MUSTERERKENNUNG 4. SEMINAR – MAXIMUM-LIKELIHOOD PRINZIP

Aufgabe 1. Die Wahrscheinlichkeitsverteilung einer skalaren Größe $x \in \mathbb{R}$ ist

$$p(x) = C \cdot \exp[-\tau |x - \mu|]$$

mit reelen Parametern τ und μ . Sie sollen nach dem Maximum-Likelihood Prinzip anhand einer Lernstichprobe $L=(x^1,\ldots,x^{|L|})$ gelernt werden. Wie ergeben sich daraus die gesuchten Größen?

Lösen Sie diese Aufgabe für die Wahrscheinlichkeitsverteilung

$$p(x) = \left\{ \begin{array}{ll} C \cdot \exp\left[-\tau(x-\mu)\right] & \text{wenn } x \geq \mu, \\ 0 & \text{sonst.} \end{array} \right.$$

Aufgabe 2. Ein Objekt kann sich in zwei Zuständen k=1,2 befinden. Die a-priori Wahrscheinlichkeiten p(k=1) und p(k=2) seien bekannt. Die bedingten Wahrscheinlichkeiten für die Merkmale $x \in \mathbb{R}^n$ sind Gaußsch verteilt:

$$p(x|k) = \frac{1}{(\sqrt{2\pi}\sigma_k)^n} \exp\left[-\frac{||x-y||^2}{2\sigma_k^2}\right].$$

Beide Verteilungen haben dasselbe Zentrum y aber unterschiedliche Streuungen σ_k . Gegeben sei eine klassifizierte Stichprobe $L = ((x^1, k^1), \dots, (x^{|L|}, k^{|L|}))$. Seien die Streuungen σ_k bekannt. Man schätze y mit Hilfe des Maximum-Likelihood Prinzips.

Aufgabe 3. Die Merkmale eines Objektes, welches sich in zwei Zuständen k = 1,2 befinden kann, sind Vektoren $x = (x_1, x_2) \in \mathbb{R}^2$. Die Wahrscheinlichkeitsverteilung ist

$$\begin{split} p(k=1) &= p(k=2), \\ p(x|k=1) &= C \cdot \exp\left[-\frac{(x_1 - \mu_1)^2}{\sigma^2}\right], \\ p(x|k=2) &= C \cdot \exp\left[-\frac{(x_2 - \mu_2)^2}{\sigma^2}\right], \end{split}$$

mit den Parametern $\mu_1, \mu_2, \sigma \in \mathbb{R}$.

- a) Wie sieht die Klasse der Entscheidungsregeln für dieses Wahrscheinlichkeitsmodell aus?
- b) Seien die Parameter μ_1 und μ_2 unbekannt. Gegeben sei eine Lernstichprobe $((x^1,k^1),\ldots,(x^m,k^m))$. Finden Sie die unbekannten Parameter nach dem Maximum Likelihood Prinzip.
- c) Finden Sie die Entscheidungsregel, die die Anzahl der Fehlklassifikationen auf der Lernstichprobe minimiert.