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Dieses Skriptum ist fiir eine summer—school entstanden, die im August 1993 an der Universitit
Jyviskyld, Finnland, stattgefunden hat. Es wird in die Theorie der Randwertprobleme fiir lineare
elliptische partielle Differentialgleichungen zweiter Ordnung eingefiihrt, und die hierzu erforderliche
Funktionalanalysis wird bereitgestellt. Hier in Essen wird iiblicherweise die Vorlesung ” Partielle
Differentialgleichungen I” im Sommer als Vorlesung fiir das 6. Semester angeboten, und es wird
empfohlen, im vorangehenden Wintersemester die Vorlesung ” Funktionalanalysis I” zu héren. Die-
ses Skriptum fafit Teile einer Vorlesung ”Funktionalanalysis I” und den Hauptteil einer Vorlesung

”Partielle Differentialgleichungen I” zusammen.



Chapter -1

Introduction

The aim of this course is to introduce the basic methods for the treatment of boundary value
problems for second order elliptic partial differential equations. Many physical applications are

modelled by equations of the type

2 0° 0’ 0’
Au(z) = f(z)  (Au:= Z; O%u = a—m%u-i—a—w%u+ 8—m§u) (-1.1)
(the potential equation),
% u(z,t) — Au(z, t) = f(z,t) (-1.2)
(the heat equation), ‘
aa—; u(z,t) — Au(z,t) = f(z,t) (-1.3)
(the wave equation),
i % (x,t) — Au(z, t) + p(z)u(z,t) =0 (-1.4)

(the Schrodinger equation with a given potential p).

Here u is a function defined in some domain €2 of Euclidean space R?, say, or in some “space-time”
cylinder Q x I, I an intervall on the real line. w should be considered as unknown while f is
assumed to be a given function defined in the same domain as u . For example equation (—1.1)
oLu
might be used to find a field Vu = | 0yu | of force from its sources f.
Osu

Equation (—1.2) might describe the distribution of temperature u(z,t) at the point x and at time
t from heat sources f(x,t). Equation (—1.3) might describe acoustic waves, and the Schréodinger
equation describes the evolution of a quantum mechanical particle in a potential. In case of the

Schridinger equation, € is the whole space.

Of course, the spatial domain (2 might also be of one, two and more than three dimensions.
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As in the theory of ordinary differential equations neither of these three equations alone are suffi-
cient to describe its solutions uniquely: one has to add boundary conditions and initial conditions.
A boundary condition is an equation for u and its derivatives on the boundary of the spatial
domain, e.g.

u(z) = g(x) for x € 0N (-1.5)

(in case of equ. (—1.1)) or
u(z,t) = g(x,t) for z €0, tel (-1.6)

(in case of equ. (—1.2) or (—1.3)). (—1.5) as well as (—1.6) is the so called “Dirichlet (boundary)

condition”, and due to lack of time we shall concentrate on this condition. This Dirichlet condition

says that the unknown function is known on the spatial boundary 02 (in case of the potential

equation) at any time ¢ (in case of the heat or wave equation). In the case of the two latter

equations one also needs initial conditions for the determination of u , i.e. one has to describe u
du

and — in case of the wave equation — also z7 at time ¢ = 0.

Thus the typical problems with respect to potential-, heat—, and wave—equation are:

(EBVP) For given functions f: Q — R, ¢:9Q — R find a function u : @ — R such that
Au(z) = f(z) for z € (-1.7)
u(z) =g(x) for x €00 . (-1.8)

(PIBVP) For given functions f : 2% (0,7) = R (here T' > 0), g : 90 % (0,T) - Rand up : @ - R
find u : Q x [0,7) — R such that

% u(z,t) — Au(z,t) = f(x,t) for (z,t) € Q2 x (0,T) (-1.9)
u(z,t) = g(z,t) for (z,t) € 00 x (0,T) (-1.10)
u(z,0) = up(x) for z€Q . (-1.11)

(HIBVP) For given functions f: Q2 x (0,7) = R, ¢g:00x (0,7) - R, wo,u; : @ - R find

u:Qx[0,7) — R such that
2

% u(z,t) — Au(z,t) = f(x,t) (-1.12)
ulag x(0,T) =g; (-1.13)
u(z,0) = up(x) for z€Q ; (-1.14)
0
e u(z,0) = uy(x) . (-1.15)

(f,g) resp. (f,g,uo) resp. (f,g,uo,ur) are called the data of the respective problem.

All three problems are linear problems: if u resp. v are solutions with respect to the data U resp.
V', then au + Bv is a solution with respect to the data aU + 8V, «,8 € R.
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(EBVP) is a typical elliptic problem, while the two others are typical parabolic resp. hyperbolic
problems. The definition of an elliptic problem will be given later. The following example hopefully

explains why we concentrate on elliptic problems.

Example -1.1 (The vibrating string) Consider a string which is fixed at its two end points and after
having been extended vibrates in an (z,y)—plane. At any time ¢ the string may be modelled by the
graph of a real valued function u(-,¢) on Q, the closure of the open intervall @ = (0, L) on the real

line. u(z,t) describes the displacement of the point z at time ¢ in the vertical direction.

Under some idealizing assumptions (small amplitudes e.g.) one is lead to a hyperbolic initial boundary
value problem (HIBVP):

g—;u(x,t)— aa—;u(wat)zo for (z,t) e A x T, I:=(0,00), (-1.16)
uw(0,t) =u(L,t)=0 for tel (-1.17)

u(z,0) = ug(z) for x €Q (-1.18)

% (2,0) =uy(x) for z € . (-1.19)

In order to make the formulation precise we have to say that we wish to find u as an element of
weC*(QUxI) NCOQxT) NnC°OQxI),

which means: u is continuous in Q x I and has continuous partial derivatives in 2 X I up to the second
order, u and its first order partial derivatives can be extended to 2 x I as continuous functions, u can

be extended as a continuous function to  x I.

We first of all look for “standing wave solutions”. These are nontrivial solutions of (—1.16), (—1.17)
of the special form

u(z,t) = wv(z)w(t)

with v € C?(2) N C°(Q), w € C*(I) N C*(I). Insertion into (—1.16) gives for all z € 0, t € I:

v(z) w"(t) —v"(x) w(t) = 0, (-1.20)
and by (—1.17)

v(0) = v(L) =0 (-1.21)
since w is assumed not a vanish identically. Fixing ¢ in such a way that w(t) # 0 and putting o := ’Z;’((tt))
we find for all z €

v'(z) = av(z) . (-1.22)
Together with (—1.21) and remembering v Z 0, we conclude that

ac {—(%)2: neN}, N:={1;23-} (-1.23)
. nw
u € {vp: n €N}, v(z) :=sin(wpz), w,:=— . (-1.24)
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We then obtain that w is of the form
w(t) = Ay cos(wy t) + By, sin(wpyt)

with A,, B, € R, (Apn, By) # (0,0).

Thus standing waves are of the form
u(z,t) = [Ay cos(wnt) + By sin(wpt)] vp(x) . (-1.25)

Problem (—1.16) — (—1.19) may now be solved by the ansatz

u(z,t) =Y [Ay cos(wnt) + By sin(wyt)] v, () (-1.26)

n=1
i.e. a superposition of standing waves. Disregarding any questions about convergence, one expects
that (—1.26) solves (—1.16) and (—1.17). To fulfill (—1.18) and (—1.19) we have to choose A, and
B,, such that

uo(@) = ) A va() (-1.27)

ur(z) = (wn By) vn(x) - (-1.28)

(—1.27), (—1.28) is just a Fourier-series expansion for ug and u; : continue ug,u; as odd functions

into the intervall [—L, L], then the Fourier series does not contain any cosine terms.

One can make this procedure precise if one assumes some regularity of the data ug,u; . By a similar

procedure one may treat the one-dimensional heat equation.

Returning to the problems (—1.12) — (—1.15) resp. (—1.9) — (—1.11) one might ask if they can be
solved by a similar procedure as sketched above. The key result was the existence of the sequences
(—w2),eN and (vp), N (cf. (=1.23), (—=1.24)) of eigenvalues and eigenfunctions such that the

initial data wug,u; resp. could be expanded into a series of the form > a, vy, .

We are hence lead to the question whether there exist sequences (A, ), .y and (vn),, N of numbers

and functions resp. such that for any n :

vp Z0 (-1.29)
Av, = A\, in Q (-1.30)
v, = 0 on 900 . (-1.31)

An and v, are then called an eigenvalue and a corresponding eigenfunction of the Laplace-operator
A under the Dirichlet condition. Having found eigenvalues and eigenfunctions one has to check if

there are enough eigenfunctions to expand any given initial data as a series of the form ) | eN Ann.

As in the theory of Fourier series it is convenient to work in L?(), the space of (equivalence classes

of) square integrable functions on (2 .
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In these lectures we shall consider elliptic boundary value problems as e.g. (—1.7), (—1.8) and
the elliptic eigenvalue problem as e.g. (—1.29), (—1.30), (—1.31). We shall introduce suitable
Hilbert spaces of square integrable functions and generalize the notion of partial derivation for
such functions. It will be shown that the eigenfunctions form a complete orthonormal subset of

L?(€2), which means that expansion theorems are valid.

The solutions will be considered rather as points in a space than as functions on some domain.
This point of view has lead to the development of Functional Analysis, and we shall use some of the
methods of this large field of mathematical research. We shall restrict ourselves on those results of

functional analysis which are effectively needed for the treatment of our boundary value problem.



Chapter 0

Prerequisites

From now on, Q will always denote some domain in Euclidean N-space R, i.e. a connected open

subset of R"Y. Moreover we introduce the following spaces of complex valued functions on :

Ck(Q): (k€ Np:= {0} UN) consists of all continuous functions on  which — in case k > 0 —

have continuous partial derivatives up to the k-th order.

C*(): consists of all functions in C*(Q) which together with its partial derivatives up to order k

can be continued to the closure Q of  as continuous functions.

co@): = () k@)
keN

Ce(N): ={p e C>®(Q): supp ¢ CC N}.

Here

supp ¢ = {z € Q: p(z) # 0} (0.1)
is the support of ¢ and for two subsets A, B C RN we write

ACCB < A iscompactand ACB .

supp ¢ CC ) then means that ¢ vanishes in a neighbourhood of the boundary 0 of @ and —
in case that  is unbounded — for sufficiently large argument. The elements of C§°(2) are called

test-functions and are always assumed to be continued by 0 into the whole of RV.

The elements of

LP(Q), pe€ [1,00), are equivalence classes of (Lebesgue)-measurable functions u, such that |ul” is
integrable on ). Two functions u;,uy are equivalent if u; and wy differ only on a Lebesgue

null-set. The Lebesgue measure in RY will be denoted by s
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L>(Q) consists of all equivalence classes of measurable functions u such that

ess sup |u| :=inf sup |u| < oo .
Q M o\m

Here the inf is to be taken over all Lebesgue null-sets M.

We shall frequently speak somewhat losely about functions in LP(Q2) hereby identifying an equi-
valence class with one of its representants. For example: if we say that an element u € LP(Q)
belongs to C*(2) we mean that the equivalence class u contains a (unique) function in C*(9),
and this function in C*(Q) is meant by u in further calculations. Thus we may in future write

LP(Q) N C*(Q) for example, and mean the space of all functions u in C*(Q) with / lul” dp < 0o
Q

as well as the space of all equivalence classes in LP(f) which contain an element of C*((2).

The following result should be known from the Calculus course:

Lemma 0.1 Forp € [1,00) the space C3° () is dense in LP(RY), i.e. for any u € LP(Q) ande >0
there exists a p € C§°(Q) with supp ¢ CC Q such that

(/Q u— ol dp)i/? < ¢ . 0.2)

The spaces LP(2) , p € [1, 00|, are Banach-spaces when they are equipped with the norms

[ul[ (LP(€)) := (/Q Jul’ dp)'/? (for p < oo)
respectively
(L (9) = ess sup [u]  (for p = o)

A norm is a real valued function on a real or complex linear space X:

[-1]:X = R
with the properties
|z|| >0 forall z € X\ {0} (0.3)
[Az]| = |A] ||z|]] forall z€ X, AeK (0.4)

where K = R or K = C. Particularly: |[0]| =0.
[l +yll < [lell +[lyl for all z,y € X . (0.5)

The last inequality is called the triangle inequality. A linear space in which a norm is defined is cal-
led a normed space. In a normed space X one may consider convergence and Cauchy-convergence:

A sequence (up), N in X converges to some element u € X if

Jim juy —uf| =0 . (0.6)
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We shall write u, — u or more precisely u, = u in this case. A sequence (un), N in X is called

Cauchy convergent if there exists a null-sequence (g,) of positive real numbers such that
VoeN Vmzn [un —unl <en . (0.7)

Convergent sequences are always Cauchy-convergent. However the converse might be wrong. A
normed space X where any Cauchy-convergent sequence is convergent (to some element of X) is

called a complete normed space or a Banach space.

It is assumed that you are familiar with the very basic notions of convergence in a Banach-space.

For example, Lemma 0.1 expresses that C5°(12) is dense in LP(Q2),if 1 <p < o0.

The proof that LP(Q) is a Banach space may be found in many textbooks in analysis, e.g. in [5].
In the special case of LP(Q2), p € (1,00), the triangle inequality is called Minkowski’s inequality
and follows from Hélder’s inequality: If f € LP(Q), g € L9(2) and % + % =1 then fg € L'(Q)
and

p 1/p q 1/q
/Q ol di < ( /Q 1P du)7 ( /Q 19l d)V/7 (0.8)

We shall frequently use a family of operators, called Friedrichs’- mollifiers: With the notation
U(z,r) for an open ball in RY of radius 7 and with centre z we choose some j € C5°(U(0,1)) such
that [ j(z)du(z) =1 and j > 0. For example with some R < 1 and a suited ¢ > 0 one might

choose

i) :={ cexp[l/(jef* — B)] if |z| <R

0 if |z|>R

Fore >0, z € RN put

Then
Jjs € C5°(U(0,¢)) (0.9)
/N je(z)de =1 (0.10)
je>0 in RN (0.11)

hold. The Friedrichs’ mollifiers assign to any f € LP(Q), p € [1,00) a family (j. * f)o<e<s, Of

functions given by

(e * )(@) = /Q Je(@ — ) F(y) du(y) | (0.12)

the convolution of j. with f. Its result j. * f is in C*°(RY) since any differentiation may be

carried out under the integral by Lebesgue’s theorem:

[0 (Je * (@) = /Q (0% jo)(w —y) f(y) duly) - (0.13)
Here o denotes a multi-index o = (v, ..., ay) € N} and
Hlel
0%:=0" - N = 5= lo|l=a++an . (0.14)

- a1 anN
0z - Oy
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|| is called the order of « .

Friedrichs’ mollifier may be used to approximate LP-functions by C'*° functions:

Lemma 0.2 Let p € [1,00), u € L?(Q). Then

o
lim [ = u(L7(2) = 0

Proof: It suffices to consider the case where 2 = R", since any element of LP(Q) may be identified
with an element in LP(R™) by continuation by 0. Hence if the lemma is proven for RV then it is

obtained for Q) by the estimate
e * u — ullo < lje *u — ul| g~

In this proof norms will now be norms in L?(R”Y) Later we will see that the proof follows a scheme
which can be sketched as: “Stability and consistency yields convergence”. In the case of Lemma
0.2 stability means:

Voero®ey Veso i xull < ull - (0.15)
This can be seen with the help of Holders inequality (H) and the Fubini-Tonelli Theorem (F):

p

e ru@ = \/H— v) du(y)
< / Je(@ — )P )] - e (@ — 9)' =P du(y))?

<1 -0 ) ) ([ 5ot - )
= [ i) )l dutw) 1

Now integration with respect to « yields

[l u(@P duto) < //J w()l? duly) du()
2 [ it (2)) |u(y)l” duly)
= /IU(y ,

for [ je(z —y)du(z) =1.

