Image Processing

Continuous Energy Minimization

Instead to say what should be done (algorithms), it is formulated what for properties the result should have (model).

Realization of an object is represented by mappings (e.g. $\mathbb{R}^2 o \mathbb{R}$)

The desired properties of the model are represented by the Energy – a "function" that penalizes inappropriate mappings.

The problem becomes an optimization task – search for the solution of the optimal energy.

Cases: Domain of definition: continuous, discrete Range: continuous, discrete

Today: continuous range, both discrete and continuous domain

Example – denoising

 $R \in \mathbb{Z}^2$ – the set of pixels, $E \subset R^2$ – the neighborhood structure $x: R \to \mathbb{Z}$ – the initial image (gray-valued for simplicity) $y: R \to \mathbb{R}$ – the unknown (e.g. the restored image)

The energy (usually) consists of two terms:

• The data term:

$$E_d(y) = \sum_{r \in R} (x_r - y_r)^2$$

(the solution should be as similar as possible to the original)

• The model term:

$$E_m(y) = \sum_{rr' \in E} (y_r - y_{r'})^2$$

(the solution should be smooth)

The optimization task is:

$$y^* = \operatorname*{arg\,min}_{y} \left[E_d(y) + \alpha E_m(y) \right]$$

(search for an agreement)

Solution – derive, set to zero, resolve ...

For a particular pixel r^* : consider parts (addends) of the energy that depend on r^*

$$\frac{\partial}{\partial y_{r^*}} \left[\sum_{r \in R} (x_r - y_r)^2 + \alpha \sum_{rr' \in E} (y_r - y_{r'})^2 \right] =$$
$$y_{r^*} - x_{r^*} + \alpha \sum_{r': r^*r' \in E} (y_{r^*} - y'_r) = 0$$

It follows:

$$(1+4\alpha)y_{ij} - \alpha y_{ij-1} - \alpha y_{ij+1} - \alpha y_{i-1j} - \alpha y_{i+1j} = x_{ij} \quad \forall i, j$$

$$(1+4\alpha)y_{ij} - \alpha y_{ij-1} - \alpha y_{ij+1} - \alpha y_{i-1j} - \alpha y_{i+1j} = x_{ij} \quad \forall i, j$$

The system of linear equations with n = |R| variables and n equations

with

$$y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
 – the solution
 $x = (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n$ – the original image

Elements of the matrix are: $a_{ii} = 1 + 4\alpha$ and $a_{ij} = -\alpha$ if the corresponding pixels are neighbors, zero otherwise.

The system can be in principle solved by standard methods, e.g. Gaussian elimination, LU-decomposition etc. It is however obviously too slow 😕

The matrix A is **sparse** \rightarrow iterative methods.

For instance the **Jacobi** method: the matrix is decomposed A = D + M into the diagonal part M and the rest:

 $Ay = x \Leftrightarrow (D+M)y = x \Leftrightarrow Dy = x - My \Leftrightarrow y = D^{-1}(x - My)$

 \rightarrow the iterative procedure:

$$y^{(k+1)} = D^{-1}(x - My^{(k)})$$

© extremely simple, parallelizable

Other methods

Conjugate gradients: better convergence is achieved by an appropriate choice of the gradient direction

Successive over-relaxation (special case – Gauss-Seidel method): faster convergence by appropriately chosen gradient step

$$x_k^{(m+1)} = (1-\omega)x_k^{(m)} + \frac{\omega}{a_{kk}} \left(b_k - \sum_{i>k} a_{ki}x_i^{(m)} - \sum_{i$$

Multi-grid methods: the domain is coarsened (downscaled), the solution is done very fast \rightarrow serves as initialization for the more detailed resolution levels (much faster but complicated),

Image Processing: Continuous Energy Minimization

Continuous domain of definition

 $R \subset \mathbb{R}^2$, the mapping $y : \mathbb{R}^2 \to \mathbb{R}$ is a function.

The energy becomes an **energy functional** $E : \mathbb{R}^{\infty} \to \mathbb{R}$

Example – again the denoising:

$$E(y) = \int_{R} \left[\left(y(r) - x(r) \right)^{2} + \alpha |\nabla y(r)|^{2} \right] dr \to \min_{y}$$

data term + model term (smoothness - gradients are penalized)

The "problem" – how to derive?

The framework: Calculus of variations

Calculus of variations

Gâteaux-derivative:

a generalization of the **directional derivative** on function spaces, "direction" $h : \mathbb{R}^2 \to \mathbb{R}$ is a function too.

Euler-Lagrange equations: in the optimum all Gâteaux-derivatives (i.e. for all *h*) are zero.

