
Pattern Recognition 

Neural Networks 

Slide 1 



Pattern Recognition: Neural Networks 

Outline 

Slide 2 

1. Fisher Classifier, Multi-Class Perceptron 
2. Feed-Forward Networks, Learning, Error Back-Propagation 
3. Hopfield Networks, complex output 
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Before: two classes − a mapping   
Now: many classes − a mapping  
 
How to generalize ? How to learn ? 
Two simple (straightforward) approaches: 
 

The first one: “one vs. all” − there is 
one binary classifier per class, that 
separates this class from all others. 
 
The classification is ambiguous in 
some areas. 
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Another one:  
“pairwise classifiers” − there is a classifier for each class pair 
 
 
 
 
 
 
 
 
 
 
The goal: 
• no ambiguities, 
•      parameter vectors 

Less ambiguous, better separable. 
 
However: 
 
                     binary classifiers 
instead of     in the previous case. 
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Idea: in the binary case the output    is the more likely to be “1” 
the greater is the scalar product             → generalization: 
 
 
 
 
 
 
 
 
 
 
 
 
The input space is partitioned into the set of convex cones. 

Fisher Classifier 
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Geometric interpretation 
(let      be normalized) 
 
Consider projections of an 
input vector     onto vectors 
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Fisher Classifier 
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Given: training set  
 
To be learned: weighting vectors 
 
The task is to choose       so that 
 
 
It can be equivalently written as 
 
 
 
− a system of linear inequalities, but a “heterogenic” one. 
 
The trick − transformation of the input/parameter space. 
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Example for three classes: Consider e.g. a training example          , 
it leads to the following inequalities: 
 
 
Let us define the new parameter vector as 
 
i.e. we “concatenate” all        to a single vector. 
 
For each inequality (see example above) we introduce a “data 
point”: 
 
 
→ all inequalities are written in form of a scalar product  
 
Solution by the Perceptron Algorithm.  
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Feed-Forward Networks 
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Output level 
 
i-th level 
 
First level 
 
Input level 

Special case:             , Step-neurons – a mapping 
 
Which mappings can be modeled ?  
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Feed-Forward Networks 
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One level – single step-neuron – linear classifier 
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Feed-Forward Networks 
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Two levels, “&”-neuron as the output – intersection of half-spaces 
 
 
 
 
 
 
 
 
 
 
 
 
If the number of neurons is not limited, all convex subspaces can 
be implemented with an arbitrary precision. 
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Feed-Forward Networks 
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Three levels– all possible mappings                      as union of 
convex subspaces: 
 
 
 
 
 
 
 
 
 
 
 
Three levels (sometimes even less) are enough to implement all 
possible mappings !!! 
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Radial Basis Functions 
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Another type of neurons, 
corresponding classifier – “inside/outside a ball” 
 
 
 
 
 
 
 
 
 
The usage of RBF-neurons “replaces” a level in FF-networks. 
 
With infinitely many RBF-neurons arbitrary mappings with only 
one intermediate level are possible. 
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Learning task: 
 
Given: training data 
Find: all weights and biases of the net. 
 
Error Back-Propagation is a gradient descent method for Feed-
Forward-Networks with Sigmoid-neurons 
 
First, we need an objective (error to be minimized) 
 
 
 
 
 
Now: derive, build the gradient and go. 

Error Back-Propagation 
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Error Back-Propagation 
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We start from a single neuron and just one example          . 
Remember: 
 
 
 
 
 
 
Derivation according to the chain-rule: 
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Error Back-Propagation 
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The “problem”: for intermediate neurons the errors are not known ! 
 
Now a bit more complex: 

with: 
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Error Back-Propagation 
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In general: compute “errors”    at the i-th level from all   -s at the 
i+1-th level – propagate the error. 
 
The Algorithm (for just one example          ): 
 
1. Forward: compute all    and     (apply the network), compute 

the output error                       ; 
2. Backward: compute errors in the intermediate levels: 

 
 

3. Compute the gradient and go.  
 
 
 

For many examples – just sum them up. 
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Time Delay Neural Networks (TDNN) 
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Feed-Forward network of a particular architecture. 
Many equivalent “parts” (i.e. of the same structure with the same 
weights), but having different Receptive Fields. The output level of 
each part gives an information about the signal in the 
corresponding receptive field – computation of local features. 
 
Problem: During the Error Back-Propagation the equivalence gets 
lost. Solution: average the gradients. 
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Convolutional Networks 
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Local features – convolutions with a set of predefined masks 
(see lectures “Image Processing”).  
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There is a symmetric neighborhood relation (e.g. a grid). 
The output of each neuron serves as inputs for the neighboring ones. 

with symmetric weights, i.e.  

A network configuration is a mapping 
A configuration is stable if “outputs     do not contradict” 
 
The Energy of a configuration is  
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Hopfield Networks 
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Network dynamic:  
 
1. Start with an arbitrary configuration        , 

 
2. Decide for each neuron whether it should be activated or not 

according to 
 
 
 

Do it sequentially for all neurons until convergence, i.e. apply the 
changes immediately. 
 
In doing so the energy increases !!! 
 
Attention!!! It does not work with the parallel dynamic (seminar). 
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Hopfield Networks 
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During the sequential dynamic the energy may only increase ! 
 
Proof: 
Consider the energy “part” that depend on a particular neuron: 
 
 
 
After the decision the energy difference is 
 
 
 
 
 
If            , the new output             is set to 1 → energy grows. 
If            , the new output             is set to 0 → energy grows too. 
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Hopfield Networks 
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The network dynamic is the simplest method to find a configuration 
of the maximal energy (synonym – “Iterated Conditional Modes”). 
 
The network dynamic is not globally optimal, it stops at a stable 
configuration, i.e. a local maxima of the Energy. 
 
The most stable configuration – global maximum. 
 
The task (find the global maximum) is NP-complete in general. 
 
Polynomial solvable special cases: 
1. The neighborhood structure is simple – e.g. a tree 
2. All weights         are non-negative (supermodular energies). 

 
Of course, nowadays there are many good approximations. 
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Hopfield Networks 
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Hopfield Network with external input    : 
 
 
 
The energy is 
 
 
 
 
Hopfield Networks implement mappings               according to the 
principle of Energy maximum: 
 
 
 
Note: no single output but a configuration – structured output. 
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Hopfield Networks 
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Hopfield Networks model patterns – network configurations of the 
optimal energy. 
 
Example: 
Let     be a network configuration and         the number of “cracks” – 
pairs of neighboring neurons of different outputs. 
 
Design a network (weights and biases for each neuron) so that the 
energy of a configuration is proportional to the number of cracks, 
i.e.                           . 
 
Solution:  
 
 
Further examples at the seminar. 


