
Pattern Recognition

Neuron

Neuron

Pattern Recognition: Neuron 1

Hunan vs. Computer
(two nice pictures from Wikipedia)

Neuron (McCulloch and Pitt, 1943)

Pattern Recognition: Neuron 2

Input:
Weights:
Activation:
Output:

Step-function

Sigmoid-function
(differentiable!!!)

If
otherwise

Geometric interpretation

Pattern Recognition: Neuron 3

Let be normalized, i.e.

 the length of the
projection of onto .

Separation plane:

Neuron implements a linear classifier

Special case − Boolean functions

Input:

Output:

Find and so, that

Pattern Recognition: Neuron 4

Disjunction, other Boolean functions, but XOR

Learning
Given: training data

Find: so that for all

For a step-neuron: system of linear inequalities

Pattern Recognition: Neuron 5

Solution is not unique in general !

if
if

“Preparation 1”
 Eliminate the bias:

 The trick − modify the training data

Pattern Recognition: Neuron 6

0 0

1

Example in 1D

non-separable without the bias separable without the bias

“Preparation 2”
 Remove the sign:

 The trick − the same

 for all with

 for all with

 All in all:

Pattern Recognition: Neuron 7

if

if

Perceptron Algorithm (Rosenblatt, 1958)

Solution of a system of linear inequalities:

1. Search for an equation

 that is not satisfied, i.e.

2. If not found − Stop

 else update

 go to 1.

• The algorithm terminates if a solution exists (the training data
are separable)

• The solution is a convex combination of the data points

Pattern Recognition: Neuron 8

Proof of convergence

The idea: look for quantities that

a) grow/decrease quite fast,

b) are bounded.

Consider the length of at n-th iteration:

with

Pattern Recognition: Neuron 9

<0, because added by the algorithm

Proof of convergence

Another quantity − the projection of onto the solution .

With − the Margin

Pattern Recognition: Neuron 10

>0, because of the solution

Proof of convergence

All together:

But (Cauchy-Schwarz inequality)

So and finally

If the solution exists,

the algorithm converges after steps at most.

Pattern Recognition: Neuron 11

and

An example problem.

Consider another decision rule for a real valued feature :

It is not a linear classifier anymore but a polynomial one.

The task is again to learn the unknown coefficients

given the training data

Is it also possible to do that in a “Perceptron-like” fashion ?

Pattern Recognition: Neuron 12

An example problem.

The idea: reduce the given problem to the Perceptron-task.

Observation: although the decision rule is not linear with respect to

 , it is still linear with respect to the unknown coefficients

The same trick again − modify the data:

In general, it is very often possible to learn non-linear decision rules
by the Perceptron algorithm using an appropriate transformation of
the input space (further extension − SVM).

Pattern Recognition: Neuron 13

Kosinec Algorithm

The task:

Pattern Recognition: Neuron 14

There are many solutions
for the Perceptron in general

One has to choose one

Idea:
Search for a “stripe of the maximal
width” that separates the data

width ↔ margin

“Maximum margin learning”

Kosinec Algorithm

Pattern Recognition: Neuron 15

After “Preparation 1 and 2”:

(compare with Perceptron)

Kosinec Algorithm (1963?)

Pattern Recognition: Neuron 16

 -precise algorithm:

1. Search for an so that

2. If not found − Stop
3. Search for

4. Update

 go to 1.

The algorithm terminates after a finite number of steps, for
(proof similar to Perceptron), for does not always terminate 