Consistency means here that one can exhibit a dense subset of LP(RY) — namely C§°(RY) ! for

whose elements the assertion of the lemma holds:

Notice that for any continuous function ¢ the value j. * p(z) is equal to some value of ¢ at some
point in the e-neighbourhood U(z,e) of = . Since the elements of C§°(RY) (or CJ(RY)) are

LIf suffices to take Cg(RN) == {u € CO(RM): supp u cC RV} instead
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uniformly continuous functions, j. * ¢ tends to ¢ uniformly, thus in LP(R”) . For the supports of

the functions j. * ¢ are contained in a compact subset K of R for all € < gy — namely

supp (je ¥¢) C U U(z,e0)

TESUpPp ¢
C {zeRN: dist (z,supp ¢) <eo} =K .

Now for any ¢ the application f ~ j. * f is linear. So let u € LP(RY) and § > 0 given. Find
0 € CRYN) (or CY(RN)) such that

[lu =l < /3.
Then
e * u —ul|
< e x (w =)l +[l7e x o = @l + llu = ¢l
< 2fu =l + llje x ¢ = ¢l
For sufficiently small € we have ||j. x o — || < §/3, thus ||j. xu —ul| <. q.e.d.

Friedrichs’ mollifiers can also be used to show that for any Q@ C RY and any compact subset
K CC Q there exists p € C5°(Q) with ¢ =1 in K: Let Q' CC Q such that K CcC Q' let x
denote the characteristic function of ', i.e. x =1 on @', x =0 in RN\ Q' and put ¢ := j. *x.
When ¢ is sufficiently small this ¢ will do.

To formulate the Fundamental Lemma of the Calculus of Variations we introduce for 1 < p < o0,

p
loc

compact subset K CC ).

the space L (Q) of (equivalence classes of) functions u such that |u|” is integrable over any

Evidently for all p € [1, o0]

LP(Q) € LY () C L, (2) (0.16)

holds.

Lemma 0.3 Let u € Li_(Q) and suppose that

loc
/ u-duy =0
Q

for any ¢ € C§°(Q). Then u =0 or — if you rather look at u as a function than as an element

of Lfoc(ﬂ) — u(x) =0 for almost every x € Q).

Proof: We identify u with one of its representatives and have to show that u vanishes a.e. in

some neighbourhood of any point z € 2. Thus let z € Q and R > 0 such that U(z,2R) CC .

For any e < R and z € V :=U(z, R) we have

e *u() = / u(y) je(e — y) duly) =0
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since y — j.(x —y) is in C§°(2). Moreover, putting

u in  U(z,2R)
V=
0 in RN\U(z2R),

v€ L' (RN) and j. xv — v in L'(RN)as € — 0. Notice that j. xv = j. *u in V.

Thus

ll (LX) = =g *ull V) = [lo = je *oll(ZX(V))
< o= g xoll(L*RY) = 0

Whence ||u||(L(V)) = 0 which proves the lemma.

Several times we shall use a method, called partition of unity. By this we mean:

Lemma 0.4 and Definition
Let K denote some compact subset of RN and Uy,..., UL finitely many open sets which cover
K :KcC Ulel U;. Then there exist L functions (; ---(r, € C5°(RYN) such that for alll = 1,...,L

(i) supp ¢ CC U

(ii)) 0<¢ <1

L
(iii) Y G@)=1 for €K .
=1
The family {C1,...,CL} is called a partition of unity? on K subordinate to the covering {Uy,...,UL}.

Proof: We first construct an open covering {Vi,...,Vr} of K with V; CC U; for any I = 1,..., L.
Fix n € {1,..., L} and assume that we have found n — 1 open sets V; CC Uy,...,Vp—1 CC Up—1
such that {V1,...,V,—1,Up,..., UL} covers K. The case n — 1 = 0 is included and in the following
Ule.--:=0if m <k. Now K, := K\ ( l";ll Vi u UzL:n+1 Ul) is compact and contained in U,,.
There exists an open set V;, such that K,, C V,, CC U,. Hence {Vi,...V,,Upy1,...UL} covers K,

and having reached n := L we are done.

Let us define Uy := UzL:1 Vi. For 1 :=0...,L we now chose nonnegative functions ¢, € C5°(RY)

with supports in U; resp., which are equal to 1 in K (for [ = 0) resp. in V; (for I > 0). Then
L
Yi=(1=go)+ > ¢
=1

is a positive C*°—function on R and the functions

G ;:% cl=1,...,L

2Some authors do not require (ii) for the notion of a partition of unity.
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yield a partition of unity on K subordinate to {Uy,...,Ur} . q.e.d.

We conclude this chapter with some remarks on the multiindex notation, defined in (0.14). We
define for z € RV, a e N, g e N}

N
¢ = H zon (0.17)
n=1
f<a = p,<a, foralln=1,...,N (0.18)
f<a<+= fB<aand 8#a«a (0.19)
N
al = ] (e (0.20)
n=1
“ = __ o = ﬂ “n for < a . (0.21)
3 plla-p)t -2 n -

Then in generalization of the binomial we have the polynomial formula

k

(Z a:n) = Y Z—:x“ (0.22)

n=1 <k

For a function u € C™(Q) Taylor’s formula at some point y € Q reads

1 o o . —m
@) = Y S (@ W@) @—y)* + Ray), lmle—y| " Ray)=0. (023

jel<m !
If u € C™T1(Q2) we have for example the representation
1 (o3 (o3
Rew) = Y~ ou@E-y)" (0.24)
|z]|=m+1

where z is some point on the line segment between y and x, provided that this segment belongs
to Q.

If wand v belong to C™(£2), we have Leibniz’ rule:
O w-v) = 3 <a> 8% 9By . (0.25)
Bl s
Moreover we shall use the identity
3> (-l ( “ ) =0 . (0.26)
0<f<a B

(0.22) — (0.26) may be proved by induction on the dimension N .



Chapter 1

The Calculus of Weak Derivatives

The aim of this chapter is to introduce the notion of the weak (or distributional) derivative in L?(Q2)
which is an essential tool for the treatment of elliptic boundary value problems. We study spaces
of “weakly” differentiable functions and give some density results. For a detailed representation
the reader is referred to the book [1] by R. A. Adams.

For u € C*(Q) and ¢ € C§°(?) partial integration (GauB-theorem) yields
| wvedn = = [ G g au
On the other hand: If there exists some u; € Lioc(Q) such that
/ uwdipdp = — / uip dp
holds for all ¢ € C§°(Q) then
/Q (Ou—uw) pdp = 0 Voeor(o)

and whence u; = ;u a.e. in by Lemma 0.3

This motivates the following generalization of the notion of a derivative:

Definition 1.1 Let u € L}OC(Q) and o« € NI a multiindex of order |a| > 0. Suppose that there

exists a uq € L}OC(Q) such that

Voecs (@) /Q ud®p dp (—1)* = /Q o @ dp . (1.1)
Then we say that 0“u exists weakly in L}OC(Q) and we define

0% = wug

14
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(0%u is well defined: if (1.1) holds with u, and some vy instead of uq, then [, (va —uq) @ dp =0
for all o € C3° () and whence vy = uy a.e. in ) by Lemma 0.3)

If it happens that 0%u € LP(Q)) resp. L’l’oc(ﬂ) , D€ [l,00), we say that 0%u exists weakly in
LP(Q) resp. L’l'oc(ﬂ).

In this case we shall simply write
0%u € LP(QY) resp. 0%u € L’l’oc(ﬂ) i

If 0%u exists in LP() resp. L’l’oc(ﬂ) for any a with |a] <m, m € N, then we say that u

has weak derivatives up to order m in LP(QY) resp. L’l'oc(ﬂ).

We shall write O;u instead of 8¢ u where e denotes the i—th unit vector.

An example will be given after we will have stated some properties of the weak derivative

Lemma 1.1

(1) Letu e LiOC(Q) and suppose that for some multiindex 0%u exists weakly in LiOC(Q). Then the
(),

restriction u|q of w onto any subdomain Q' C Q has weak derivative 0% (u|q/) in Lioc

namely the restriction of (0%u) onto ':

% (ula) = (8%u) |

(i) If u € C™(92), then u has weak derivatives in Lfoc(ﬂ) up to order m for any p > 1, and the
ally

weak derivative 0“u coincides a.e. with the classical derivative B (07"~

(iil) Ifu € Llloc(ﬂ) has weak derivative 0“u € Llloc(ﬂ) and if 0%u has weak derivative 0°(0%u)
in Llloc(Q), a,B: multiindices, then u has weak derivative 0°T5u in L} (), and

loc
9athy = 85(8"%) .

We give a proof of (iii) only: Notice that for ¢ € C5°(2) , 9°tFp = 9%0%¢, and 0% € C° ().
Whence

u(9+P = wO*(O° — (=1l 2 8
/Q (0°+%) du / 0%(0°p) du = (~1) /(a ) (8%) dy
= (=18l /65(8“u)<pdu

The second equality is due to the fact that 0%u € Llloc(ﬂ) and the last equality follows from
0°(0%u) € Lj (). The definition of the weak derivative now shows 9**%u € L (Q) and
0°tBy = 85(8%u).
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Example 1.1 Let Q := (—1,1) C R! and u the Heavyside function:

u(z) =

0 fir z<0
1 far z>0 .

Then u € LP(Q) for any p, and from Lemma 1.1 we get: if O, u exists weakly in Llloc(Q) then 1u =0
n (—1,0) U (0,1), whence d1u = 0, since {0} is of measure 0. However, for ¢ € C5°(—1,1)

1
/ uw’du=/ w’(t)dtz—w(O)#—/O-sadu,
(—1,1) 0

provided that ¢(0) # 0 which may certainly happen. We conclude that u does not have weak derivatives
in Lj_ ().

Example 1.2 Let @ =U(0,1) and u(z) = In |z|.

u defines an element in LP(2) for any p € [1,00). According to the previous lemma we must have

O u(z) = —L | (1.2)

|

provided that dyu exists weakly in L ().

In the case of N = 1, the function defined by (1.2) does not represent an element in LI c(Q). Whence

in this case Jru does not exist weakly in Lloc(Q)

For N > 2, the function defined by (1.2) represents an element in L!(2), more precisely an element of
LP(Q) with 1 < p < N. Thus Oru exists weakly in LP(2) , 1 < p < N, provided that

Yoeos (@) / In|z| Ok p(z / e p(z) du(z) .
Now with S(0, R) := {x: |z| = R} and by the GauB’s Theorem:

[ lel p(o) duta)
Q

= lim In|z| O @(x) du(z)
B=0 Jo\U(o,R)

= lim —/ x—k o(z) dp(x) — / InR -2k p(z) do(x)
k=0 o\v©,r) |z 5(0,R) R

- —/ Tk o) du(z)
o o]

since the surface integral may be estimated by

/ o do(x) < (max|p|)uy RN "'InR -0 as R —0.

5(0,R)

Here, wy denotes the surface of the unit sphere in RV .

Remark 1.1 We immediately used the multiindex notation. Thus we did not attempt to define for

example 0;0-u in a different way from 0201w . This is justified by the fact that for ¢ € C§°(Q) :
D102p = D201 and whence [, u 010 dp = [ u D201  dpu .
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We shall however use the notation
() 4 ()
Biaj u = 0° Te u .
Also we shall use

Au = u

We are now in a position to introduce the “Sobolev-spaces”. These are LP-spaces of functions with
weak derivatives up to some order. We will however only consider the case p = 2. This is due to

the fact that we only deal with linear problems.

Definition 1.2 Let m € N. By H™(Q) we denote the space those elements in L*(Q) which have

weak derivatives in L*(Q) up to order m :
H™(Q) == {u € L*(Q): 0% € L*(Q) for |a| < m} .

For u,v € H™(Q), m € N, we introduce

(u, v)0 = (u, v)oq = / wodp, llulle = ((u, u)oq)’? (1.3)
Q
(u, V)ma:= > (0%, 8)a, l[ullng = ({u,u)ne)’? (1.4)
0<|a|<m

We shall sometimes write (u, v)o.q resp. ||ullo,q instead of (u, v)q resp. ||ullq, and when no

confusion can arise, we omit the indication of the domain .

Theorem 1.1 The mapping
(-, Ymeo : H™(Q)xH™Q) — C, (u,v) — (u,v)mao

is a scalar product in H™ (), and with this scalar product H™(Q) is a Hilbert-space.

Remark 1.2 A scalar product on a real or complex vector space X is a mapping of X x X into the

real or complex field K,
[]: XxX — K, (x,¥) — [x,¥]

such that forall z,y,z € X, a,0 €K

[z,2] = [y,2] (1.5)
laz + Bz,y] = alz,y]+ Bz y] (1.6)
[z,2] >0 for z#0 . (1.7)

Notice that (1.5) and (1.6) imply

[z, ay + B2] = @lz,y] + Blz,2] . (1.8)



coAarimiy 1. 108 CALCULUS U WEAK DERIVALLVEDS 15

Also [z, ] must be real by (1.5). Thus a scalar product is a hermitian, positive definte sesquilinear

form on X.

Then
lz]| = [e,2]'/?
|| - || defines a norm in X.

One easily verifies the properties (0.3) and (0.4) of a norm. To show that the triangle inequality (0.5)

holds one needs the Cauchy — Schwarz inequality

Voyex |zl < [l lyll - (1.9)

To prove it one may assume y # 0. Then with

_ =yl
a = —
lylI?
one obtains (1.9) from the inequality
0<[e+ay, e+ay] = |zl +2Re alz,y] +laf* |lyll”
2
||l’||2 _ |[at,y]|

llyll?

Using (1.9) one obtains for z,y € X:

(lzll* +2Re (2, y) + Iyl < (lal® + 2 llell Iyl + 1y
llzll + [yl -

Iz +yll

A linear space with a scalar product is called an inner product space. Such an inner product space is
always considered a normed space with the norm, which is defined by the scalar product. If it happens

that with this norm X is a Banach space, then it is called a Hilbert space.

Finally we mention that the scalar product is continuous, i.e. if ,, = x, y, — y with respect to the

norm in X , then [z, yn] — [z,9] -

Proof of Theorem 1.1:

It is easy to show that (-, -),, defines a scalar product on H™({) . So we concentrate on the
completeness of H™({2). We already mentioned in chapter 1. that L?(2) = H°(2) is a Banach—
space when equipped with the L?-norm. But this norm is exactly the norm which comes from the

scalar product (-, -)o in H°(Q). Thus it remains to consider the case m > 1.

Let (uj), N denote a Cauchy sequence in H™((2). Thus there exists a sequence ¢, of positive
numbers tending to 0 with
1/2

VieN Visk lJur — wllm = Z 103 — 0% |1? <ep.
0<|a[<m
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Now for any a € NYY , |a| <m
0%, — 0%w|| < |luk — wilm

holds. Putting a = 0 we find that (ux),, . is a Cauchy sequence in L?(Q) and whence converges
in L*(Q) to some u € L*(Q). Moreover, for any 0 < |a| <m, (0%us) converges in L?({2) to some
uq € L*(Q).

But then u has weak derivatives in L*(Q2) up to order m , namely 0°u = u,: For any ¢ €
C(@), ae Ny, Jo] <m

/u@o‘(pd,u = (u,0%p)= lim (ug, 0%p)

0 k—o0

(-pll lim (0%, B) = (1) (ua, 7)
k—o00

= (—1)|“|/ua<pd,u.

Thus u € H™(Q) and [|ug — ullm — 0 as k — oo. q.e.d.

Remark 1.3 In order to prove u, = 0%u, one may prove (u, 0%p) = (uq, @) for any p € C§°(2),
since ¢ € C§°(Q), if and only if B € C§°(2).

For functions in H™ () we have the following version of Leibniz’ rule

Theorem 1.2 Let u € H™(Q) and a € C™ () such that a and its derivation up to order m are
bounded. Then au € H™(Q), and for any multiindezr o, |a| <m :

o) = Y (“) (°Fa)(8%u) . (1.10)

Bl g

Proof: Notice that the right hand side of (1.10) belongs to L?() since 9 #a is bounded and
0%u € L*(Q) for any |a| < m, B < a. Whence we have to prove the equality

(au, 0%p) = (=1l ( . ) 0 %ad"u), ) (1.11)

BLa B

for any p € C§°(Q2) and |a| < m.

