Image Processing



Bayesian Filtering

o i
There is a set of states X', in which an object can stay, i.e. z € X

There are:

1. Transition model — how the state at the next time is obtained
from the state at the previous one

2. Observation (Measurement) model — what and how is observed
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Bayesian Filtering
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Let at the time i the probability distribution of states pi(zi) be
known. Note: not the state z; but the probability distribution !!!

The prior probability distribution of states for the next time is
obtained by

Pit+1(Tit1) = ZI{ pi(wi) - p(ziy1|zi)
This is called Prediction
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Bayesian Filtering
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Let a measurement be done, i.e. we have an observation 0,41

The posterior probability distribution of states is obtained by
Pi+1(Tit1) = pit1(Tit1]oit1) ~ pir1(Tit1) - p(oit1|zit1)

and serves as the prior for the next step.

This is called Correction
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Markovian Chains
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The set of states is discrete. The transition model is given (mainly)
explicitly in form of transitional matrix.

o n

+” —quite general, i.e. general discrete probability distributions

can be modeled

— not appropriate for large state sets (mainly due to the time
complexity)

“o 'y

Applications: speech recognition, network traffic analysis, CV ...
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Kalman filter [Kalman, 1960]

States and observations are vectors =z € R™ and o € R™

Both transition model and measurement model are linear
Tiv1 =A- -z +e€, o0i=B-z;+0

A and B are nxn and nxm matrices

e € R™ and 6 € R™ are process noise and observation noises

Noises are normally distributed

p(e) = N(0,3¢) ~ CX}’J(—ETZE_IE)? p(0) =N(0,X5) ~ exp(— 0Ty 1{’1)
with mean values =0 and covariance matrices >. and X
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Kalman filter, example

The state = = [z, v, vz, vy| describes a position (z,v) and
the speed (v, vy) of an object in R?,

For “almost uniform” motion it holds (At is a time step)

Tip1 = T; + At vg + O(At?)
Yir1l = Yi + At - vy i + O(At?)
Vg,it1l = Vz.i + O(AL)
Vy,i+1 = Vy,i + O(&t)

The state at the 7 + 1-th time step is a linear mapping of the state at
the i-th one with the “noises” O(at) and O(at?)
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Kalman filter, example

In the matrix form:

i Tit1 ] 1 0 At 0 T
Yi+1 B O 1 0 At | Yi Le
Vg, it1 o 0O 0 1 0 Vg, g '
| Uyl 0 0 O L | Uy
For measurements (only position is observed):
PR
Ozx,i+1 _ l 0 0 {;} . Yi n 5
Oy, i+1 O 1 0 O Vg, i
| Uy,i

Extensions: 2D — 3D (R®), with angles and angular speeds R*?

Non-rigid objects — ...
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Kalman filter
Assumption: at the first time point p(z0) = N (o, Xo)
Prediction is a convolution of two Gaussians:
Pi+1(Zit+1) = /Pi(:ﬂi} - p(zit1|zi) doy ~
~ / exp | —(zi — 2) '] (@i — 7)) -

- exp [—(1??1_1 — Az) TS Y@y — A:c.i)} dzx;

—> the result is again a Gaussian . N (z, .Y, ,)
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Kalman filter

The correction is a component-vise multiplication of two Gaussians

pit+1(zit1|0it1) = pit1(@it1) - ploir1|zig1) ~

— Tvxr—1 1
~ exXp [—(93?'4_1 — 5’31,-__|_]_) Ef+1(I'i+l o 'T-i—I—l)} '

‘EKP[—(Gi—I—l — Briy1) 'S5 (0i41 — Bi‘-f—l)}
— the result is a Gaussian again N (z;+1,3+1)

It is not necessary to propagate the probability distributions explicitly
(i.e. to compute it for all zi11 ).

Only the parameters need to be re-computed (i.e. the mean und the
covariance matrix).
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Kalman filter, an application

Tracking of blood vessels [Yedidya, Hartley, 2008]

An “object” moves along the blood vessels

Its state is composed of the position, speed,
thickness, gray-values observed so far etc.

Direction of movement

magnitude

80 100
angle
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Extensions

Shortcoming: Gaussian noise
A better choice — Gaussian mixtures p(e) = >, wpN (ug, Xep)

The problem —the number of Gaussians increases
(even for linear models)

> 2.; =2 7% 2., the parameters can not be propagated ®

The way out — permanently approximate the posteriors by Gaussian
mixtures with a fixed number of components.

Another extension — use non-linear transition and observation
models, i.e. Az becomes a(z).

How to parameterize the state distribution, how to propagate it ?
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Particle filter

The ldea:
represent distributions by the density of data samples (particles).

It is possible to propagate such representation (i.e. implicitly).

Let pi(z:) be “known”. Do many times:

1. Draw a sample «/ from pi(=z)

2. Propagate it, i.e. z/ = a(z')

3. Compute p(oi+i|z”) (compare oi+1 With b(z"))
4. Accept/reject/weight z”

Such a set of samples is distributed according to pi+1(zi+1)

It is not necessary to specify the probability distributions explicitly —
only sample sets are propagated (i.e. implicit non-parametric
representation of the target probability distribution)
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Some trackers

CONDENSATION — a particular kind of particle filtering.

Michael Isard and Andrew Blake (1998),
Condensation — conditional density propagation for visual tracking

http://www.robots.ox.ac.uk/~misard/condensation.html

TLD (Track, Learn, Detect)

Zdenek Kalal, Jiri Matas, Krystian Mikolajczyk (2009),
Online learning of robust object detectors during unstable tracking

http://kahlan.eps.surrey.ac.uk/featurespace/tld/
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