

Idee

Gegeben sie eine (parametrisierte) Klasse der Wahrscheinlichkeitsverteilungen.

Jeder konkreten Wahrscheinlichkeitsverteilung entspricht ein Klassifikator.

Das eigentliche Ziel ist die Erkennung – die Anwendung des Klassifikators.

Generatives Lernen – der Ausgangspunkt ist die Klasse der WV:

- 1. Die Parameter der WV werden gesucht (z.B. nach dem ML).
- 2. Der Klassifikator wird daraus abgeleitet (z.B. nach dem Bayesschen Prinzip).
- 3. Der Klassifikator wird angewendet Erkennung.

Diskriminatives Lernen – der Ausgangspunkt ist die Klasse der Klassifikatoren:

- 1. Die Parameter des Klassifikators werden "direkt" gesucht.
- 2. Der Klassifikator wird angewendet Erkennung.

Ist die (parametrisierte) Klasse der Klassifikatoren explizit angegeben, so wird die Klasse der WV nicht mehr benötigt.

Vorgehensweise

"Die Wahrheit (Parameter des darunterliegenden Modells) ist egal. Wichtig ist nur, dass alles am Ende gut funktioniert (die vorgegebene Lernstichprobe wird richtig klassifiziert)".

Beispiel:

zwei Klassen, Gausssiane gleicher Varianz als bedingte Wahrscheinlichkeiten für $x \in \mathbb{R}^n$:

$$p(x,k) = p(k) \cdot \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left[-\frac{\|x - \mu^k\|^2}{2\sigma^2}\right]$$

Klassifikator ist eine Hyperebene

 \rightarrow such e gleich nach einer "guten" Hyperebene $\langle w, x \rangle < b.$

Vergleiche: $2\cdot n + 2$ freie Parameter der WV gegen nfreie Parameter des Klassifikators.

Konsequenz: einem Klassifikator entsprechen viele WV.

Beispiel: Die lage der Hyperebene im obigen Beispiel hängt von σ gar nicht ab. Zentren μ^1 und μ^2 sind nicht relevant, sondern die Differenz $\mu^1 - \mu^2$.

Empirisches Risiko

Wie ist ein guter Klassifikator zu finden?

Das Bayessche Risiko:

$$R_b(e) = \sum_{x} \sum_{k} p(x, k) C(e(x), k) \to \min_{e}$$

Jetzt hat man aber keine p(x, k). Man hat nur eine Lernstichprobe $L = ((x^l, k^l) \dots)$ Das Bayessche Risiko wird durch das **Empirische** Risiko ersetzt:

$$R_e(e) = \sum_{l} C(e(x^l), k^l) \to \min_{e \in \mathcal{E}}$$

wobei \mathcal{E} die Klasse der Klassifikatoren ist.

Beispiel:

- a) lineare Klassifikatoren, d.h. $\langle w, x \rangle < b$ mit unbekannten $w \in \mathbb{R}^n$ und $b \in \mathbb{R}$
- b) $\mathbb{I}(k \neq k')$ als Kostenfunktion,
- c) Annahme: es existiert ein Klassifikator, der die vorgegebene Klassifikation wiedergibt
- \rightarrow Perzeptron Algorithmus.

VC-Dimension

Die Frage: wie genau ist das Lernen?

Wie schnell (und ob überhaupt) konvergiert das empirische Risiko zum "wahren" Bayesschen Risiko mit der wachsenden Lernstichprobe?

Satz (Vapnik, Chervonenkis):

notwendige und hinreichende Bedingungen für Konsistenz des empirischen Risikos:

$$\lim_{|L| \to \infty} \{ \sup_{e} |R_e - R_b| > \varepsilon \} = 0 \quad \forall \varepsilon > 0$$

Obere Schranke für die Differenz der Fehler:

$$P\left\{|R_b - R_e| < \sqrt{\frac{h(\log(2N/h) + 1) - \log(\delta/4)}{N}}\right\} > 1 - \delta$$

mit VC-Dimension h (bei $h \ll N$).

(notw. und hinr. Bedingungen für Konsistenz des empirischen Risikos: $h < \infty$).

VC-Dimension:

Die kleinste Zahl n so, dass kein (n+1)-Tupel von Punkten beliebig Klassifizierbar ist.

Beispiel: lineare Klassifikatoren im \mathbb{R}^n , VC=n+1.

Lernen von A-posteriori Wahrscheinlichkeiten

p(x) ist bei der Erkennung irrelevant, wichtig ist nur a-posteriori WV p(k|x)

 \rightarrow definiere die Klasse der **bedingten posteriori** WV explizit, d.h. $p(x,k) = p(x) \cdot p(k|x;\Theta)$ mit **beliebiger** p(x).

Maximum-Likelihood:

$$p(L;\Theta) = \prod_{l} \left[p(x^{l}) \cdot p(k^{l}|x^{l};\Theta) \right]$$
$$\ln p(L;\Theta) = \sum_{l} \ln p(x^{l}) + \sum_{l} \ln p(k^{l}|x^{l};\Theta)$$

Beispiel: wieder die Gaussiane gleicher Streuung:

$$\begin{split} p(k=1|x) &= \frac{p(1)p(x|1)}{p(1)p(x|1) + p(2)p(x|2)} = \frac{1}{1 + \frac{p(2)p(x|2)}{p(1)p(x|1)}} = \\ &= \frac{1}{1 + \exp\left[-\frac{\|x - \mu^2\|^2}{2\sigma^2} + \frac{\|x - \mu^1\|^2}{2\sigma^2} + \ln p(2) - \ln p(1)\right]} = \\ &= \frac{1}{1 + \exp\left(\langle w, x \rangle + b\right)} \end{split}$$

Lernen von A-posteriori Wahrscheinlichkeiten

Kein unüberwachtes Lernen möglich:

für eine "unvollständige" Lernstichprobe $L=(x^1,x^2\dots x^l)$

$$\ln p(L;\Theta) = \sum_l \ln \sum_k p(x^l,k) = \sum_l \ln \sum_k \left[p(x^l) \cdot p(k|x^l;\Theta) \right] = \sum_l \ln p(x^l)$$

 \rightarrow hängt vom Parameter Θ gar nicht ab!!!

("halbüberwachtes" Lernen jedoch möglich)

$$\mathrm{VC} = \infty$$
 (?). Keine Lernstichprobe ist groß genug (?)

$$\begin{split} & \ln p(L;\Theta) = \sum_{l} \ln p(x^{l}) + \sum_{l} \ln p(k^{l}|x^{l};\Theta) \to \max_{\Theta,p(x)} \\ & p(x) = \left\{ \begin{array}{ll} 1/|L| & \text{wenn} \quad x \in L \\ 0 & \text{sonst.} \end{array} \right. \end{split}$$

 \rightarrow eine unrealistische p(x)!!!

Diskriminativ vs. Generativ

Die Mengen der Entscheidungsstrategien sind meist "einfacher" (wenigerdimensional, weniger eingeschränkt usw.) als die entsprechenden Wahrscheinlichkeitsverteilungen (Beispiel – Gaussiane).

Oft braucht man beim Lernen um vieles (z.B. Konsistenz des statistischen Modells) nicht zu kümmern \rightarrow Algorithmen werden einfacher (Beispiel – Normierungskonstante).

Im Vergleich zu generativen Modellen ist es möglich, komplexere Entscheidungsstrategien zu nutzen \to die Ergebnisse sind meist besser.

Große klassifizierte Lernstichproben werden benötigt,

Schlechtere Generalisierung.