We proceed by induction on m and start the induction with the trivial case m = 0 where (1.11)

reduces to (au, ) = (au, ).

Thus assume now that (1.11) holds for functions in H™ (Q) resp. C™ (Q) and any |a| < m/
provided that m' <m, m > 1. Let u € H™(R), a € C™ and |a| = m . Then for p € C§°(2) and
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by (0.25)
(au, 0%) = (u,ad%)
= (u,aa(mp))—zwa ( j >(u, 0¥ @97 p)
. o - (1.12)
= (u,aa(agp)—Z,Ka (7 (0“7 a)u, 7 p)

(u, 0%@p)) — 3 <4 ( j > (=) (07 (0% a)u), ¢ .

This last equality follows from the induction hypothesis by which one may even write

(0 T u) = ( ; ) 820 ad%u . (1.13)

By

The function ap has compact support in Q and is of class C™(2). Using mollifiers we see that
there exists a sequence @, € C§°(12), such that ¢,, and its derivatives up to order m tend to ay

and its derivatives uniformly with respect to x .

Whence

(u, 0%@@p)) = limpoo (u, 0%y) = (=1l lim, o (0%, @, ) (1.14)
= (F)el(ou,ap) = (-1 (ad%u, ¢) . '
We insert (1.13) and (1.14) into (1.12) and then interchange the order of summation. This yields

(au, 0%p) (1.15)

(- ) (ad%u, p) Z Z ( ) (ﬁ ) (—1)'7‘(80‘*5aaﬁu,4p>

7<a B<y

(-1l (ad%u, p) = Y ( > ( ¢ > ( i > (—1)”) (09 Ba 8%, p)
B<a \B<v<a \ 7 g

To calculate the sum in the parenthesis we write v := 3 + ¢ and obtain

= ()G )

_ aly! i
= 2 SaogaopaY

B<y<a

= (-1)” ﬁ'—ﬁ)' 3 (a;ﬁ> (—1)le!

oc<a—0

= (” (g) [(ZB (“;5> <—1>'”') —(—1)”]
= —(-pk (g) :




coArirtmn 1. 10k CALOCULUS U WEAK DERIVALLVEDS zl
the last equality following by (0.26). Insertion into (1.15) yields

(au, 0%) = (=) | (ad%u, o)+ (;)(5"_%8%,@)

B<a

= (DY 0 Pad’u), v) .

Bl

q.e.d.

We introduce a subspace of H™():
H(Q) :={u € H™(Q): supp v is bounded.} (1.16)

There are two remarks to be made in connection with the definition of H;™(2). At first, the notion
of the support is not yet defined for elements u € L?(2). Notice that (0.1) does not yield a correct
definition since it is not clear which representant of u should be chosen. On the other hand for
smooth functions ¢ , defined on Q, a point z € R does not belong to the support of ¢ if
and only if either = does not belong to Q or there exists an open neighbourhood U of z, such
that ¢ vanishes in U N Q). This can be carried over to define the support of a measurable function

u : 0 = C: We define the complement of supp u by
Q\ supp u := {z € Q: u = 0 almost everywhere in QN U(z, p) for some p > 0} (1.17)

and then put
supp u := Q0 \ (2 \ supp u) . (1.18)

Thus — and this is the second remark —
H*(Q) = H™ ()

if ©Q is bounded.

Therefore the following Corollary to the Leibniz’ rule is nontrivial only for unbounded domains 2 :
Corollary 1.1 H[*(12) is dense in H™ ().

Sketch of the proof: Let u € H™(2). One has to show that a sequence (un), N exists with
u, € H*(Q) for all n and

nlgr;o [lw — up|lma = 0 . (1.19)

For ¢ € C§°(U(0,2)) with ¢ =1 in U(0, 1) we put
1
pn(x) :z(p(ﬁm), neN, zeRN .

Then with the help of Lebesgue’s theorem and Leibniz’ rule one obtains (1.19) for u, := ¢@pu .

Using Corollary 1.1 one obtains
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Theorem 1.3 C°(RY) is dense in H™(RY).

Proof: Let u € H™(RY) and § > 0 be given. One has to show the existence of some ¢ € C§°(RY)

such that
llu=ll,, Ry < 9 .
Corollary 1.1 guarantees the existence of some v € H{"(R") with
[|lu — U”m,RN < §/2
Then for any € > 0,
Je xV = U

belongs to C§°(RY). Moreover for |a] <m

0% vo(z) = / 0y je(r —y) v(y) du(y)

- (—1)W't/'a;jscn—-y)v<y)du<y>
t/jxw—y)ﬁ”mwduw)-

(1.20)

(1.21)

The last equality is due to the facts that for any fixed x the function j.(z — ) belongs to C§°(RN)

and that 0%v exists weakly.

Formula (1.21) may be expressed in the form

0% = aa(js*v) = js*(aav) .

Now by Lemma 0.2 for ¢ — 0
lje % (0%v) — 0%l gn — O .
This combined with (1.22) yields
loe =oll,, Rv — 0
as € — 0. Thus for sufficiently small € > 0 we have
lve = oll,, jw < 6/2

and the assertion follows by (1.20).

In particular the proof of Theorem 1.3 shows:

(1.22)

Lemma 1.2 If u € H™(R"Y) has compact support then j. xu € C;°(RYN) and tends to u in

H™RN) as e > 0.
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The proof of the following density result is due to N. Meyers and J. Serrin [3]:
Theorem 1.4 H™ () N C*(N) is dense in H™ ().

Proof: We introduce a special partition of unity on 2. Notice however, that (2 is not compact
so that Lemma 0.4 does not hold. With

Q= {z € Q: dist (x, 0Q) > 1 , x| < E}
n n
we have for some sufficiently small n > 0 and for all n € N

O £ 0

2, CcC Q1 CC Q

Uﬂnzﬂ

neN

Moreover let Qg :=Q_; :=0.
Define

K, = ﬁn\anl ) Ly = Qn+1 \Qn72 .
Then any K, is compact and each = € {2 belongs to at least one of the sets K,,. Moreover x has

a neighbourhood U, which has nonempty intersections with at most three of the sets Z,,.

Let now 1, € C§°(Z,) such that

Then we may define
o0
P(x) = Z Yn(x) forany z € Q .
n=1

Notice that in U, (defined as above) at most three terms in the sum do not vanish. Thus ¢ €

C* (). Moreover ¢ > 0in 2, since x belongs to at least one K, .

Then

(o = % € C3(2y)

and

> Gulz) = 1

4

for any = € Q0. The family (¢,),, .y is the “partition of unity” which we wanted to construct.
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For u € H™(Q) let
Up = Guu€e H™(Q).
Notice that
supp u, CC Z, CC Q.

For given € > 0 we may find a sequence (g,),,.N With

. . €
en>0, Jo, xun € C5°(Zn), |lje, * tn — Unllma < o

Then

ue(z) == Z (Jen * un) ()

n=1

defines a function in C*°(Q2), and

o0 o ]
llu = te|lm,0 < Z lJen * un — unllm,a <e Z 27" =¢€.
n=1 n=1

This proves the density of C*(Q) N H™(Q) in H™(Q). q.e.d.

Until now nothing is assumed about the domain 2. If one assumes some regularity about () then
one can prove that even
C'@) = {ela: v € CF(RM)} (1.23)

is dense in H™ (). For this the segment property is sufficient:

Definition 1.3 A domain Q C RY is said to have the segment property iff for any 7€ 90 there
exist a neighbourhood V  of % and a non-zero vector y € RN, such that for any x € QN U the
open line segment

(z, z+y) = {x+ty: t € (0, 1)} (1.24)

is contained in (.

Notice that points in 9Q do not belong to 2!

Another assumption on {2 is the assumption of smoothness:

Definition 1.4 A domain Q C R is said to be of class C™ , m € N, iff for any z € 0S) there
exist a neighbourhood V of z and a C™- Diffeomorphism ® of V' onto the unit ball U(0,1) :=
U C RY with the following properties:

VN =U":={xeU: zy >0} (1.25)

VNI =U°:={xe€U: zxy =0} . (1.26)
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Then
QV\Q =U_:={zeU: oy <0} . (1.27)

Moreover it is assumed that the components of ® and of its inverse ® 1 have bounded derivatives

up to order m.

One may prove that the boundary of a domain of class C"™ (resp. with segment property) may

locally be written as the graph of a C™-function (resp. a C°-function) of (N — 1) variables.

Moreover, if ) is of class C™ then there exists a vector field v on Q with components in C™ ()
such that for any z € 02, v(z) is normal to 9Q at z , has norm 1, and “points into exterior of
0, ie. z+tv(z) € Q for sufficiently small positive ¢. On 992, these three conditions define v(z)

uniquely, and v |sq is called “the outward unit normal field on 9Q”.

It is then not difficult to show that any domain of class C™ , m € N, has the segment property:
In the Definition 1.3 choose y as some negative multiple of V(aAc) In the book by J. Wloka [6] the

various conditions on the domains are discussed very carefully.

Theorem 1.5 C§°(Q) is dense in H™(Y) if Q has the segment property.

For the proof we use the following lemma which should be known from the Calculus course

Lemma 1.3 For f € LP(RN), p€ [1,00), and z € RN let f. be given by
f-(x) = flz—2) for almost all z € RN .

Then f. tends to fin LP(RYN) when z tendsto 0 in RN .

Proof of Theorem 1.5: By Corollary 1.1 and Theorem 1.4 it suffices to show that for any
u € H™(Q) N C>(Q) with bounded support and any € > 0 one may find some ¢ € C§°(RY)
satisfying

lu—¢llma < € . (1.28)
Let U(0, R) denote a ball containing the support of w. For any z € 90N K(0, R) the segment

property guarantees the existence of some neighbourhood V. and some non-zero vector y. € RN
such that

vwevzﬂﬁ (:I;, T + yz) C Q

From the collection of the V, choose finitely many neighbourhoods V; := V.1, -+ Vg = V .k,
say, which cover the compact set 02N K(0,R). y',...,y denote the corresponding non-zero

vectors, y* := y.x. Put Vy := Q and choose a partition (o, (1, ...,(x of unity on Q N K (0, R)
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subordinate to the covering Vp,...,Vk of QN K(0,R). Since (ou € C§°(12), (1.28) will follow if
for any k =1,..., K one can find ¢ € C§°(R”) such that

ICku = @llma < /K . (1.29)
Thus we fix a k € {1,..., K} and write ¢ :=(,, V :=Vi, y:=y®, and (with a € NY)

y U =

{Cu invVNQ {6“1} inVNQ
vi=

0 elsewhere 0 elsewhere

For 0 < h < 1 we introduce vy and v, 5 by
vp(z) :=v(@+hy), van:=va(z+hy),
i.e. we translate v and v, by the vector —hy . Then v, € C°(RN \ T'},), where:
Ly :=(0QNsupp ¢) —hy ={z: =+ hy € 00 Nsupp (},

and 0%y, = v, 5, in RY \ T'j. Notice that by the segment property I'y C RV \ Q.

Then with up, := v, |q and with the help of Lemma 1.3 we obtain as h tends to 0:

lun — Cullg = llun —CullBo + 3 110%un — 0% (Cu)?
1<|al<m
< on—vlga+ > lvan—valZiga = 0.
1<|a|<m

Whence with sufficiently small A > 0 the function ¢ in (1.29) may be chosen as

¥ = XhnUn

where xp, € C§°(RN \ Ty) is such that y, = 1 in QN U(0,R): For then p € C°(RY) and
pla= U . q.e.d.

The Sobolev spaces H™ () are the candidates where the solutions to problems like (—1.7), (—1.8)
should be located. But these spaces contain classes of functions which equal to each other outside
of sets of measure zero. However, the boundary of a domain usually is a set of measure zero. So,
what does it mean for an element of H™(Q2) to satisfy (—1.8), i.e. to attain certain values on 927

The following theorem gives an answer to this question in the case of m = 1:

Theorem 1.6 Let ) denote a bounded domain of class C%. Then there exists a unique continuous
linear operator o — the trace operator — mapping from H*(Q) into L*(92) such that Yo = ¢ |sa
for any ¢ € C5°(Q).

Remark 1.4 If X and Y are two Banach spaces' over the same field K := R or K := C then a

linear operator T' from X to Y by definition is a linear mapping from a linear subspace D(T') of X

LOne also could assume X and Y to be normed linear spaces only. However in our applications we only have
to consider Banach spaces, and there are some results on linear operators which do not hold if X or Y are not

complete.
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— the “domain of 7" — into Y . We express this by the following notation:
T:DIT)cX =Y, (1.30)

which means that 7' is a linear operator from X to Y with domain D(T).

Since X and whence D(T') and Y are normed it is clear what it means that T is continuous: if
() C D(T) tends to any x € D(T) (with respect to the norm in X), then this implies that Tz,

tends to T'x with respect to the norm of Y.

For a linear operator T': D(T') C X — Y the following properties are equivalent

(i) T is continuous at some point z € D(T), i.e. z, = « implies Tz, = Tz (if z, € D(T)).
(ii) T is continuous.

(iii) sup{||Tz|y: z € D(T), ||z|lx =1} < oo .

Here || - ||x resp. || - ||y are the norms in X resp. Y.

Because of (iii) “continuous linear operators” usually also are called “bounded linear operators”. Due

to linearity condition (iii) may equivalently be expressed by
(iv) There exists ¢ > 0 such that ||Tz||y < ¢ ||z||x for all z € D(T).

The smallest possible constant cin (iv) is just the supremum appearing in (iii), and is called “the norm
of T":
ITlx,y = sup{[|T'z[|y: = € D(T), [lzllx =1} . (1.31)

In the sequel we leave the subscripts X and Y when no confusion may arrise.

We are now in the strange position that we have defined a “norm” without having defined a space in
which this “norm” is a norm. So let us introduce some agreements: Whenever we talk about linear

operators we will tacitly assume that
D(T) is dense in X |, (1.32)

unless not stated otherwise.

If then
T:D(T)CX =Y

is a bounded linear operator then there exists a unique bounded linear operator T from X to Y with
domain D(T) = X and such that Tz = Tz for z € D(T): If z € X\ D(T), then a sequence (Tn)eN
exists in D(T') tending to x (with respect to the norm in X). By (iv) we find for n € N, m < n:

Tzn — Tap|l = |T(zn — zm)ll < cllon —zml|| < cen (1.33)
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with some sequence €, — 0, since (x,) is a Cauchy sequence. Whence (T'z,) is a Cauchy sequence,
and since Y is a Banach space, it converges to some y € Y. It is now easy to see that y does not
depend on the choice of the special sequence (z,,), that necessarily Tz must be equal to y, and that

this definition in fact leads to a bounded linear operator 7' with the asserted properties.

We may now tacitly assume that continuous linear operators are defined on the whole space X unless

explicitly stated otherwise, and accordingly write T : X — Y instead of (1.30).

Now for two bounded linear operators 1,75 from X to Y and numbers a, 8 € K we may define the

linear combination
aly+6T, : X — Y, z — a(liz)+ B(Trz)

yielding another bounded linear operator. Thus the set B(X,Y") of bounded linear operators from X
to Y can be considered a linear space, and in fact (1.31) defines a norm in this space, i.e. B(X,Y)

is a normed linear space.

Accordingly we also have the notion of convergence resp. Cauchy-convergence of a sequence of bounded
linear operators (77,). Notice that if a sequence of bounded operators is Cauchy-convergent with respect
to the norm in B(X,Y) then because of

Vee X, nmeN |Tuz—Tuall = (T - T)zll < T, — Tl (1.34)

the sequence (T),x) is Cauchy convergent in Y . But Y is a Banach space, whence T,z converges to

somey €Y.

