q/Aco

n
¢ Ajeo,i=1,....,n = UA;‘EG‘
i—=1

o is closed with respect to the complement and countable conjunction
It follows — () € o, countable disjunction (due to the De Morgan's laws)
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Probability Space

Examples:

o= {0,Q} (smallest) and o = P(Q2)(largest) o -algebras over ©

 the minimal o-algebra over 2 containing a particular subset
AcCQis o=1{0,4,0\A,Q}

() discrete and finite, o = 2%

2 = R, the Borel-algebra (contains all intervals amongst others)

° etc.

Pattern Recognition: Probability Theory



Probability Measure
P:o—1[0,1] Isa“measure” (IT) with the normalizing P(Q)) =1

o -additivity: let A; € o be pairwise disjoint subsets, i.e.A; N A, =0,
then
P (U A@-) - Z P(A;)

Note: there are sets, for which there is mo measure.
Examples: the set of irrational numbers, function spaces R°°etc.

Banach—Tarski paradox:
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(For us) practically relevant cases

« Theset Qis “good-natured”, i.e.R"™, discrete finite sets etc.
* o ="P(Q),ie.thealgebraisthe power set

«  We often consider a (composite) “event” A C 2 as the union
of the elementary ones

* Probability of an event is

P(A) = Z P(w)

wEA
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Random variables

Here a special case — real-valued random variables.

A random variable ¢ for a probability space (2, o, P) is a mapping
¢ : Q) — R, satisfying

{w:é(w)<rteoc VreR

(always holds for power sets o = P(Q2)).

Note: elementary events are not numbers — they are elements of
an abstract set )

Random variables in contrast are numbers, i.e. they can be summed
up, subtracted, squared etc.
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Distributions

Cumulative distribution function of a random variable ¢ :
Fe(r) = P({w : €(w) < r})

Probability distribution of a discrete random variable £ : ) — Z
pe(r) = P({w : {(w) = r})

Probability density of a continuous random variable ¢ : ) — R :

or

pe(r) =
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Distributions

Why it is necessary to do it so complicated (through the cumulative
distribution function)?

Example — a Gaussian.
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Probability of any particular real value is zero - a “direct” definition
of a “probability distribution” is senseless ®

It is indeed possible through the cumulative distribution function.
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Mean

A mean (average, expectation...) of a random variable ¢ is

Ep(6) = Y P &)=Y Y Pl T—Zm

wel r w:i(w)=r

Arithmetic mean is a special case:
1 N
r = NZ% = ZP&(T)“’"
with =l '
r=r and pe(r)= %
(uniform probability distribution)
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Mean

The probability of an event A ¢ ) can be expressed as the mean
value of a corresponding “indicator”-variable:

P(A)=) Pw)=) Pw)-&w)

wEA wel

§(w):{ 1 if weA

with

0 otherwise

Often, the set of elementary events can be associated with a random
variable (just enumerate allw € Q).

Then one can speak about a “probability distribution over O “
(instead of the probability measure).
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Example 1 — numbers of a die

The set of elementary events: Q = {a, b, c,d, e, f}

Probability measure: P({a})=1/6, P{c,f}) =1/3 ..
Random variable: E(a) =1,&(b)=2 ... &(f) =6
Cumulative distribution: Fe(3) =1/2, Fe(4.5) =2/3 ...
Probability distribution: pe(l) = pe(2) = ... = pe(6) = 1/6

Mean value: Ep(&) = 3.5

Another random variable (squared numbers of a die):

(a)=1,€(b)=4 .. ¢(f) =36

Ep(¢') = 155

Mean value:

Note: Ep(¢') # Ep(¢)
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Example 2 —two independent dice numbers

The set of elementary events (6x6 faces):
Q={a,b,c,d,e, f} x {a,b,c,d, e, f}

Probability measure: P({ab}) =1/36 , P({cd, fa}) = 1/18 ...

