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is a three-tuple                with: 
• − the set of elementary events 
• − algebra  
• − probability measure 

 
   -algebra over     is a system of subsets, 
 i.e.                     (     is the power set) with: 
•   
•   

 
•   
 
    is closed with respect to the complement and countable conjunction 
It follows –            , countable disjunction (due to the De Morgan's laws) 
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Examples: 
 
•                         (smallest) and                   (largest)    -algebras over  
 
•      the minimal    -algebra over      containing a particular subset  
                    is   
 
•            discrete and finite, 
 
•                   , the Borel-algebra (contains all intervals amongst others) 
 
•       etc. 
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                            Is a “measure” (    ) with the normalizing 
 
    -additivity: let               be pairwise disjoint subsets, i.e.                       , 
then  
 
 
 
Note: there are sets, for which there is mo measure. 
Examples: the set of irrational numbers, function spaces         etc. 
 
Banach–Tarski paradox:  
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• The set     is “good-natured”, i.e.      , discrete finite sets etc. 
 

•                    , i.e. the algebra is the power set 
 

• We often consider a (composite) “event”               as the union   
 of the elementary ones 

 
• Probability of an event is  
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Here a special case – real-valued random variables. 
 
A random variable     for a probability space                   is a mapping 
                   , satisfying   
 
 
(always holds for power sets                   ). 
 
Note: elementary events are not numbers – they are elements of 
an abstract set   
 
Random variables in contrast are numbers, i.e. they can be summed 
up, subtracted, squared etc. 
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Cumulative distribution function of a random variable    : 
 
 
 
Probability distribution of a discrete random variable                    : 
 
 
 
Probability density of a continuous random variable                    :  
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Why it is necessary to do it so complicated (through the cumulative 
distribution function)? 
 
Example – a Gaussian. 
 
 
 
 
 
 
 
Probability of any particular real value is zero → a “direct” definition 
of a “probability distribution” is senseless  
 
It is indeed possible through the cumulative distribution function. 
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A mean (average, expectation…) of a random variable    is  
 
 
 
 
 
 
Arithmetic mean is a special case: 
 
 
with 
 
 
(uniform probability distribution) 
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The probability of an event             can be expressed as the mean 
value of a corresponding “indicator”-variable: 
 
 
with 
 
 
 
 
Often, the set of elementary events can be associated with a random 
variable (just enumerate all           ). 
 
Then one can speak about a “probability distribution over    “ 
(instead of the probability measure). 
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The set of elementary events: 
Probability measure:  
Random variable:  
Cumulative distribution: 
Probability distribution:  
 
Mean value: 
 
Another random variable (squared numbers of a die): 
 
Mean value:   
 
 
Note:  



Pattern Recognition: Probability Theory 

Example 2 – two independent dice numbers 

12 

The set of  elementary events (6x6 faces): 
 
 
Probability measure: 
 
Two random variables: 
1. The number of the first die: 

 
2. The number of the second die 

 
 

Probability distributions: 
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Consider the new random variable 
 
The probability distribution       is not uniform anymore  
 
 
 
 
 
Mean value is 
 
 
 
In general for mean values:  
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Analogously: Let                       be a mapping (            for simplicity), 
with                       ,                       and   
 
Cumulative distribution function: 
 
 
 
Joint probability distribution (discrete): 
 
 
 
Joint probability density (continuous): 
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Two events              and               are independent, if 
 
 
Interesting: 
Events     and                  are independent, if     and     are independent. 
 
 
Two random variables are independent, if 
 
 
It follows (example for continuous   ) 
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Conditional probability: 
 
 
 
 
 
 
Independence (“almost” equivalent):     and     are independent, if   
 
                                                          and/or  
 
Bayes’ theorem (formula, rule): 
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Shorthand: 
 
Marginal probability distribution: 
 
 
 
Conditional probability distribution: 
 
 
 
Note:  
 
Independent probability distributions: 
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Let the probability to be taken ill be  
 
 
Let the conditional probability to have a temperature in that case is 
 
 
However, one may have a temperature without any illness, i.e. 
 
 
 
What is the probability to be taken ill provided that one has a 
temperature? 
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Bayes’ rule: 
 
 
 
 
 
 
 
 
 
 
 
− not so high as expected , the reason – very low prior probability 
to be taken ill  
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The model 
Let two random variables be given: 
• The first one is typically discrete (i.e.           ) and is called “class” 
• The second one is often continuous (             ) and is called 

“observation” 
 

Let the joint probability distribution              be “given”. 
As    is discrete it is often specified by   
 
The recognition task: given   , estimate   . 
 
Usual problems (questions): 
• How to estimate     from    ?  
• The joint probability is not always explicitly specified. 
• The set     is sometimes huge (remember the Hopfield-Networks)  
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The learning task: 
Often (almost always) the probability distribution is known up to free 
parameters. How to choose them (learn from examples)? 
 
 
Next themes: 
 
1. Recognition, Bayessian Decision Theory 
2. Probabilistic (generative) learning, Maximum-Likelihood principle 
3. Discriminative models, recognition and learning 
4. Support Vector Machines 