It may then be shown that

T: X — Y, ¢z v+— lim Ty

n—o0

defines a continuous linear operator and that 7;, actually tends to 7" in B(X,Y). Thus B(X,Y) is a

Banach-space.

The preceding consideration suggests that exept from the convergence of (T3,) in B(X,Y") one might
also consider another notion of convergence of linear operators: it may happen that for any z € X
the sequence T,z converges in Y to some T'z. In this case the sequence T, is said to converge
strongly to T . Convergence in B(X,Y) is also called uniform convergence, and clearly a uniformly
convergent sequence of linear operators is strongly convergent. However the conversion is wrong: there

exist strongly convergent sequences of operators which do not converge uniformly.

For example, let ¢ denote a function in CO(RY) with ¢(0) =1, lim, , ¥(z) =0. Let forn € N
the function v,, be defined by

Yal@) =0(7) , weRY.
Then

T, : L)(RN) — L*RY), f — ¢nf
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defines a sequence of bounded linear operators. With the help of Lebesgue’s Theorem we conclude that
for any f € L*(RY)

_ 2
Sl Vo = 2 = 0

as n — oco. Thus T, converges to the identity I strongly. However T;, does not converge uniformly to
I: Choose some f € C§°(RY) with ||f|lo = 1. For any given n one may find a translate f,, of f,
given by f,(z) = f(z + mhe') . 7 € R. say, such that the support of f,, is contained in the subset
Q, C RYN, where |1,| is less than 1/2. Then

T =112 > 1 Tnfn— ful2 = / L=l [ful? du
RN

3 2 3
> 2 =2
> 3 [0 du=]

Using the Fourier transform and the above argument one can show that the sequence
Jn LZ(RN) — LZ(RN) , [ ]l/n * f

of mollifiers converges strongly but not unifornmly to the identity.

Remark 1.5 In Theorem 1.6 the space L?(9)) appears. For the reader who is not familiar with
Lebesgue spaces on manifolds, embedded into R”Y, we just recall the definition, taylored to fit our
situation. From Definition 1.4 and since 02 is compact, it may be covered by finitely many open
neighbourhoods V1, ..., Vi, and we have corresponding C"™-Diffeomorphisms &), ... &) — k)
mapping Vj, onto U(0,1) =: U with the properties (1.25) - (1.27). Now

¥E D :={yeR L |y <1} > RN

v (y) = (@) ((y,0))

is a parametrization of 9QNV;. We call a function f : 9Q — C measurable resp. integrable iff fo ¥(¥)
is mearsurable resp. integrable for any k € {1,..., K}. Letting (Ct)k=1,..,x denote a partition of unity
on 02 subordinate to Vi, ..., Vi, the integral of an integrable f is defined by

K
|t > [ 16h o ¥ w) T ) dux )
where pun_1 is the Lebesgue measure in RV~! and
L(T® () = (det(3;¥% - ;8 W); 52y nvo1)?
a - b denoting the scalar product in RV
It can be shown that the notions of measurebility, integrability and the value of the integral do not

depend on the special choice of the covering V1, ..., Vi, the Diffeomorphisms ®1) ... &) and the

partition of unity so that these notions are well defined.
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In particular, a subset M of 91 is a null-set with respect to the surface measure o (a o—null-set)
iff (TF)~1(M) is a null-set in RN~ (with respect to px_1) for all k. Then L?(9Q) consists of all
equivalence-classes of complex valued measurable functions f on 92, for which |f|2 is integrable on
0. Of course two functions fi, fo are equivalent iff f; and f, differ from each other nowhere but

on a o—null-set. With the scalar product

(f;g>89:: fgdo—
oN

L?(09) becomes a Hilbert space.

Of course any continuous function on 9f is integrable, and the reader should remember GauB3” Theorem:
/ anudu:/ vpudo , n=1,...,N (1.35)
Q a0

holds for any u € C1(Q), if Q is of class C' and bounded, v,, denoting the n-th component of the

outward unit normal field on 9.

We are now ready to prove Theorem 1.6:

Proof of Theorem 1.6: All which we have to show is that the restriction of a function ¢ € C§°(Q2)
to the boundary 02, which is a linear operator from H'(Q) into L*(99) with domain C§°(f2), in
fact is a bounded linear operator. Thus we have to prove the existence of a constant ¢ > 0 such
that

el = [ 1o do < clivlig
o0
holds for any ¢ € C§°(Q).

Let v denote a C'-extension into Q of the outward unit normal on 9.
Then by (1.35)

lellze =

/ vn(vn o) do
o0

/ On(vn ) dp
Q

N
n=1
N
n=1

N
_ /Q [(Z B0 vn) lol? + v 2Re (Bn) | di

n=1

IN

cllelia

where ¢ depends on bounds for the v, and its derivative. Now according to Remark 1.4 for
u € HY(Q), you is the limit in L?(0Q) of ¢, |ag where ¢,, € C5°(Q) is such that |Ju — @,|1 — 0 .
q.e.d.

We call Theorem 1.6 the weak trace theorem. The attribute ‘weak’ is due to the fact that Theorem
1.6 does not characterize the range of the trace operator vp. Indeed, this is not the whole of L?(92)
but a dense subspace, called H/?(99).
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As a corollary we obtain the rule of partial integration:

Corollary 1.2 If Q is a bounded domain of class C? and vy denotes the trace operator, then for
all u,v € H*(Q), n=1,...,N

(Onu,v)oo = —(u, 0nv)oa + (Yanyou, Yv)oq -

Proof:

For u,v € C§°(Q) the above formula is just (1.35) applied to u@ instead of u . For u,v €
HY(Q) let (uy),(v,) denote sequences in C§°(Q) which tend to w resp. v in H'(Q2). Then
(Onur), (Vi), (ur), (Onvr), (Your) and (yovg) tend to O,u, v, u, Oyv, You and v respectively in
L?(2) resp. L?(0%). The assertion follows by the continuity of the scalar products in L?(f2) resp.
L?(09). q.e.d.

Remark 1.6 For a linear operator
T:D(T)cX—-Y , X,Y Banach spaces
the kernel of T is denoted by N (T'):
NT):={zx e X: Tz =0} .

N(T) is always a linear subspace of X . It need not necessarily be a closed subspace, since z,, — x in
X and Tz, = 0 need neither imply & € D(T') nor T = 0. However if T € B(X,Y) then N(T) is a

closed subspace of X .

We now want to characterize the kernel of the trace operator:

Theorem 1.7 Let 2 denote a bounded domain of class C? and o denote the trace operator. Then

u € N(vo) if and only if there exists a sequence (@) in C§°(Q) such that

lu—@nlli — 0 . (1.36)

Proof: Since yo(¢n) = ¢nlaa= 0 for ¢, € Cg°(12), (1.36) implies that u belongs to N ().

Oun the other hand, let u € N(vy). We let v denote the continuation of u by 0 into the whole
of RN. Then v € L?(R”) and we claim that v € H*(RY). Indeed, for any ¢ € C5°(RY) we have
by Corollary 1.2 for any u € {1,...,N}:

(v, 6n‘P)o,]E{N =(u, an‘P)O,Q = — (Onu, ‘P>0,Q :

In the last equation we used you = 0. Thus the continuation by 0 of 0,u is the weak derivative

of v.
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We now introduce the finite covering Vi,..., Vi of dQ and the vectors y*,...,y% € RV \ {0}
guaranteed by the segment property and the compactness of 9Q2. With Vy := Q let (o,..., K
denote a partition of unity on Q subordinate to the covering Vp, ..., Vx of Q It suffices to show
that (yv, k € {0,..., K}, can be approximated in H!(RY), by C§°(Q)-functions. This is clear for
Cov: Since supp ((ov) CC 2 we have j. * ((ov) € C§°(Q) if ¢ is sufficiently small and by Lemma
1.2 j. * (¢ov) tends to {pv in H™() as e — 0.

Thus let k € {1,..., K}, let us omit the index %k from now on, and put ¢ := (v . For any h > 0

the translate ¢y, given by

on(x) = b(a — hy)

belongs to H'(R"): By coordinate transformation one obtains for all ¢ € C§°(RY) with p_j(z) :=
(e + hy):

/ OpOnpdp = / 0O0pp—_p dp = — / OnDp_p, dp
R~ Q Q
= - U du
/RN (On0)n @ dpn

where (0,,0);, denotes the translate of 9,4. Thus ¥, € H'(RY), 8,0, = (0,9)n. It follows that
¥y, tends to o in H'(RY) as h — 0. On the other hand, by the segment property,

supp 0, CC Q2 ifh<1.

Thus, given € > 0, fix 1 > h > 0 such that |05 — 9||, Ry < €/2. Then for sufficiently small
6 >0, js xvp € C5°(R) and ||js * 0n — Up||g~ < €/2. An application of the triangle inequality

concludes the proof. q.e.d.

If X is a Banach space and Z is some (linear) subspace of X , the closure Z of Z in X, i..
Z.=7" = {2 € X: ||zp — z|]|x — 0 for some sequence (z,) in Z} ,

is a closed linear subspace. Forgetting about X , Z itself is a Banach space or even a Hilbert
space if X is a Hilbert space. Therefore the space (m € N)

Hy(Q) = Cr@" (137)

i.e. the closure of the linear subspace C§°(£2) in H™((), is a closed linear subspace of H™({2),
and may be also considered a Hilbert space itself with (-, -),, as a scalar product. Evidently,
au € HF'(Q) if a € C(Q) and u € H™(Q) orif a € C5°(Q) and u € HJ(Q).
What we just proved can now be expressed as

N(n) = Hy(Q) , (1.38)

provided that € and - are as in Theorem 1.7. We take (1.38) as a motivation to define

Definition 1.5 Let Q denote any domain in RN. An element u € H* () is said to vanish at the
boundary O, iff u € HE(Q).
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We conclude this chapter by a discription of the behavior of H™ () under diffeomorphisms

Definition 1.6 Let m € N. By a regular C™-diffeomorphism of some domain Q C RN onto some

domain Q* C RN we mean an injective mapping
3:0— RN

with image ®(Q) = Q* | the components of which have bounded and continuous partial derivatives
0% ®,, up to order m . Moreover the determinants of the Jacobian’s ®'(x) = (01 ®,...,0n®)(x)

of ® must be bounded away from O, independent of x:

Jes0 Veeq |det @ '(m)| >c.

If ® is a regular C™-diffeomorphism of Q onto Q* then its inverse ®~' is a regular C™-
diffeomorphism of 2* onto 2. With @ a pullback operator ®* is associated which maps the linear
space C™(2*) onto C™(Q2) by

o . CTM(QY) — C™(Y), u — uod (1.39)

i.e. ®*u is just the composition of u with ®. One may show by induction on the order |a| of «:
Let Ay denote the number of multiindices of order less or equal to k. Then for all multiindices
a,B with 1 < |B] < |a] < m there exist polynomials p, g in N - Aj,| variables such that for all
u € C™(Q¥)

%wo®) = > pas ({0°®u}i<igi<ianicncn) (07u) 0 @ (1.40)

1<|BI<] e

This shows that in fact ®* maps C™(Q2*) into C™(Q2). This mapping is bijective. Its inverse is
(®1)* , the pullback of ®1. Finally ®* is linear.

From (1.40) we obtain for w € C™(2) N H™(Q)

10°@o B = fo [Sici pastiO™ @O0 o 8] di

= fQ

b S @ ow @ @

< cllull o

with some constant ¢ depending on the bounds for the derivatives of ® and on the lower bound
for |det @ | .
(1.41) implies that

O*: CT(O)YNH™(QY) C H™M(QY) - H™(Q)

is a continuous linear operator from H™(Q2*) into H™(2) and whence can be continued to the
whole of H™(2) as a continuous linear operator. If @ denotes a representant of some element
in H™(Q*), then 4 o ® is a representant of ®*u € H™((Q).

Altogether we have proved:
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Theorem 1.8 Let m € N and ® denote a reqular C™ -diffeomorphism of the domain Q0 onto the
domain Q* . Then

o . H™(QY) — H™(Q), u — uo®

defines a bounded linear operator from H™(Q*) into H™(Q2). This operator is bijective and its

mnverse operator s
(@ H* . H™Q) — H™(Q), v — vod™ ' |

whence (®*)~! is a bounded linear operator, too.

Remark 1.7 If T : D(T) C X — Y is an injective linear operator from the Banach space X into

the Banach space Y then the inverse mapping
T7': RT):=T(DT)CY — X, Tz — =

is a linear operator from Y to X with domain R(T'), which need not be dense in Y . T~! is called
the inverse of T'. Notice that a linear operator T' is injective iff N(T') = {0}, i.e. & =0 is the only

solution of the equation Tz =0 .

A fundamental theorem of functional Analysis, the “Bounded Inverse Theorem" states, that the inverse
of an injective bounded linear operator T': X — Y is itself bounded, provided that the range R(T) of

T is closed. For the proof of Theorem 1.8, however, the “Bounded Inverse Theorem” was not needed.



Chapter 2

Solutions of the Dirichlet problem

From now on we will consider boundary value problems of the type

N N

Lu = Z anmanamu+2 bp,Opu+cu=f inQ (2.1)
n,m=1 n=1

ulpo = g . (2.2)

Here anpm, , by, ¢, f and g denote (given) measurable complex valued functions on some domain
Q Cc RV and on 99 respectively. f and g are the data of the problem, a,., , b, , and
c¢(n,m=1,...,N) are called the coefficients of the differential expression L. Such a differential
expression may be considered as a linear mapping of C?((2) into the space of measurable functions
on §: The value of Lu at the point x is the specific linear combination > anm () 0,0, u(z) +

> bp(z) O u(z) + c(z) u(x) of u and its derivatives up to the second order in x.

When in Linear Algebra systems Az = b of linear equations are discussed, one first of all thinks
of A as a fixed given matrix and is interested in the dependence of the solutions x on the right
hand side b. You may compare the differential expression with such a matrix and the data f,g
with the right hand side.

It is crucial to be very precise about the notion of a solution of (2.1) and (2.2). In order to define
the various notions, it is important to make several assumptions on the coefficients and on the

data: otherwise certain notions cannot be written down.

We start with the definition of a classical solution:

Definition 2.1 Suppose that the coefficients any, , by, ¢ belong to C°(Q), and let the data f resp.
g belong to C°(Q) resp. C°(09Q). By a classical solution of (2.1), (2.2) we mean some function
u € C?(Q)NC°(Q) for which (2.1) and (2.2) hold.

35
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In the notion of a classical solution the derivatives 0,0,,u, O,u are (classical) partial derivatives

as they had been defined in the Calculus course.

We might as well assume that the solutions belong to some Sobolev space and the most natural
assumption is to assume them in H2(£2). But then some difficulties arrise concerning the equation
(2.2): Tt is obvious that the trace operator (c.f. Theorem 1.6) might be used to express (2.2). But
we did not characterize the image of H*(2) under vy. In fact, for solutions in H2(f2) one would
have to characterize the image of H?({) under 7o as well, but one might express this within an
existence theorem. To avoid this difficulty one replaces in (2.2) g by the trace of some known

function from H'(2), again denoted by ¢ :

You = Yog - (2.3)

In order to write down (2.3) one has to assume that  is a bounded domain of class C?. This

can be avoided by the diction from Definition 1.5.

Definition 2.2 Suppose that the coefficients anpy, , b, , ¢ belong to L= (), and let f resp. g
belong to L2(2) resp. H*(Y). By a strong solution of the problem

Lu=f, wulso=gloc (2.4)

we mean an element u € H2(Q) for which (2.1) holds and u — g vanishes at the boundary 05 .

Thus the boundary condition is expressed by
u—ge HYQ) | (2.5)
and in (2.1) the derivatives must be interpreted as the weak derivatives of u .

Strong solutions have the disadvantage that because of (2.5) one can expect their existence only if

g € H%(Q), and even then one needs additional assumptions on the smoothness of the coefficients
and of the boundary 052 .

