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Classic application: denoising 
 
However: 

Denoising is much more than a simple filtering 
Filtering can do many other things as well 
 

Filtering is “a kind of image processing algorithms” 
 
(Almost) each filter is based on a model (assumptions) 
 

Model = signal + noise 
 

Usual pipeline: 
 

Model → Formal task → Solution → Algorithm (program) 
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1. Mean filter: Model → … → Solution 
2. Median filter: Formal task → Solution 
3. Some other filters (short) 
4. Algorithms 

 
Notations: 
 
                    the domain (grid),     − Pixel 
 Image is a mapping                      (color space) 
          is the color of the pixel (at the position) 
 
 Let      be the “ideal” signal (original image, desired result …) 
     is the nosed version 
 
The task: observe   , compute  
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Noise model: Gaussian probability  distribution for color differences 
 
 



Image Processing: Filtering 

Mean filter 

6 

Further assumption: independent noise 
 
 
 
 
Let us try to formulate a task just now according to e.g. the 
Maximum-Likelihood principle (probability maximization):  
 
 
        is a constant (drop it out), assume uniform prior 
 
 
 the solution is trivial:                for all       
  
 additional assumptions about the signal    are necessary !!! 
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Assumption: 
in a small vicinity                      the “true” signal      is nearly constant 
 
Maximum-Likelihood: 
  
 
take logarithm: 
 
 
Derive: 
 
  
      (the average)  
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Corresponds to another noise model 
for simplicity let                (gray-valued image) 
 
 
     Another subject to optimize: 
 
 
 
      
     Problem: not differentiable , 
     good news: it is convex  
 

             
 
The solution: median filter 
 − order the values and take the middle one 
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Original Noised 

Mean Median 
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In a small amount of pixels the colors are corrupted uniformly 

Original 

Mean Median 

Noised 
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The background smoothing improves spatial perception 
 
 
 
 
 
 
 
 
 
 
(Xue Bai, Guillermo Sapiro) 
 
btw. the reverse task is called shape from focus 
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Convolution 
 
 
With the mask (convolution kernel) 
 
 
(the mask is also an “image”) 
 
 
Example: mean filter if 

otherwise 
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Which other masks could be useful, for what ? 
 
A bit more delicate smoothing with the Gaussian kernel: 
 
 
Unsharp mask: 
 
 
 
 
 
 
 
 
Edge detectors and a lot of other things … 

Original Unsharp Unsharp even more 



Image Processing: Filtering 

A “completely other” task 

14 

Salt and pepper noise for 90% of pixels 
 
 
 
 
 
 
 
 
 
 
Usual linear filtering has no chance  
 
an explicit modeling of the signal is necessary (MRF in the case above) 
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• Explicit assumptions for the processed signal/noise − local filtering 
 

• Description by auto-correlation function − Wiener filter 
 

• Signal is a composition of different frequencies − Fourier analysis 
 

• Description by partial differential equations − Variational methods 
 

• Explicit modeling of statistic dependencies − Markov Random Fields 
 

• Etc. 
 

The properties of a particular problem (signal/noise model, a kind of 
the formal task to be solved etc.) are crucial. 
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One-dimensional signal for simplicity, i.e. 
 
Example: mean filter: 
 
 
A naïve algorithm (according to the formula): 
 
 
 
 
 
 
 
 
Time complexity:  
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A better Algorithm − Idea: 
 
 
 
 
 If the “blue” sums      are 

pre-computed, only one 
summation per value are 
needed for output !!! 
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It is indeed very simple to pre-compute      quickly  
 
A better Algorithm: 
 
1. Compute      for all   : 

 
 
 

2. Compute     :  
 
 
 
 

Time complexity:     − does not depend on the window size at all !!! 
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Generalization to the 2D-case: 
 
1. Compute      for all   : 

 
 
 
 
 

2. Compute     :  
 
 
 
 

 
Time complexity:     − does not depend on the window size at all !!! 
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Properties: 
 
• Commutative: 

 
• Associative 

 
• Distributive with “+”  
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Identical convolution (unity): 
 
Inverse convolutions fulfill: 
 
Example: (           is marked bold): 
 
 
 
 
The trick is in fact: 
 
 
Consequence: 
                     is easy to compute (linear time complexity) 
                     is sparse (a constant number of non-zero elements) 

− differential operator 
− integral operator 
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Convolve efficiently with the mask (1D) 
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Consider, how         can be computed efficiently using     . 
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If     is known, the next value could be computed in a constant time. 
 
However     is nothing but a mean filter, i.e. it can be pre-computed 
in linear time as well ! 
 
The algorithm: 
1. Compute the integral signal    ; 
2. Compute the mean filter    ; 
3. Compute the output    from    and    . 

 
 

All steps have the linear complexity 
 → the overall time complexity is linear as well. 
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Explain it by convolutions: 
 
 
 
 
 
 
 
 
 
 
 
    – differential operator,    – integral operator 
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Assume that a mask            (seen as a matrix) can be represented as 
outer product of two vectors, i.e.                      . 
 
Example: Gaussian smoothing 
 
 
 
 
A convolution          is then 
 
 
 
 
 
with an “intermediate convolution”    . 
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If the filter mask is an outer product, the convolution kernel can be 
written as                    . 
 
 
 
 
 
 
In what follows:  
 
Let the convolution kernel be of the size            . 
Direct convolution takes              operations per pixel. 
Consecutive application takes only            operations per pixel ! 
 
Gaussian, mean and many others are separable  
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Let a convolution kernel be given. 
 
1. Try to find its representation using differentiation and 

integration in order to reduce the time complexity. 
 

2. Try to approximate the mask by “the best possible” separable 
one. 
 

3. Decompose the kernel into a sum of separable filters. 
 

4. Try to represent the kernel as a convolution of sparse ones. 
 

5. Consider combinations of 1. – 4. 
 
 etc. 
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The consecutive application of the mean filtering approximate the 
Gaussian smoothing (based on the Central Limit Theorem) 
 
 
 
 
 
 
 
 
 
 
 
Time complexity:                                  with      – the number of 
iterations (5-6 times is usually enough). 

Box-Filter 

29 
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Use filtering with care and respect. Do not use filters without to 
know, what are they really doing, have in mind always the whole: 
 

Model → Formal task → Solution → Algorithm (program) 
 
Today: 
1. Mean filter: Model → … → Algorithm 
2. Some other filters 
3. Some examples 
4. Algorithms, Convolutions, some further filtering tricks 

 
Next lecture: 
1. Morphologic operations 


