
Pattern Recognition

Neural Networks

Slide 1

Pattern Recognition: Neural Networks

Outline

Slide 2

1. Fisher Classifier, Multi-Class Perceptron
2. Feed-Forward Networks, Learning, Error Back-Propagation
3. Hopfield Networks, complex output

Pattern Recognition: Neural Networks

Many classes

3

Before: two classes − a mapping
Now: many classes − a mapping

How to generalize ? How to learn ?
Two simple (straightforward) approaches:

The first one: “one vs. all” − there is
one binary classifier per class, that
separates this class from all others.

The classification is ambiguous in
some areas.

Pattern Recognition: Neural Networks

Many classes

4

Another one:
“pairwise classifiers” − there is a classifier for each class pair

The goal:
• no ambiguities,
• parameter vectors

Less ambiguous, better separable.

However:

 binary classifiers
instead of in the previous case.

Pattern Recognition: Neural Networks

Idea: in the binary case the output is the more likely to be “1”
the greater is the scalar product → generalization:

The input space is partitioned into the set of convex cones.

Fisher Classifier

5

Geometric interpretation
(let be normalized)

Consider projections of an
input vector onto vectors

Pattern Recognition: Neural Networks

Fisher Classifier

6

Given: training set

To be learned: weighting vectors

The task is to choose so that

It can be equivalently written as

− a system of linear inequalities, but a “heterogenic” one.

The trick − transformation of the input/parameter space.

Pattern Recognition: Neural Networks

Fisher Classifier

7

Example for three classes: Consider e.g. a training example ,
it leads to the following inequalities:

Let us define the new parameter vector as

i.e. we “concatenate” all to a single vector.

For each inequality (see example above) we introduce a “data
point”:

→ all inequalities are written in form of a scalar product

Solution by the Perceptron Algorithm.

Pattern Recognition: Neural Networks

Feed-Forward Networks

8

Output level

i-th level

First level

Input level

Special case: , Step-neurons – a mapping

Which mappings can be modeled ?

Pattern Recognition: Neural Networks

Feed-Forward Networks

9

One level – single step-neuron – linear classifier

Pattern Recognition: Neural Networks

Feed-Forward Networks

10

Two levels, “&”-neuron as the output – intersection of half-spaces

If the number of neurons is not limited, all convex subspaces can
be implemented with an arbitrary precision.

Pattern Recognition: Neural Networks

Feed-Forward Networks

11

Three levels– all possible mappings as union of
convex subspaces:

Three levels (sometimes even less) are enough to implement all
possible mappings !!!

Pattern Recognition: Neural Networks

Radial Basis Functions

12

Another type of neurons,
corresponding classifier – “inside/outside a ball”

The usage of RBF-neurons “replaces” a level in FF-networks.

With infinitely many RBF-neurons arbitrary mappings with only
one intermediate level are possible.

Pattern Recognition: Neural Networks

Learning task:

Given: training data
Find: all weights and biases of the net.

Error Back-Propagation is a gradient descent method for Feed-
Forward-Networks with Sigmoid-neurons

First, we need an objective (error to be minimized)

Now: derive, build the gradient and go.

Error Back-Propagation

13

Pattern Recognition: Neural Networks

Error Back-Propagation

14

We start from a single neuron and just one example .
Remember:

Derivation according to the chain-rule:

Pattern Recognition: Neural Networks

Error Back-Propagation

15

The “problem”: for intermediate neurons the errors are not known !

Now a bit more complex:

with:

Pattern Recognition: Neural Networks

Error Back-Propagation

16

In general: compute “errors” at the i-th level from all -s at the
i+1-th level – propagate the error.

The Algorithm (for just one example):

1. Forward: compute all and (apply the network), compute

the output error ;
2. Backward: compute errors in the intermediate levels:

3. Compute the gradient and go.

For many examples – just sum them up.

Pattern Recognition: Neural Networks

Time Delay Neural Networks (TDNN)

17

Feed-Forward network of a particular architecture.
Many equivalent “parts” (i.e. of the same structure with the same
weights), but having different Receptive Fields. The output level of
each part gives an information about the signal in the
corresponding receptive field – computation of local features.

Problem: During the Error Back-Propagation the equivalence gets
lost. Solution: average the gradients.

Pattern Recognition: Neural Networks

Convolutional Networks

18

Local features – convolutions with a set of predefined masks
(see lectures “Image Processing”).

Pattern Recognition: Neural Networks

Hopfield Networks

19

There is a symmetric neighborhood relation (e.g. a grid).
The output of each neuron serves as inputs for the neighboring ones.

with symmetric weights, i.e.

A network configuration is a mapping
A configuration is stable if “outputs do not contradict”

The Energy of a configuration is

Pattern Recognition: Neural Networks

Hopfield Networks

20

Network dynamic:

1. Start with an arbitrary configuration ,

2. Decide for each neuron whether it should be activated or not

according to

Do it sequentially for all neurons until convergence, i.e. apply the
changes immediately.

In doing so the energy increases !!!

Attention!!! It does not work with the parallel dynamic (seminar).

Pattern Recognition: Neural Networks

Hopfield Networks

21

During the sequential dynamic the energy may only increase !

Proof:
Consider the energy “part” that depend on a particular neuron:

After the decision the energy difference is

If , the new output is set to 1 → energy grows.
If , the new output is set to 0 → energy grows too.

Pattern Recognition: Neural Networks

Hopfield Networks

22

The network dynamic is the simplest method to find a configuration
of the maximal energy (synonym – “Iterated Conditional Modes”).

The network dynamic is not globally optimal, it stops at a stable
configuration, i.e. a local maxima of the Energy.

The most stable configuration – global maximum.

The task (find the global maximum) is NP-complete in general.

Polynomial solvable special cases:
1. The neighborhood structure is simple – e.g. a tree
2. All weights are non-negative (supermodular energies).

Of course, nowadays there are many good approximations.

Pattern Recognition: Neural Networks

Hopfield Networks

23

Hopfield Network with external input :

The energy is

Hopfield Networks implement mappings according to the
principle of Energy maximum:

Note: no single output but a configuration – structured output.

Pattern Recognition: Neural Networks

Hopfield Networks

24

Hopfield Networks model patterns – network configurations of the
optimal energy.

Example:
Let be a network configuration and the number of “cracks” –
pairs of neighboring neurons of different outputs.

Design a network (weights and biases for each neuron) so that the
energy of a configuration is proportional to the number of cracks,
i.e. .

Solution:

Further examples at the seminar.