The proof of an existence theorem is the easier the less properties of a solution one has to prove.
Suppose therefore that u is a strong solution of the problem ‘Lu = f, u |sg= ¢ |sq’ for some
feL?Q), ge H(Q). Now ‘Lu = f’ is equivalent with

(Lu,p) = (f, ) (2.6)

for all p € C§°(92) by Lemma 0.3.

If apy € CHQ) for n,m = 1,..., N and if an,, and its derivatives are bounded then any of the

functions @, 0, u belong to H'(2) by Leibniz’ rule. Then

/ G OnOm U - P dps (2.7)
Q



coAarifty 2. SULULIUNS OF 1O DikiCoiil FRODLEVVE ol

= / On(ApmOm u)p d,u—/ (OnGnm)Om u - @ du
Q Q
= —/(anmam u) - (Onp) du—/(@nanm)anuadu )
Q Q

The second equality follows (by partial integration) from the definition of the weak derivatives of

Apm Om u . Plugging (2.7) into the left hand side of (2.6) this formula may be written as

N N
B(U#P) = Z <anmanua an‘p>_ Z(amamua 90> —<CU,, 90> = _<.f7 90>7 (28)

where we have put
N

U = b — > (Onnm) - (2.9)

n=1
Thus for a strong solution u the identity (2.8) must hold for all ¢ € C§°(Q2). Equation (2.8) can

be used to define a notion of a solution without talking about its second derivatives:

Definition 2.3 Suppose that the coefficients a,,, belong to C1(Q). Assume further that a,y,, its
derivatives, b, and c¢ are bounded (n,m = 1,...,N), and that the data f,g belong to L*(Q)
and H'(Q) respectively. By a variational solution of the problem (2.4) we mean an element u of
H(Q) for which u— g vanishes at the boundary, and (2.8) holds for any ¢ € C§°(Q). B is called
a Dirichlet form for L.

An approximation argument yields:

Lemma 2.1 Under the assumptions of Definition 2.3 the validity of (2.8) for all ¢ € C§(Y) is
equivalent with the validity of (2.8) for all p € H} ().

Let Ly, Ly denote two differential expressions

N N
Li= Y a9, 0:0m+> badutec,
n,m=1 n=1

such that Ly = Loy for any ¢ € C°°(£2). This means that we must have a%ln)z +a7(%21 = a% +a$§21.

The notion of a variational solution seems to depend on whether one deals with L, or with L.
However, this is not true: According to (2.8) we formally have two different forms By resp. Bs for
Ly resp. Ly . But for any ¢ € C*°(Q) and ¢ € C§° () we have

Bj(i/},(p) = _<Lj¢7 90>

Thus By (v, ¢) = B2y, ) for all ¢ € C>*(2) and ¢ € C§°(2). A density argument then yields
Bi(u, ) = Ba(u,p) for all u € H () and ¢ € C§° ().

One can try to weaken the notion of a variational solution: if a,,, € C*(Q), b, € C*(Q) then in

(2.8) another partial integration can be arried out which yields

(u, L) = (f., ) (2.10)
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with
N N
Ly := Z Anm 8n8m<p+z b On p + c'p (2.11)
n,m=1 n=1
N
by, = ( Z Om(apm + amn)) — bn (2.12)
m=1
N N
¢ = =Y Ombut+ D> OnOmanm - (2.13)
m=1 n,m=1

L~ is called the formal adjoint of L , and we introduce:

Definition 2.4 u € L%OC(Q) is called a weak solution of Lu = f, if (2.10) holds for all p € C3°(12).
Here the coefficients of L are assumed to satisfy anm, € C*(Q), b, € C*(Q), ¢ € L*oc(), and

L* is given by (2.11), (2.12), (2.13).

For our boundary value problem the notion of a weak solution will not be advantageous: In order
to express the boundary condition we have to assume a possible solution to belong to H(2). But
then the partial integration which led from (2.8) to (2.10) can be reversed and we end up with a

variational solution.

The name ‘variational solution’ is due to the fact that in certain cases such a solution can be
characterized as the minimizer of some function from a subset of H!(Q) into R . Such functions
are called functionals. For example in the case of the Laplace operator, i.e. amp = dmn, bp = c =0,
the problem to find a variational solution for the data f € L*(Q), g € H'(Q) is equivalent with
the problem:

(DP) Find the minimizer u € H*(2) of the functional

N
Dy : H'(Q) — R, v — > (0w, 0w)+2Re(f,v) (2.14)

m=1

among all elements v of H!(2) for which v — g € H ().

To see this, assume first that u is a variational solution, then for any v € H!(Q) with v—g € Hg():

N
D¢(v) = Z(8nu+8n(v—u),6nu+6n(v—u))+2Re(f,u+(v—u)>

> Dy(u) .

For the second term is nonnegative and the third term vanishes by Lemma 2.1 because v — u =
(v—g) = (u—yg) € Hy().
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On the other hand assume that u minimizes Dy among all v € H'(Q) for which v — g € H} ().
Choose any ¢ € C5°(Q). Then for any z :=re? € C, 6 € [0,27), r > 0:

0 < Dy(u+tzp)—Dy(u)

N N
= (Y (Onp, 0np))-r +2rRe[e ™ (D (Oau, dup) +(f, )] -

We now fix € such that the expression in the brackets is real, but not positive. However any
polynomial in r of the form Ar? + Br with A,B € R, B < 0 < A attains negative values for

some positive 7. Whence

N

> (Ouu, Oup) + (fr0) =0 .

n=1

@ was an arbitrary test-function. Therefore wu is a variational solution.

(DP) is called ‘Dirichlet’s principle’. This name was introduced by B. Riemann (1826 - 1866)
who — as a student — learnt to know it for f = 0 in Dirichlet’s lectures. In those days, of
course, the space H!()) was not yet known and classically differentiable functions were used
instead. Nevertheless it was commonly accepted to use it in an existence proof for the Dirichlet
problem ‘Au = 0 in Q, u|so= g’: In this case the Dirichlet functional is nonnegative and the
mathematicians did not hesitate to conclude that it must have a minimum. However Weierstrass
pointed out that in this conclusion the notions of a minimum and an infimum were interchanged.
It lasted until 1900 that Hilbert was able to use Dirichlet’s principle for an existence proof (under
suitable restrictions). His techniques were extented by R. Courant and his pupils to the direct

methods of the Calculus of Variations.

After what was said above it is easy to guess that our first aim is to look for variational solutions.
We will then show that for g € H?(Q) and smooth boundary 92 these variational solutions in fact
are strong solutions. For still smoother f, g and 012 they will even be classical solutions. Theorems

of this kind are called “regularity theorems”.

There is a crucial necessary condition for the existence proofs for the Dirichlet problem: the

differential operator L must be elliptic. The ellipticity allows to estimate ZN

nm=1{ @nmOnv , Opv )

from below by Zgzl |0, v]|* (times some constant). There are several notions of ellipticity. For
our approach we have to use a condition which in the literature is called strong, uniform ellipticity.

Since we will not deal with any other concept of ellipticity we will not use these two adjectives.

Definition 2.5 A differential expression L = Eﬁmzl Anm OnOm + by O, + ¢ in some domain )
is called (uniformly strongly) elliptic in Q iff there exists a constant E > 0 such that for all z € Q

and all £ € RN
N

Re Y amn()emén > EIE° . (2.15)

m,n=1

The largest constant E which fits into (2.15) is called the ellipticity constant (of L in ).
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The condition says that any eigenvalue of the matrices A(z) with entries 1 Re (anm (@) + ann(z))

is not less than E . Whence the surfaces

N

S(z) = {¢ € RM: Re Z G (2)m&n = 1}

m,n=1

are ellipsoids and lie within the circle of radius 1/E.

The notions of hyperbolicity and parabolicity are also defined in terms of the eigenvalues of the
matrix A(z): One speaks of hyperbolicity at some =z if A(z) has as well positive as negative
eigenvalues but not the eigenvalue 0. Parabolicity means that all eigenvalues are nonnegative but

at least one is 0. However we shall not need these notions and so we kept them vague.



Chapter 3

Some Functional Analysis in
Hilbert Space

In this chapter we introduce some facts on Hilbert spaces which are needed for the solution of the

Dirichlet problem in the so called strongly coercive case. This is the case, in which

N N
S (anmduv, dnv) + 3 (@adv, 0) + (v, 0)| > eiloll? (3.1)
n,m=1 n=1

holds for all v € H} () with some constant c¢; > 0, independent of v .

For this purpose we shall need the Riesz—representation theorem, the approximation theorem, the
projection theorem and the Lax—Milgram theorem. To formulate the Riesz—representation theorem

we need

Definition 3.1 Let X be a Banach space over the field K = C or K = R. A linear functional

F on X is a linear operator from X into K:
F:D(F)cX —» K .

D(F) does not need to be dense or closed. However if we speak of a continuous linear functional
we will assume that D(F) = X, unless stated otherwise. The space B(X,K) of continuous linear
functionals on X is denoted by X' and is called the dual space of X . If F is a linear functional
and K=C, then F : D(F)CX — C, z + F(x) is called an antilinear functional. F is

continuous if and only if F is continuous.

For example for any fixed u € H'(Q) the mapping

F : H}{(QY) — C

3.2
v — Eimzl(anmanu,amv>+EnN:1(ananu,v)—f—(cu,v) (3.2)

41
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is a continuous antilinear functional on Hg () if anm , an , ¢ € L®(Q).

The representation theorem by F. Riesz (1880-1956) states that any linear functional on a Hilbert

space can be written as the scalar product with a fixed vector:

Theorem 3.1 If H is a Hilbert space then for any linear functional F : H — K there ezists a

unique vector v € H such that

Fez={(xz,v) (3.3)
for all x € H. Moreover,
loll = [IF] -
Here (-, -) resp. || -|| denote scalar product and norm in H . The norm in H' = B(H,K) is

denoted by || - || as well.

Proof: The proof is carried out in a way which shows the relationship with variational problems.

Let
®: H— R,  — |z]|? —2Re F(x) . (3.4)

Then @ is bounded from below:
B(z) > [l«]|* = 2)|1F| l|z]| > min (£* - 2|F|) t) = —[|F|]* .
teR

We prove that ® attains its minimum at some v € H and that with this v the representation
(3.3) is valid.
We make use of the parallelogram equality

lo+wll* +[lv —wll* = 2lvl]* + 2[jw]|? (3.5)
which is valid for all v,w € H , as is proved by direct calculation. In fact the validity of (3.5) for
all elements v,w from a normed space V characterizes V' as an inner product space.
Since @ is bounded from below it has an infimum , 4 € R say. There exists a sequence (v,,) in
H such that ®(v,) tends to p. Assume that ¢ > 0 is given and m,n € N are so large that

D(vy) <p+e/d, Doy <pt+e/d .

Then

2[|onl” + 2[|vml* = [lon + vl ®
1
20 (vy,) + 2®(vy) — 4 ||§(vn +om)||> —2Re F(

v, _Um“2

(Un + Um)) ]

N =

1
< 4u+a—4<1>(§(vn+vm))§5 .

since ®(y) > p for any y € H .
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Thus (v,) is a Cauchy sequence in H , and by the completeness of H , has a limit v € H. Since

® is continuous we conclude ®(v) = lim ®(v,) =, whence v is a minimizer of @ .
n—o0

Let now x € H be arbitrary and z :=re? € C, r >0, 6 € [0,27). (In case K = R we choose
0=0 or §=nm).

Then (c.f. the reasoning below the introduction of Dirichlet’s principle):
0< ®(v+z2x) —dw) =7 ||z)|> + 2r Ree™™ (2, v) — F(z)) . (3.6)

Choose 6 such that
Re (¢ ((z,v) - F(z))) = [(z,v) - F(z)| .

If (x,v) — F(x) # 0 then there exists r > 0 such that the right side of (3.6) is less than 0. Since

x was arbitrary we have just shown that for all z € H

(z,v) = F(z) .

By the Cauchy Schwarz inequality then
|| < lvf] [J=]]
whence ||F|| < ||v]| . On the other hand with x := v :
[olI* = (v, v) = F(o) < [IF]| o] -

Thus ||F|| > ||v|| and we conclude ||F|| = ||v]| .

If there is a second element w € H such that for all v € H

then
lo—wl? = (v—w,v) = (v—w, w) = v —w) - Flo—w) =0,

i.e. v =w . This proves the representation theorem. q.e.d.

Corollary 3.1 Let Q denote any domain in RY | f € L*>(Q) and g € H*(Q). Then there exists

a unique variational solution v of ‘Au—u=f, ulsg = gloa

Proof: We have to show that there exists a unique u € H'(Q) with u — g € H}(Q) and

N
(Onu, Onp) + (u, ) = =(f, ) (3.7)

n=1
for all p € H} (). Putting u — g =: v this is equivalent with the unique existence of v € H}(Q)
such that for all p € Hg ()

(v, 001 = —(f, ) — (g, - (3.8)
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Instead of (3.8) we might as well write

(p o)1 = —(p, f) = (e, 91 - (3.9)

But
F H&(Q) — C; p _<<p7f> _<907g>1

is a continuous linear functional on H{(2): Linearity is clear, continuity follows by the estimate

[F@@) < (e, HI+I1{e, ghl (3.10)
< A1 lsell -+ Nlgll llselly
< A+ gl Tl

since ||| < [|¢|l1 - By the Riesz representation theorem there exists a unique v € Hg(£2) such that

<<p,’l)>1 = F(QD)

for all p € H}(Q). q.e.d.

Remark 3.1 We use the notations from the proof above. Notice, that by (3.10)

ol = [IFI < [IFI] + llgll

hence with u = v + g:
Jully < vl + gl < 111+ 21lgll - (3.11)

The Cartesian product of two Hilbert spaces H, H is a Hilbert space H x H itself, if one introduces

the scalar product
((&,2), 0,0 gxir = (T, 0) g +(2,9)g -

The data (f, g) of the Dirichletproblem are elements of the Cartesian product L%(Q) x H*(£2) and we

may define
G : L*(Q)x H'(Q) — H'(Q), (f,9) — u

where u is the variational solution of ‘Au+u = f, ulsa= g|sa'. G is a linear operator as is easily
checked. (3.11) implies that G is continuous since the right hand side may be estimated further by
512 (IF1I> + llgll3)*/2, which is 5'/2 times the norm of (f,g) in L*(Q) x H*(Q).

We now use the representation theorem for a proof of the approximation theorem:

Theorem 3.2 Let H be a Hilbert space and M some closed subspace of H . For any x € H

there exists a unique v € M such that
r—v|| = d = min ||z — . 3.12

This v is characterized by
(x—v,y) = 0 forallye M . (3.13)
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Proof: If v € M satisfies (3.13), then for any y € M:

le =yl =lle—v+@=pI* = llz—vl>+2Re(z—v,v—y)+[v-yl

= e —olP +llv-yl” .

The last equality follows from (3.13) and the fact that v —y € M . From the equation above we
see that |[|v — y|| will be larger than d unless y = v. This means that if v satisfies (3.13) it is the

unique minimizer of (3.12).

Thus we have to prove the existence of some v for which (3.13) or equivalently
(y,v) = (y,z) (3.14)
holds for all y € M. But
F: M —- K, y+— (y,z)

is a continuous linear functional on M and by Theorem 3.1 one may find v € M such that (3.14)
holds for all y € M. Notice, that we used here that a closed subspace of a Hilbert space can be

considered a Hilbert space itself. q.e.d.

Theorem 3.2 was proved with the help of Theorem 3.1 One may as well do this the other way

round.

From the approximation theorem we obtain the projection theorem. For this we introduce some

notations. For some subset S of a Hilbert space H let
St:={yeH: (y,s)=0 forallse S} .

S+ is called the orthogonal complement of S (in H ) and it is easy to see that S+ is always a
closed linear subspace of H . Moreover, if S is a subspace of H then its orthogonal complement

is the same as that of its closure:
st = (S)*+.

