
Pattern Recognition 

Neuron 



Neuron 
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Hunan vs. Computer 
(two nice pictures from Wikipedia) 



Neuron (McCulloch and Pitt, 1943) 

Pattern Recognition: Neuron 2 

Input: 
Weights: 
Activation: 
Output: 

Step-function 

Sigmoid-function 
(differentiable!!!) 

If 
otherwise 



Geometric interpretation 
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Let  be normalized, i.e.  
 
  the length of the 
projection of     onto     . 
 
Separation plane:  

Neuron implements a linear classifier 



Special case − Boolean functions 
 

Input: 

Output: 

Find      and     so, that   
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Disjunction, other Boolean functions, but XOR 



Learning 
Given: training data  

Find:                            so that                                    for all    

For a step-neuron: system of linear inequalities 
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Solution is not unique in general ! 

if 
if 



“Preparation 1” 
 Eliminate the bias: 

 The trick − modify the training data 
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0 0 

1 

Example in 1D 

non-separable without the bias separable without the bias 



“Preparation 2” 
 Remove the sign: 

 The trick − the same 

 

      

 

                               for all with 

                               for all with  

  

 

 All in all: 
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if 

if 



Perceptron Algorithm (Rosenblatt, 1958) 
 

Solution of a system of linear inequalities: 

 

1. Search for an equation 

 that is not satisfied, i.e. 

 

2. If not found − Stop 

 else update 

 go to 1.  

 

• The algorithm terminates if a solution exists (the training data 
are separable) 

• The solution is a convex combination of the data points 
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Proof of convergence 
 

The idea: look for quantities that 

a) grow/decrease quite fast, 

b) are bounded. 

 

Consider the length of            at n-th iteration: 

 

 

with  
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<0, because added by the algorithm 



Proof of convergence 
 

Another quantity − the projection of           onto the solution       .    

 

 

 

 

 

With                                            − the Margin 
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>0, because of the solution 



Proof of convergence 
 

All together: 

 

 

 

 

But                                            (Cauchy-Schwarz inequality) 

 

So                         and finally  

 

If the solution exists, 

the algorithm converges after               steps at most. 
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and 



An example problem. 
 

Consider another decision rule for a real valued feature           : 

 

 

It is not a linear classifier anymore but a polynomial one. 

 

The task is again to learn the unknown coefficients 

given the training data  

 

Is it also possible to do that in a “Perceptron-like” fashion ? 
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An example problem. 
 

The idea: reduce the given problem to the Perceptron-task. 

Observation: although the decision rule is not linear with respect to 

   , it is still linear with respect to the unknown coefficients   

 

The same trick again − modify the data: 

 

 

 

 

In general, it is very often possible to learn non-linear decision rules 
by the Perceptron algorithm using an appropriate transformation of 
the input space (further extension − SVM). 
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Kosinec Algorithm 
 

The task: 
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There are many solutions 
for the Perceptron in general 
 
One has to choose one 
 
 
 
Idea: 
Search for a “stripe of the maximal 
width” that separates the data 
 

width ↔ margin 
 

“Maximum margin learning” 



Kosinec Algorithm 
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After “Preparation 1 and 2”: 
 
 
 
 
 
(compare with Perceptron) 



Kosinec Algorithm (1963?) 
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   -precise algorithm: 
 
1. Search for an      so that  

 
 

2. If not found − Stop 
3. Search for  

 
4. Update 

 
 go to 1. 

The algorithm terminates after a finite number of steps, for 
(proof similar to Perceptron), for             does not always terminate  