Two random variables:
1. The number of the first die:

E1(ab) =1, &1(ac) =1 ... &1(ef) =5 ...
2. The number of the second die

ég(ab) =2, &2(ac) =3 ... é’g(gf} —6 ...

Probability distributions:

pey (1) = pey (2)
Pey (1) = pey (2)

ce. = pgl(ﬁ) =1/6
ce. = pgz(ﬁ) =1/6
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Example 2 —two independent dice numbers

Consider the new random variable

§=& +&2
The probability distribution p¢ is not uniform anymore ©

pe ~ (1,2,3,4,5,6,5,4,3,2,1) T38| 5wl
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Mean value is Ep(¢) =7 e T L o
. 2 LR 5 \ 8 ; | 8
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In general for mean values:

Ep(§1+&2) = Z P(w) - (é1(w) + &2(w)) =Ep(&1) + Ep(é2)

we )
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Random variables of higher dimension

Analogously: Let £ : 2 — R™ be a mapping ( » = 2 for simplicity),
with £ = (£1.&2) £1: Q=R and &2 : Q2 — R

Cumulative distribution function:

Fe(r,s) = P{w : &1(w) £ rpN{w : {2(w) < s})

Joint probability distribution (discrete):
Pe=(g,69)(758) = P({w : {1 (w) = r} N {w : &2(w) = s})

Joint probability density (continuous):

OF¢(r,s)

drds

Pe=(¢1,62) (7> 8) =
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Independence
Two events A C 2 and B C 2 are independent, if
P(AN B) = P(A) - P(B)

Interesting:
Events A4 and B = /B are independent, if A and B are independent.

Two random variables are independent, if
Fe=(e1,69) (7, 8) = Fg, (1) - Fy(s) 'V, s

It follows (example for continuous ¢)

O?F¢(r, s OF:, OFc,
pe(rs) = i) 906 e ). pe, ()
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Conditional Probabilities

Conditional probability: S

P(A|B) = P(ﬁ(E)B) /\ @

Independence (“almost” equivalent): A and B are independent, if

P(A|B) = P(A) and/or  P(B|A) = P(B)

Bayes’ theorem (formula, rule):

P(B|A) - P(A)

P(A|B) = ()
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Further definitions (for random variables)

Shorthand: p(z,vy) = pe(z, y)
Marginal probability distribution:

)

Conditional probability distribution:

p(z,y)
p(y)

p(zly) =
Note: >, p(zly) =1

Independent probability distributions:

p(z,y) = p(z) - p(y)
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Example

Let the probability to be taken ill be
P(ill) = 0.02

Let the conditional probability to have a temperature in that case is
P(templill) = 0.9

However, one may have a temperature without any illness, i.e.

P(templill) = 0.05

What is the probability to be taken ill provided that one has a
temperature?
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Example

Bayes’ rule:

. P(templill) - P(ill)
P(ill|temp) = P(temp) =

(marginal probability in the denominator)

P(templill) - P(ill)
P(templill) - P(ill) + P(templill) - P(ill)

0.9 -0.02

— ~ (.27
0.9-0.02 +0.05-0.98

- not so high as expected ®, the reason — very low prior probability
to be takenill
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Further topics

The model

Let two random variables be given:

 The first one is typically discrete (i.e.k € K') and is called “class”

e The second one is often continuous ( =z € R™) and is called
“observation”

Let the joint probability distribution p(z, k) be “given”.
As k is discrete it is often specified by p(z., k) = p(k) - p(z|k)

The recognition task: givenz, estimate k.

Usual problems (questions):

e How to estimate &£ from = ?

 The joint probability is not always explicitly specified.

e The set K is sometimes huge (remember the Hopfield-Networks)
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Further topics

The learning task:
Often (almost always) the probability distribution is known up to free
parameters. How to choose them (learn from examples)?

Next themes:

Recognition, Bayessian Decision Theory

Probabilistic (generative) learning, Maximume-Likelihood principle
Discriminative models, recognition and learning

Support Vector Machines

W e
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