The projection theorem now reads

Theorem 3.3 Let M denote a closed subspace of the Hilbert space H . Then for any x € H there

exist a unique y € M and a unique z € M=+ such that
r =y+z.
Moreover, Pythagoras’ theorem
2> = llyll* + [lz]?

is valid.
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Proof: For any « € H we can find some y € M such that
le—yll = min [lz—m| .

Putting z :=  — y we find z € M+ by (3.13), and whence the existence of y € M , z € M+ with

x =y + z is proved.

Pythagoras’ theorem is a direct consequence of the orthogonality of y and z:
ly + 2l = llyll* + ll2” + 2Re (y, 2) = llyll* + ll=]* .

Now assume that there is a second pair yinM , Z € M with z = g+%. Theny—ge M, z—32€ M+
and (y — §) + (¢ + 2) = 0. Consequently by Pythagoras’ theorem ||y — 4[| + ||z — 2||> = 0, i.e.

y =y and z = Z. This shows that the decomposition of x is unique. q.e.d.

As a corollary we note

Corollary 3.2 For any subspace M of a Hilbert space H

(MYt = M .

Proof: Of course M C (M+)* and since orthogonal complements are closed, M C (M*)*. Since
(M)t = M~ ,any z € (M1+)1 can be written as

r =y+z, thus O0=z2+(y—ux)

where y € M and z € M*. Sincey—2 € (M) we have by Pythagoras’ theorem ||z||?+||ly—=||* =
0 which implies z=0and z =y € M . q.e.d.

Theorem 3.3 can be written in the form
H = MaM* (3.15)

for any closed subspace M of a Hilbert space H. (3.15) should be read: H is the direct sum of
M and M*.

If My, and M, are subspaces of H , one defines
My+ My = {y+z: ye My, z€ My} .
The notation M; @& M, means M; + M> and additionally expresses that M; N M = {0}. Thus
My+ My, = My M, & MyNM, = {0} .

The sum M; + M, always is a subspace of H .
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If My + M, is direct, then the representation y + z of any x € M; + M- is unique.

Moreover if 1 = y1 + 21, 2 = Y2 + 22, Y1,Y2 € My, 21,22 € My then for any «, 5 € K:
azy +fx2 = (ayr + PBy2) + (az1 + Bz2)

and ay; + By € My, az + Bz € My . Thus, if H is a direct sum of two subspaces M; and M,

then there exist two linear operators
pP,P: H — H
such that
Ply+z) =y, Py+z) =z

forany y € M;, z € My . P, and P, are called projections of H onto M; resp. M> along M
resp. M;. Of course,

P, = I —P;, 1I: theidentity, (3.16)
P1P1:P1, P2P2:P2 and (317)
PP o= 0. (3.18)

In the case of My := M, M, := M~ these projections are called orthogonal projections onto M
resp. onto M~ . Denoting the orthogonal projection onto M by P and putting Q := I — P, we
find by Pythagoras theorem:

1Pzl* + lQz|)* = |||

Therefore
1P|l < lzfl , [|Qz]] < |zl (3.19)

for all z € H which implies that P and () are bounded linear operators H into H and
Pl =1lel =1,

provided that neither M nor M< are the whole of H. Of course (3.19) only implies || P||, ||Q|| < 1.
However if M resp. M* contain a nonzero element y then Py =y resp. Qy =y which implies
that | P[| > 1 resp. Q[ > 1.

Example 3.1 Let 2 denote some domain in RY. H}(Q) can be considered as a closed linear

subspace of H'(2). Thus by the projection theorem
HY(Q) = Hy() @ (Hy ()"

and there exist orthogonal projections P,Q of H'(Q) onto H}(Q) resp. (H}(Q)):. The space
(HE(2))* consists of those u € H'(Q) for which

(u,v); = 0 forall ve Hj(Q)
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holds. This is nothing but

N
D (Ont, ) + (u, @) = 0 forallpe Hy(Q).
n=1

Thus (HE(Q))1 is the space of all variational solutions of the Dirichlet problems ‘Au—u =0, u|so=
glaq’, when g varies over all of H!(f2), and the orthogonal projection () assigns to any g € H(Q)

the variational solution of the Dirichlet problem above.

To handle more general Dirichlet problems we need a slight modification of the Riesz representation

theorem, the Lax—Milgram theorem. For this we need

Definition 3.2 A sesquilinear form on a Hilbert space H over the field K, K=R or K=C,

1S @ mapping
B:HxH — K

such that for all w,v,w € H, o, € K

B(au + fv,w)
B(u,av + pw)

a B(u,w) + 8 B(v,w)
@ B(u,v) + 3 B(u,w)

hold. B is called “bounded” if with some ¢ > 0:
|B(u,v)| < cllull [lv]| (3.20)

holds for all u,v € H .

As with linear operators, the bounded sesquilinear forms are exactly the continuous sesquilinear

forms.

Theorem 3.4 (P.D. Laz, A.N. Milgram, 195}) Let B denote a bounded sesquilinear form on a
Hilbert space K. Suppose that there exists some c; > 0 such that for any v € H

1B(u,u)] > e flull® - (3.21)

Then for any continuous linear functional F on H there exist a unique v € H and a unique
v € H such that for all w € H
B(w,v) = F(w) (3.22)

B(u,w) = F(w) . (3.23)

Proof:

If B is a bounded sesquilinear form, which satisfies (3.21), then the same is true for B, given by

B: HxH — K, (u,v) — B(v,u) .
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Therefore it suffices to prove the existence of a unique v, such that (3.22) is valid for all w € H.

For any g € H the mapping
B(,g9) : H — K, w — B(w,g) (3.24)
is a linear functional which is continuous since
|B(w, g)| < cllwll[lg]] = ¢ [[wl| (3.25)

holds for all w € H with ¢, := c||g||, ¢ the constant from Definition 3.2. Hence by the Riesz

representation theorem, there exists a unique § € H such that for all w € H
Blw,g) = (w,3) . (3.26)
Thus we may define an operator 7' : H — H by this procedure
T: H— H, g — g,

where § is given by the validity of (3.26) for all w € H. T can easily be seen to be a linear
operator. For example, if § = T'g then for allw € H B(w,ag) =aB(w,g9) =a({w, §) =(w, ag),
ie. T(ag) =aTyg.

T is a continuous operator: Putting w := T'g in (3.26) we find from (3.20)

ITgll> =(Tg, Tg)=B(Tg, g) <c|Tyllllgll
by which ||Tg|| < ¢ |g]| follows.
Suppose now that 7! exists and is defined on whole H . Then if F is a linear functional, we

find o € H such that (w, 0) = F(w) for all w € H. Hence with v := T~1 ¢ we get B(w,v) =
(w, 0) = F(w).

It remains to show that 7T~! exists, is defined on whole H , and that the v obtained above is

unique. By (3.21) and the definition of 7' we obtain for any g € H

ct lgll* < 1B(g,9)l = (g, Tg)| < llgll 1Tl ,

thus
et llgll < NITgll - (3.27)

This estimate shows

(i) T is injective: For ||T'g|| = 0 implies ||g]| = 0.
(ii) R(T) is closed.

(iii) 7' : R(T) C H — H is continuous.
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To see (ii) let (T'zy,) tend to some y € H. Then
lon —amll < — [[Ton —Topl -
Ct
Since (T'x;) is a Cauchy sequence so is (z,,), and there exists © € H with
lim =z, = =z

n—oo

But then Tz = lim Tz, =y, ie. y € R(T).

n—o0

To see (iii) let y € R(T), g =T~ 'y . Then

_ 1 1
1774l = llgll < —IITgll = — llyll -
Cq Ct

Thus 7! is bounded and defined on the closed subspace R(T') of H .

To see that R(T) = H it suffices to show R(T)* = {0} by Corollary 3.2. Let z € R(T)*, i.e.
(2, Tg) =0 forall ge H .
Then especially (z, Tz) = 0, and we get from the definition of 7' and by (3.21):
0= (2, T2)| = B2 > e 2P

thus z =0.

It remains to show the uniqueness of v. Assume that vy,vs € H are such that B(w,v;) = F(w)
for all w € H and i € {1,2}. Then

0 = F(U2 —’1}1) —F(UQ —’1}1) = B(U2 — U1, U2) —B(U2 — U1, ’1}1)

B(U2 — VU1, U2 —’1}1) .

By (3.21) then v = vy follows. q.e.d.



Chapter 4

Solution of Strongly Coercive
Dirichlet Problems

To find a variational solution of the Dirichlet problem
Lu = f, wulse = gloe

we may use the Lax—Milgram lemma in special cases.

We shall from now on assume! that & C RY is some domain and

N N
L(z,0) = Z Anm OnOm + Z b0, + c
n,m=1 n=1

where
Apm = QAmp € Cl (Q)
nm ak Anm bn: c € LOO(Q) )
and L is elliptic, i.e. there exist some F > 0 such that forall z € Q, ¢ € RN

N

Re Y anm(®) &b > B [

n,m=1

Moreover we fix a Dirichet form for L, namely

N N
B(u,v) := Z (@nmOmu, Opv) + Z amOmu, v) + (au, v) ,
n,m=1 m=1

where
N
:(Z Onlnm) —bm , a:i= —c .
n=1

L After Corollary 4.1 we shall introduce another assumption

51

(4.1)

(4.5)
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These notations and conditions will be always assumed, and will not be repeated if not necessary.

Notice that (4.5) and (4.3) imply

N N
Re > awm(@) 6l > B =ECY 16l (4.7)
n,m=1 n=1

forallz € Q, ( € CN.

For the following lemma we introduce the notation

1/2
|u|m = |U’|m7Q = Z ||6au||0,9 (48)
|a]=m
for w € H™(Q).
Lemma 4.1 Let N
B = ess sup (Y lam(@))"/? (4.9)
zeQ m=1
o = ess in?2 (Re a(z)) = —ess sup(Re c¢(z)) . (4.10)
TE
Then for all u € H*(Q)
Re B(u,u) > E [uf{ = Bul, [lullo + allull - (4.11)

Moreover there exists a constant v > 0 such that for u,v € H*(Q)

|B(u, )] < 7 lully ol - (4.12)

From Lemma 4.1 one concludes that for certain differential expressions L the Dirichlet form B
satisfies
Re B(u,u) > e |full (4.13)

with some ¢y > 0 for all u € H' ().

However, we only need with some ¢4 > 0
1B(e, @) > crllellf forall € C5o(Q) - (4.14)
If (4.13) or (4.14) hold for all ¢ € C§°(2) then it also holds for all u € H}(Q) since (4.12) implies

the continuity of B .

Hence for the sesquilinear form B — restricted to Hg (£2) — the assumptions of the Lax—Milgram

theorem hold, and we can use it to prove the unique existence of a solution of the Dirichlet problem:

Theorem 4.1 Assume that the coefficients of L are such that the Dirichlet form

B:H'(Q) x H'(Q?) — C
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satisfies (4.14) for all p € C§(Q). Then for any f € L*(Q) and g € H' () there exists a unique
variational solution u € H'(Q) of the Dirichlet problem (4.1)

= finQ, wulsa= glsa

Proof: u solves (4.1) if and only if (u—g) =: @ € H}(Q) and B(u,v) = —(f, v) forallv € H (1),

the latter being equivalent with
B(i,v) = —(f,v)—B(g,v) forall ve Hi(Q) . (4.15)

Now

F - H&(Q) — C: v [—(f,v)—B(g,v)]
is a continuous linear functional in H}(Q): Linearity is clear, and to prove continuity we estimate

[Ev] < [ fllo flvflo + llgll lolle < ([fflo + llgll) llvlh

for all v € H}(Q).
By the Lax-Milgram theorem there exists a unique @ such that B(@,v) = F(v) for all v € H}(Q)

which is (4.15). q-e.d.

From Lemma 4.1 we see that the conditions of Theorem 4.1 are satisfied if for example 8 = 0 and

a>0,ie. if

N
= § On Gnm
n=1

and if Re ¢ is bounded from above by a negative constant.

Notice however that (4.14) needs to be satisfied for ¢ € C§°(£2) only. So we may play around with

partial integrations. For example, for ¢ € C§° ()

N N
1
Re B(p,¢) = Y, Re (aumdnp, Omp) +5 ) Re (andup, @)
n,m=1 n=1
N
——ZRe (any, Onp) +Re (a= Z@ango )
n=1

If therefore the coefficients a,, are real valued C'*(2)-functions then the second and the third term
cancel each other, and (4.13) will hold if

1N
ess 1nf ~ 3 (Onan)) . (4.16)
n=1
From Lemma 4.1 we also get for any € > 0:
; 1 1
Re B(u,u) > Elulj - 3 ef Jul; — 2B [Jullg + e [lull3 (4.17)

1 .
(B~ 5 6) i + (@~ 1) lully
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Hence, if 82 < 4aE one may find € > 0 such that both E — % ef as well as a — % are positive,
and (4.14) holds.

Definition 4.1 A sesquilinear form B on a closed subspace V of H'(Y) is called coercive over

V' if there exist constants ¢ > 0 and ¢c_ > 0 such that for allv eV
Re B(v,v) > ci ol — - [lollf - (4.18)

B is called strongly coercive over V if there exists cy > 0 such that
Re B(v,v) > ey |vfl} (4.19)

holds for all v eV .

Thus the essential condition (4.14) for Theorem 4.1 is satisfied if B 1is strongly coercive over
H}(Q). Notice however that strong coerciveness is sufficient but not necessary for (4.14). Lemma
4.1 together with the calculation which led to (4.17) shows that the Dirichlet form B is coercive
on H'(Q) and whence on H} ().

If B is coercive on some closed subspace V of H'(Q), and if ¢y , ¢ denote the constants,

appearing in (4.18), then for any A > c¢_ — ¢y the form B,, given by
By(u,v) := B(u,v) + A (u, v)o0 (4.20)

is strongly coercive. This is the reason why one rather deals with Re B than with |B|. With

respect to our differential expression L this means:

Corollary 4.1 For any A € C let Ly denote the differential expression

N N
La(2,0) = > apm(®)0n0m + D bm(z)0m + (c(z) = A) . (4.21)

There exists Ao € R such that for any X\ with Re X\ > X\g and any f € L*(2) ,
g € HY(Q) the Dirichlet problem “Lyu = f in Q, uloo= gloa” has a unique variational solution.

Proof: Choose A\p such that B,, is strongly coercive ! q.e.d.

Up to now we are not yet able to solve the Dirichlet problem for the Laplace operator L = A. In
fact the Dirichlet form for A is not strongly coercive for certain unbounded domains, including
the whole space. For a counterexample in (2 := R”" choose some nonzero ¢ € C§°(R") and, with
n € N, define
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Then
; 2 _ 2
leals = 2™ llolls,  lenly = 272 Jol} (4.22)

The Dirichlet form for A is given by B(u,v) := > (9pu, Opv) such that Re B(u,u) = B(u,u) =
|u|f Inserting ¢, for V in (4.19) would yield

e 2 :
n 7 ely > e n® lells

with some ¢4 > 0. But this is impossible since ||p||3 # 0.

In bounded domains, however, we can do better. This is due to the Poincaré estimate:

Lemma 4.2 Suppose that the domain Q lies between two parallel hyperplanes of distance d. Then
for all v € HY(Q)
llollo < d Jvf, - (4.23)

Remark 4.1 Estimate (4.23) may be sharpened to [[¢llo < £ |¢], .

Proof of Lemma 4.2: Without loss of generality we may assume that  lies between the planes
{z:21 =0} and {z: 21 =d}, ie.

O0<z <d

holds for any z € 2. Moreover, it suffices to prove (4.23) for each ¢ € C§°(2). Notice that we
assumed elements of C§°(f2) to be defined in the whole of RY, namely by ¢ = 0 outside of
and that they are in C*°(RY) then.

An integration yields for z € Q

‘P($)2¢($1,$2,--.,x1\7)=/ Op(t,xe,...,oN) dt
0

From this we obtain

d d
|so<w>|2s</ 1-|51<ﬂ(t,9:2,---,w1v)ldt)2Sd/ Oup(t, o, an) P dt .
0 0

The last estimate follows by the Cauchy Schwarz inequality.