Gâteaux-derivatives

$$\begin{split} & \frac{d}{d\varepsilon} \int_{R} \left[(y+\varepsilon h-x)^{2} + \alpha |\nabla(y+\varepsilon h)|^{2} \right] dr \Big|_{\varepsilon=0} = \\ & //\operatorname{koordinatenweise in} \mathbb{R}^{2} \\ & \frac{d}{d\varepsilon} \int_{R} \left[(y+\varepsilon h-x)^{2} + \alpha \left(\frac{\partial}{\partial r_{1}} (y+\varepsilon h) \right)^{2} + \alpha \left(\frac{\partial}{\partial r_{2}} (y+\varepsilon h) \right)^{2} \right] dr \Big|_{\varepsilon=0} = \\ & 2 \int_{R} \left[(y+\varepsilon h-x)h + \alpha \left(\frac{\partial}{\partial r_{1}} (y+\varepsilon h) \frac{\partial h}{\partial r_{1}} \right) + \alpha \left(\frac{\partial}{\partial r_{2}} (y+\varepsilon h) \frac{\partial h}{\partial r_{2}} \right) \right] dr \Big|_{\varepsilon=0} = \\ & 2 \int_{R} \left[(y-x)h + \alpha \left(\frac{\partial y}{\partial r_{1}} \frac{\partial h}{\partial r_{1}} \right) + \alpha \left(\frac{\partial y}{\partial r_{2}} \frac{\partial h}{\partial r_{2}} \right) \right] dr = \\ & //\operatorname{partielle Integration} \\ & 2 \int_{R} \left[(y-x)h - \alpha \left(\frac{\partial^{2} y}{\partial r_{1}^{2}} h \right) - \alpha \left(\frac{\partial^{2} y}{\partial r_{2}^{2}} h \right) \right] dr + \dots \left(\operatorname{Grenzeffekte} \right) = \\ & 2 \int_{R} \left((y-x-\alpha \Delta y)h \, dr + \dots \left(\operatorname{Grenzeffekte} \right) = 0 \quad \forall h \\ & \downarrow \qquad \Rightarrow \quad y-x-\alpha \Delta y = 0 \quad \forall r \in R \end{split}$$

Comparison with the discrete domain

Euler-Lagrange equations:

$$y - x - \alpha \triangle y = 0 \quad \forall r \in R$$

Let us discretize it:

$$y_{i,j} - x_{i,j} - \alpha \left((y_{i-1,j} - 2y_{i,j} + y_{i+1,j}) + (y_{i,j-1} - 2y_{i,j} + y_{i,j+1}) \right) = 0$$

 \rightarrow the same system of linear equations:

$$y_{i,j}(1+4\alpha) - \alpha y_{i-1,j} - \alpha y_{i+1,j} - \alpha y_{i,j-1} - \alpha y_{i,j+1} = x_{i,j} \quad \forall (i,j).$$

Other discretization schemes, other model-terms \rightarrow other systems

Comparison with diffusion

Gradient descent method to minimize the energy E(y):

$$y^{(t+1)} = y^{(t)} - \frac{\partial E(y)}{\partial y} = y^{(t)} + \alpha \triangle y + (x-y)$$

Compare with the homogenous diffusion:

$$u^{(t+1)} = u^{(t)} + \frac{\partial u}{\partial t} = u^{(t)} + c \triangle u$$

Very similar, up to the term that keeps the solution close to the original image.

Extensions

$$E(y) = \int_{R} \left[(y - x)^{2} + \alpha \Psi(|\nabla y|^{2}) \right] dr \to \min_{y}$$

with a regularizer $_{\Psi}$:

- $\Psi(s^2) = s^2$ $\Psi(s^2) = \sqrt{s^2}$ $\Psi(s^2) = 1 - \lambda^2 \exp(-\frac{s^2}{\lambda_2^2})$
- Tikhonov
- Total Variation
- Perona-Malik

- $\Psi(s^2) = \begin{cases} 0 & \text{wenn } s^2 = 0\\ 1 & \text{else} \end{cases}$
- Potts model

Euler-Lagrange equations (non-linear in general):

$$\operatorname{div}\left(\Psi'(|\nabla y|^2)\nabla y\right) - \frac{y-x}{\alpha} = 0$$

Summary

Energy Minimization is a sound way to model and solve Computer Vision tasks – they are casted as optimization problems.

(Almost) no hidden assumptions, transparent formulations.

The considered example (denoising) is very simple: **quadratic** penalizer \rightarrow system of **linear** equations \rightarrow approaches are very similar to each other and the solution is simple as well.

In general, the problem is "easy" if the subject is **convex**.

Today:continuous energy minimizationNext time:discrete energy minimization (both range and domain)