Integrating this inequality with respect to z2,...,zN we obtain

/ (e, 22, on) [ d(@as .. zn) < d ol
N-—1

Another integration with respect to z; from 0 to d yields the desired estimate. q.e.d.

With Poincaré’s estimate we obtain unique solvability for L = A, too:
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Theorem 4.2 Let Q denote a domain in RN which lies between two parallel hyperplanes of
distance d > 0, i.e. for each * € Q and some y € R, £ € RN, €] =1,

y< € < y+d

holds. Assume that the coefficients of L satisfy 8 = 0 and a > —d 2E, where o, and E
are given by (4.9), (4.10) and (4.5) respectively. Then the Dirichlet form is strongly coercive over
Hy ().

Proof: For all v € H} () and with ¢ = E7'd?a + 1 > 0 Lemma 4.1 yields

Re Bu,v) > F |off +allol}
= B (Pl —a 21 —e/2) ol + d 2 =/2|[0]]3)

E (Jof} = (1=/2) lol} +d 2 e/2|0li)

v

Ee
> 2d
(4.19) follows. q.e.d.

the last estimate following from Poincaré’s inequality. Thus with ¢; = min{ % } inequality

Remark 4.2 Differential expressions with 3 = 0 satisfy

N
by, = Z OnQnm -
n=1

They are usually written in the form

and are said to be in ‘divergence form’.



Chapter 5

The Fredholm Alternative

If Az = y denotes a system of linear equations in R we know from Linear Algebra that the

following alternative is true:

o Either the system Az =y is uniquely solvable for all y € RY.

e Orthe homogeneous system Az = 0 has nontrivial solutions. In this case the adjoint problem!
A*z = 0 has nontrivial solutions, too, and the dimensions of the kernels of A and A* are
equal (and finite). The problem Ax = y can be solved if and only if y is orthogonal to any

vector in the kernel of A* .

This alternative can be reformulated as (5.1), (5.2):
dim N(A) = dim N(A4") < c0 (5.1)

R(A) = N(A")*L . (5.2)

Here N(A) and R(A) denote the kernel and the range of A respectively. Also we did distinguish
the matrix A from the linear operator which is described by A with respect to the standard basis

in RN.

In the case of infinite dimension the above alternative is usually wrong. The aim of this section is
to exhibit a class of linear operators A for which it still holds. The above alternative carries the
name of the Norwegian mathematician I. Fredholm (1866 - 1927) who was the first to obtain such

a result for an infinitely dimensional problem.

We will restrict ourselves to the case of operators in a Hilbert space H which makes some notions

and results easier. At first we have to define the notion of the adjoint of a linear operator. Here

LA* is the adjoint matrix of matrix A.

57
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we restrict ourselves to the case of a bounded operator A : Hy — H> , where Hq, H> are Hilbert
spaces with scalar products (-, -); resp. (-, -)2. These should not be confused with the scalar

products in some Sobolev spaces. In the sequel Hy, Ho, H3, H always denote Hilbert spaces over
the same field K, K=R or K= C.

Theorem 5.1 (and Definition) Let A € B(H,, Hs) (defined on whole Hy). Then there exists a
unique linear operator A* € B(Hy, Hy) (defined on whole Hy) such that

(Au,v)y = (u, Ao ) (5.3)

for alluw € Hy , v € Hy . This operator A* is called the adjoint of A .

Proof: For any v € Hy the mapping
F,: H — K, u +—— (Au,v)
is a continuous linear functional on H;. The continuity follows from the estimate
|Foul < [|Aullz [[o]lz < IA] el lvll2

whence
Il < [IA]f [lo]] (5.4)

By the Riesz representation theorem (Theorem 3.1) there exists a unique f € H; such that for all

UEHl
(AU,U> = F,u = (U,f) :

Thus necessarily A*v := f, and it remains to prove that A* is linear and continuous.

For the linearity let w = avy + vy, vi,v2 € Ho, «, 3 € K. Then for any u € H;

Fou=(Au, av; + Bvs) =a (Au,v1 )+ B (Au, vs) =aF, + B F,, .
Hence for all u € H;

(u, aA*v) + BA v ) =@ (u, A% v ) + B {u, A*vs) = Fyu .
On the other hand by the definition of A*
Fou = (u, A"w) =(u, A*(av, + fuv2))
for all w € Hy . Since the representation of F}, is unique we conclude
a A%y + B A%ve = A% (avy + Bus) .

For the continuity notice that by Theorem 3.1 and by (5.4)

[A™[lr = [IF[] < [[All o]
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from which the continuity of A* and moreover
145 < [14] (5.5)

follow. q.e.d.

We did not yet consider the composition of two linear operators A € B(H;, Hs), B € B(H», H3).

This yields a linear operator
BA H1 — HQ, u B(AU,)

which is continuous and for which
IBA|l < [IB]l[]Al (5.6)

holds. If A is onto and has a bounded inverse A~! then A='A = I, and AA~! = I, where I, I,
denote the identities in H; resp. Hs . Of course I, A = AI; = A and we have distributive laws

B(aA; + f42) = a(BAy) + 3(BA) (5.7)

for A, Ay, A, € B(H,,H,), B,B,,Bs € B(H»,Hs3) and a,3 € C. Because of (5.7) and (5.8) one
usually omits the parenthesis on the right hand side of (5.7), (5.8).

We may now gather some properties of the adjoints:

Lemma 5.1 Let A, Ay, Ay € B(Hy,H>), B € B(H>,H3) and «,8 € K. Then the following

assertions hold

(i) A* = (A*)* =4
(i) (A; + BAL)* = aA} + BAS

(iii) (BA)* = A*B*

(iv) I* =1 if I denotes the identity in H

(v) (A7) = (4) "

Assertion (v) is meant in the sense that whenever one of these two inverses exists and is defined

on the whole space then so does the other and equation (v) holds.

Remark 5.1 Assertion (i) and (5.5) imply ||A|| = ||A*|| for any A € B(Hy, H).
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Proof of Lemma 5.1: We only prove the fifth assertion, using (i), (ii) and (iv). If A=! exists
and is defined on the whole of Hy then

I} =17 = (A7TA)* = A*(A™H*

L=1I; = (AA™Y)* = (A71)*4ar .

The first equation implies that A* is surjective, and the second equation yields that A* is injective.

Whence (A*)~! exists and is defined on the whole of H;. Then either of the two equations yields
(Afl)* _ (A*)fl .

On the other hand, if (A*)~! exists and is defined on the whole of H; , then the above argument
shows that (A**)~! exists. But this is A~* by (i). q.e.d.

There is a fundamental relation between the range of A and the kernel of its adjoint:

Theorem 5.2 For A € B(Hy, H»)
R(A)T = N(4")

holds for the range R(A) := {Ax: x € H1} and the kernel N(A*) = {y € Hy: A*y =0} .

Proof: y € H, belongs to R(A)* if and only if

(Az,y) = 0 (5.9)
for all z € Hy. By the definition of A* this is equivalent with

(z,Ay)y = 0 (5.10)

for all z € Hy. Of course, A*y = 0 is sufficient for (5.10). That it is also necessary can be seen by
specializing = := A*y . q.e.d.

It is usefull to abstract the above argument a little bit:

Lemma 5.2 The vector z € H is 0 if and only if
(z,z) = 0

for all x € H (or for all x from a dense subspace of H ).

Notice that by Corollary 3.2 and Theorem 5.2:

N(A*)t = R(A) . (5.11)
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In order to obtain (5.2) for a continuous linear operator in an infinitely dimensional Hilbert space

it is therefore necessary and sufficient to prove that R(A) is closed!

The operators A € B(H, H) for which we wish to prove Fredholm’s alternative are of the type
A =1 — K where I is the identity in the Hilbert space H and K is a compact operator, the

latter being defined as follows:

Definition 5.1 A linear operator C € B(Hy, Hz) is compact iff any bounded sequence (un), N

in Hy contains a subsequence (un), .\ such that (Cun), N converges.

This means that the unit ball in H; is mapped onto a precompact subset of Hs, i.e. a subset the
closure of which is compact.? It is well known that compact subsets of metric spaces are closed
and bounded. Hence any compact operator is a bounded linear operator. Moreover in CV or R ,
N € N, the bounded closed subsets are exactly the compact subsets. From this we may conclude

that any bounded linear operator with a finite dimensional range is compact.

More important, however, is the following property of compact operators.

Lemma 5.3 Let A,C; € B(Hy,H,), B,C> € B(H», H3) and suppose that Cy,Cs are compact.
Then also BCy and C3A are compact.

Proof: Let (u,), N denote some bounded sequence in Hj. Since C; is compact, (uy,) contains a
subsequence (u,) for which C;(u,) converges to some v € Hy, and the continuity of B implies
lim BCiu, = Bv. Thus BC is compact.

n—o0

To see that C>A is compact notice that (Auy,) is bounded in Hs, whence (u,) contains a subse-

quence (uy ) such that Cy(Au, ) = CaAu, converges. q.e.d.

The adjoint of a compact operator is a compact operator, too:

Lemma 5.4 If C € B(H;, H>) is compact then so is C* .

Proof: By Lemma 5.3 the operator CC* is compact. So let (“n)neN denote a bounded sequence
in Hy, ||un|l2 <7 < oo say, and consider a subsequence (u,,) such that (C'C*u, ) converges. Then

from

1C™ (= um) I} = (CC (s = ) ; U = U )2

2Compactness of a subset S in a metric space may be defined by several equivalent properties of which one is

the property that any sequence (s,) in S contains a subsequence converging towards some element of S .
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< CCT (un = ume) |2 [[un — umell2
< 9 ICCT (un — )2
we conclude that (C*un), N is a Cauchy sequence and whence convergent. q.e.d.

We are now ready to prove the main result of this section, namely the Fredholm alternative for

the solvability of the equation (I — K)x =y for compact operators K :

Theorem 5.3 For a compact operator K € B(H, H)
dim N(I - K) = dim N(I — K*) < o (5.12)

and
R(I-K) = NI-K*"* (5.13)

hold.

The proof is divided into several lemmata.

Lemma 5.5 For a compact operator K € B(H, H) the range R(I — K) of I — K is closed.

Lemma 5.6 For a compact operator K € B(H, H) the kernel N(I — K) has finite dimension.

Lemma 5.7 For a compact operator K € B(H, H)

dim N(I — K) < dim N(I — K*) .

Assume that these three lemmata are proven. Then (5.13) follows by (5.11) and Lemma 5.5. From
Lemma 5.6 and Lemma 5.4 one obtains that dim N(I — K) and dim N(I — K*) are finite, and
Lemma 5.7 together with Lemma 5.1i and Lemma 5.4 yield

dim N(I — K) < dim N(I — K*) < dim N(I — K**) = dim N(I — K)
and whence (5.12). It remains to prove the lemmata.

Proof of Lemma 5.5 Let y denote an accumulation point of R(I — K). Then there exists a
sequence (), N With lim (I — K)#, =y . We have to show that some z € H exists with
n—oo
y = I-K)z . (5.14)

According to Theorem 3.3 we decompose any Z, as

ipn=2n+&n, T, € NUI-K)', &, e NI-K) .
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Notice here that the kernel of a linear operator A € B(H;, H») is always a closed subspace! Since

(I — K)&y, = 0 the sequence (z,) satisfies

lim [-K)z, = y
n—00
z, € NI-K)* forall n € N .

Assume first that (x,) is a bounded sequence. Then it contains a subsequence (z,) such that

Kz, and whence z,, = Kz,» — (I — K)x, converge. Let z := lim z,, . Then
n— o0

I-K)z = lim (I —-K)ay =y

n—o0

by the continuity of I — K .

It remains to lead the assumption, that (z,) is unbounded, to a contradiction. After an eventual

passage to a subsequence we may assume that ||z,|| tends to infinity. Consider

up = |lzall 2, neN .
Then for each n € N
lunll = 1, (5.15)
u, € [N(I - K)]* (5.16)
lim (I-K)u, = 0 . (5.17)
n—o0

As previously there exists a subsequence u, converging to some v € H, and (I — K)u =0, i.e.
u € N(I — K). By (5.16)

weN(I—-K)n NI-K)* = {0},

which contradicts (5.15). q.e.d.

Proof of Lemma 5.6: If dim V(] — K') = oo then there exists a sequence (u,) of by pairs distinct
elements u,, € N(I — K) such that {u, : n € N} is linear independent®. Employing E. Schmidt’s

orthogonalization process

xry = ||U1||71 U1

Tonr1 = ||Zpsr]|  Fng1, where (5.18)
~ n

Int+1 = Upt1l — Em:l (Un—i-l > Tm ) Tm

one obtains a sequence (z,,), .y in N (I — K) of normalized vectors which are by pairs orthogonal

( > 5 1 for n=m (5.19)
Lpn, Tm = Opm = -
0 for n#m .

The set {z, : n € N} resp. the sequence (), are called an orthonormal system resp. an

orthonormal sequence. By the way, for any ng € N U {occ}

span {uy: 1<n <ng} = span{z,: 1 <n<ng} , (5.20)

3this means that any nontrivial linear combination of finitely many distinct vectors u, is nonzero.
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where the span of a subset S of a vector space X is the subspace of all (finite) linear combinations

of elements of S.
Since z,, € N(I — K) we have z, = Kz, and whence (z,), .y must contain a convergent subse-
quence. But this is impossible by Pythagoras’ theorem:

Tn — Zml|? = [|Zal|? + [|[Zm]]* = 2 for n#m . (5.21)

Thus N(I — K) must be finite. q.e.d.

Proof of Lemma 5.7: The proof is in two steps. In a first step we show that surjectivety of
I — K implies injectivety. By Theorem 5.2 this means that the assertion of the lemma is true if
dimN(I - K*)=0.

Thus assume that I — K is onto and consider the sequence of spaces
N, = N(I-K)*) , neNp . (5.22)
Of course,
(I-K)Y°:=I, [-K)"=I-K)"'I-K)=(I-K)I-K)"".
These spaces N, are closed subspaces of H and are nested as follows:
N, DNp—y for neN . (5.23)
Suppose now that I — K is not injective. We prove by induction that then
N, # Np_1 (5.24)

holds for all n € N. The assumption that I — K is not injective yields (5.24) for n = 1. Suppose
that (5.24) holds for some n, then there exists y € N,, \ N,—1 and by the surjectivity one finds

some x such that
I-K)z =y .
But then

(I-K)""'z = (I-K)"y = 0 (sincey € Ny,)
(I—K)nﬂ'] = (I_K)n_ly 7é 0 (Sinceyganl)a

whence € Nyy1 \ Ny, and (5.24) is proven.

We may now construct a sequence (x,) such that for all n € N
lenll =1 (5.25)

z, € N, N N, . (5.26)

Choose u,, € N, \ Nj,_1 and according to Theorem 3.3 decompose u,, as

Upn = Tn+Yn, anNTJlll: Yn € Np—1 -
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Then
I-K)"%, = I-K)"u,—(I-K)(I-K)" 'y, =0

and whence &, € N,, N N;-_, . Moreover &, # 0 since u, & Np_1.

Thus we may choose
Tp = @7 E
We now show that (Kz,) cannot contain a convergent subsequence, since for n # m
K2z, — Kap| > 1. (5.27)
To show (5.27) assume that n > m. Then
Kz, — Kz, = x, —w
where
wi=UI-K)z, + [-K)xym+xm € Ny .
From Pythagoras’ theorem we obtain
1K @0 — K am* = [Jon = wl| = [Joa]* + lwl* > 1 .

Hence the assumption that I — K is not injective has been lead to a contradiction.

In the second step the case dim N (I — K*) > 0 is reduced to the first step. Assume that

dim N(I - K*) < dim N(I - K) < oo , (5.28)
the second inequality following from Lemma 5.6 Then there exists a (bounded) linear operator

E: NI-K) - NI-K"

which is surjective. Since E maps into a finite dimensional space it is compact. Let P denote
the orthogonal projection onto N(I — K).
We consider

K: H— H, 2 — Kz— E(Pxz)
and show that K is compact and I — K is surjective but not injective. This will yield a contradiction

to what was proven in the first step.

The compactness of K follows from the fact that K is compact and K — K is a bounded linear

operator with finite dimensional range.

For any y € H a solution of (I — K)x = y can be found as follows: decompose y according to

Theorem 3.3 as

y=y1+y2, N ENI-K)", ypeNI-K") .
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Since N(I — K*)* = R(I — K) there exists x; € H such that (I — K)z; =y, .
The ansatz
x = x1+ax2, w2 €NU-K)
then leads to

I-Kyx=y & FEzy =y, — E(Pzy) ,

which by the surjectivity of E is solvable. Thus I — K is surjective.

But I — K is not injective: Because of (5.28) E cannot be injective. Hence there exists z €
N(I — K)\ {0} with Exz = 0. For this x

This proves the lemma. q.e.d.

I. Fredholm obtained his results for integral equations of the second kind. These are equations of
the type (I — K)u = f in L*(), say, where K is given by

(Ku)(z) = / ke, y)uly) du(y)

and k is some ‘kernel’-function. The conditions which one imposes on k guarantee that K is a

compact operator. For example k € L%(Q2 x Q) is such a condition, if  is bounded.
By an integral equation of the first kind one means an equation of the type Ku = f, where K

is given as above. These are much more difficult to handle. The following theorem contains a

negative result in this direction.

Theorem 5.4 Let K denote a compact operator in B(H, H).

() If N(I - K)=1{0} then (I —K)'e B(H,H).

i) If N(K) =10} and if dim H = oo then K1 is not continuous.
(ii) If N(K)= {0} f
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Proof:

(i) By Theorem 5.3 (I — K)~! is defined on the whole of H . Assume that (I — K)~! is not

bounded. Then a sequence (y,), N in H exists with

lyn]] = 1 forall n |,

(I — K) 'y,|| = o0 asn — oo .

Putting
on = [(1 = K) yall ™ (1= K) yn (5.29)

we obtain
lzn]] = 1 forall neN | (5.30)

lim (I-K)z, = 0.

n—oo

Choose a subsequence (z,,) for which Kz, converges to some x € H. Then also

Ty = Ko +({[I —K)zyw — © as n— oo .
Thus
(I -K)x = nlgn;o I-K)z, =0
and whence = 0. However, by (5.29) we obtain ||z|| = 1 — a contradiction.

(ii) If N(K) = {0} and dim H = oo, the range R(K) cannot have finite dimension: No injective
linear operator exists from an infinite dimensional space into a finite dimensional space.As
in the proof of Lemma 5.6 we may construct an infinite orthonormal sequence (yn),.N
with y, € R(K), and this sequence cannot contain a converging subsequence. However, the

continuity of K ! implies that the sequence (z,,), given by
In = K™! Yn

is bounded. This contradicts the compactness of K. q.e.d.



Chapter 6

Solution of the Dirichlet Problem

In Chapter 5 the Dirichlet problem was solved under the assumption that the Dirichlet form B
of L was strongly coercive on Hj(2). We remind the assumptions made on L at the beginning

of that chapter. Moreover we always assume:

Assumption: The coefficients of L are such that the Dirichlet form B is strongly coercive on
H}(Q).

In this chapter we do not want to treat problems with strongly coercive! Dirichlet forms only. But
if we have some differential expression, L say, which does not have a strongly coercive form we
will write it as L = L_y where L := Ly is strongly coercive. So we still assume that the Dirichlet

form B is strongly coercive. But now we want to solve
L>\u = f 5 u|39 = g|39 (6.1)

for arbitrary A € C.

From Theorem 4.1 we get

Theorem 6.1 There exists a linear operator Go € B(L*() , Hg()) which assigns to any f €
L?(Q) the variational solution u of the Dirichlet problem ‘Lu = f, ulso=0". Gy is called the

‘solution operator’.

Remark 6.1 Notice that for given f € L?(Q) the value Gof is uniquely defined by the relation

Gof € HY(Q) and B(Gof, v)=—(f,v) forall ve Hj(Q) . (6.2)

LIf the subspace V/, on which a form is (strongly) coercive, is not mentioned explicitely we assume it to be HZ ().

68
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Proof of Theorem 6.1 From Theorem 4.1 it is clear that G f is well defined for each f € L?().
Moreover G is linear, since u := auy + us is the variational solution of ‘Lu = af; +(f2, u|aa=0’

if the w;, j = 1,2, are the variational solutions of ‘Lu; = f; , uj|sa=10".

The continuity follows from the strong coercivity of B (c.f. (4.19)), the boundedness of B (c.f.
(4.12)) and from (6.2):

c+||Gofllf < Re B(Gof,Gof) =—Re (f,Gof) <IfllolGofllo < I fllol|Gofll1 -

Hence
1Go flli < (c" ) 1fllo (6.3)

for any f € L*(Q2). q.e.d.

Now let A € C be fixed and f € L*(Q), g € H}(2). By Theorem 4.1 there exists an h € H'(Q)
such that

g—he HAQ) (6.4)
B(h,v) = 0 forall ve Hy(9). (6.5)
By the ansatz
u = u+h

problem (6.1) is equivalent with the problem to find @ satisfying

@ € H(N) (6.6)
B(i, v) + A{i,v)= —(f+Ah,v) forall ve H}Q) , (6.7)

and (6.7) is equivalent with
@ = AGo@ + Go (f+Ah) . (6.8)

Equation (6.8) may be considered as an equation in H}(2) or in L?(€2). The latter consideration

is more usual because in this case it is easier to describe ‘the adjoint problem’.

Let
J: HY}(Q) — L*(Q), u +— u (6.9)

describe the canonic inclusion of H{(f2), into L?*(Q2). J is a bounded linear operator defined on
the whole of Hg(f2). The boundedness of J follows directly from

llulli < |Jullo for all u € Hy(Q) .

We then define
G = JGy , (6.10)

i.e. we consider the solution operator as an operator into L?(f2) instead of Hj (2). We then obtain
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Lemma 6.1 A function u € H*(2) solves (6.1) for given f € L*(Q), g € H*() if and only if
u=1ia+h (6.11)
where h is given by (6.4), (6.5), and @ € L*(Q2) solves

i—AGi = G(f+Ah) . (6.12)

Proof: The only thing which remains to be shown is that (6.12) is equivalent with (6.8). Clearly
(6.8) implies (6.12): Apply J on both sides. On the other hand (6.12) implies @ € R(G) C HJ ()
and thus (6.8). q.e.d.

We want to apply the theory, provided in the previous section. For this we have to calculate the
adjoint of G and to show that G is compact. The latter is not true for arbitrary . However for
bounded domains it follows from Rellich’s compactness theorem (F. Rellich (1906 - 1955)):

Theorem 6.2 If Q is a bounded domain in RY, then the operator J given by (6.9) is compact.

Proof: We must show that any sequence (u,) in H} (), for which

sup |lunlli < o0
nEN

contains a subsequence which converges in L?().

For each n € N let ¢, € C§°(Q2) with

llon —unllt < 1/n .

If it is possible to extract a L?({)-convergent subsequence (¢,) from (ip,,) then the corresponding
subsequence (u, ) converges, too. Whence it suffices to show that any sequence (¢, ) in C§°(Q2),
for which

sup [[nlli =: v <oo , (6.13)
nGN

contains a convergent subsequence.

To do so we use the mollifier and put for n,k € N

On,k = jl/k* $n -

For any fixed k the sequence (¢nk), N is equicontinuous:
For h € RN we have (with 1 := jy ;)

|onk(x +h) — pni(z)] = /[n(w+h—y)—n(m—y)]wn(y)du(y)
< / (@ +h— ) — @ — )2 da@)]? lleallo
< / 0z + ) — () du(2)]V2 -y .
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The last term is independent of n and tends to zero as h tends to zero by Lebesgue’s theorem.

There exists a compact subset B of R which contains the support of all the functions ¢, .
Whence we may apply Arzela’s theorem and select a subsequence (¢p,) of (@) such that ¢, 1
converges uniformly. From (¢,,) we select a subsequence (¢,,) such that (¢, 2) converges uni-
formly. Proceeding in this manner we find for any & € N a subsequence (¢, ,) of (¢n,) such
that (¢n,, k+1) converges uniformly. Then the “diagonal” sequence (yn'), given by

Pn' = Pnn
has the property that (¢, i) converges uniformly for any k& € N. Moreover, the estimate

1/2

lon k& — Pmrkllo < (W(B))™= sup [pn k — @mr okl

(1(B) : the Lebesgue-measure of B') shows that ¢, j converges in L?(RY) for any k € N.

In a moment we shall prove that for all ¢ € C*(RY), § > 0

ljs x e —llo < 6 |l - (6.14)

Assuming (6.14) it follows that (yp,) converges in L*(Q). For all k € N

A

llon — ‘Pm’HO,Q < o — ‘Pn’,kH + ||‘Pn’,k - ‘Pm’,kH + ||‘Pm’,k — P ||
< ||‘Pn’,k - ‘Pm’,kH + 2'7/k -

Whence for given € > 0 we first choose k such that 2y/k < /2, and then fix ny such that
lon & — em k]| < /2 for n,m > ng . For these n,m then ||pp — om (o0 <.

It remains to prove (6.14): Since js5 > 0, since [ j; = 1, and with the help of the Cauchy Schwarz
inequality we obtain for any fixed z € RY
2

|m*am—¢um2::\/uxm—ww2mu—ywﬂomw—wuwdmw
< [ista-wiu)- [ iste =0 lew) - @) duty)
= [ st =) le) - @ duty) - (6.15)
The difference p(y) — ¢(x) may be written as an integral
1 N 1
o) o) = [ Gttt =a)di= 3 ne) [ onele bty -yt

Notice that the integrals in (6.15) extend over U(z,d) which contains the support of js(z — -).
Thus for y € U(z,d) we may estimate

N 1 2 1/2
lp(y) —p(@)] < |y — ] [Z /0 anw(x-l—t(y—;v))dt]
n_l N 1/2
< ly—a (/0 > |5’n<P(ﬂJ+t(y—m)|2dt>
1 1/2
< ([ me -0 a)
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The second inequality follows by the Cauchy Schwarz inequality. Insertion into (6.15) yields

s pla) = ol < & [ [ s =) [Vete +ty =) druty)

‘52/0 /N js(x —y) Vol +ty — ) duly) dt .

The last equation follows by Fubini’s theorem. We introduce new coordinates z := t(z—y), du(y) =
t~N du(z) and obtain

IN

s eo@) —po)l < & [ [ i) [Vole =) dutz) e

= & / s+ (V)] @ e

Integration with respect to x and another application of Fubini’s theorem yields

1
lis ol <5 [ ( [ dun = (V6 (@) du(a:)) at .
0 R~
By (0.15) the inner integral can be estimated by
1 Vel | (LXRY) = |}

Hence
. ! 2 ¢ 2
IIJ'a*np—@IIZSsz/ o2 dt = 6 >,
0

which is (6.14). q.e.d.

Rellich’s compactness theorem yields the compactness of the operator G (c.f. (6.10), Theorem 6.1
and Lemma 5.3). We now find the adjoint of G'. Assume for a moment, that the coefficients of
L are so smooth that one can write down the formal adjoint operator L* (c.f. (2.10), (2.11)). In
some sense L is the inverse of G and we have for ¢, € C§°(R), (Lo, ¥ ) = (¢, L*). So it is
a good guess that G* might be the solution operator for the problem ‘L*u = f, u|sq= 0’. Notice
that

B* : H} Q) x H}(Q) — K, (v,w) — B(w,v) (6.16)

is the Dirichlet form for L*. We obtain

Theorem 6.3 Let G§ € B(L*(Q), H(Q)) be defined by
B(’U7Ga_f) = _<U7f> (617)

for allv € HY(Q). Then G* = JG .

Proof: The Lax-Milgram theorem 3.4 yields that there exists a unique G¢ f € Hg () such that
(6.17) holds for all v € H}(Q). For v — (v, f) is a continuous linear functional on H}(Q). Now
for any f1, fa € L*(Q)

(Gfi, f2) = —=B(Gf1,G{ fo) = (fr, G{f2) = (f1, JG{ f2) -
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Hence G* fo = JG{ fa- q.e.d.

Remark 6.2 Of course, (6.17) is equivalent with

B*(G(Tfav) = - <f7v>

for all v € H}(Q). Thus indeed G§ is the solution operator for the ‘adjoint’ Dirichlet problem
“L*u = f, ulso= 0, provided that the coefficients a,m, are in C*(Q2) with bounded second

derivatives. However, G{ is defined even if L* is not.

We now obtain:

Theorem 6.4 Let A € C be given and @ C RN be a bounded domain. Then either (i) or (ii)
holds:

(i) For all f € L*(Q), g € H'(Q) there exists a unique variational solution u of the Dirichlet

problem ‘Lyu = f, ulsa= glsa "

(ii) There exists a nontrivial variational solution of the homogeneous Dirichlet problem ‘Lyu =
0, uloo= 0" In this case the space N of all solutions of this homogeneous problem has finite

dimension. Then the space®
N*={w e H}(Q): B(v,w)+ X v, w) =0 for allv € H}(Q)}
has the same dimension. The problem ‘Lyu = f, u|sq= g ’is solvable if and only if
(fyw)+B(g,w) + (g, w)=0

for any w € N* . Then all solutions are obtained as the sum of one special solution and any

element from N .

Proof: Let h denote the variational solution of ‘ Lh = 0, hlsq= ¢laq ’, i-e. h satisfies (6.4),

)

(6.5). By Lemma 6.1 the solvability of “Lyu = f, u|oa= gloa’
of (6.12):

is equivalent with the solvability

@—\Gi = G(f +\h) .

Assume that the homogeneous problem ¢ Lyu = 0, u |so= 0’ only admits the trivial solution.
Then

N(I-XG) = {0} .

2This is the space of variational solutions to the homogeneous adjoint problem ‘L/f\w =0, w|pa= 0’, provided
that L* is defined.
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Since AG is a compact operator we conclude by Theorem 5.3 that R(I — A\G) = L*(Q2) and whence
(6.12) is solvable for any f and h.

Assume now that the homogeneous problem ‘ Lyu = 0, u|so= 0’ admits nontrivial solutions.
Then

N :={u: usolves “Lyu =0, ulpo= 0"} = N(I — \G)
and whence has finite dimension, n say. Then by Theorem 5.3
dim N(I — (\G)*) = n ,

too. Now (AG)* = AG*, and of course A # 0. Then

1 1

we€ NI - (\G)) & Y= G'w & VYyem (o) X B(v,w) = —(v,w) .
This means that
N({I-(\G)") = N* |

and

dim N* = dim N .

Again Theorem 5.3 implies that ‘ Lu = f, ulag= g|aq ’ is solvable if and only if

(G(f+Mh),w) = 0 (6.18)
holds for all w € N'* .
Now
(G(f+Ah),w) = —B(G(f+ Ah),G*w) (by Theorem 6.3)
— B(G(f +Ah), w)  (by (6.18)) (6.19)
= 3 (f+Xh,w) (by (6.1)).
Moreover

Ah,w) = B(hyw)+ \X{h, w) (by (6.5)) .

However h ¢ H}(Q) so that we cannot use the relation in the definition of N*. But h—g € Hg ().
Hence
= Blg,w) + g, w) .

Now (6.19) and (6.20) imply that (6.18) is equivalent with

(6.20)

<f7w>+B(gaw)+)\<g,U)) =0

for all w € N'*. q.e.d.
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Definition 6.1 A complex number )\ is called an eigenvalue of L in ) under the Dirichlet
condition, if ‘Lyu = 0, u |so= 0’ has a nontrivial variational solution. Any such nontrivial
solution wu is called a Dirichlet eigenfunction of L in 0 with respect to the eigenvalue \. Since
it is clear that we only handle with the Dirichlet problem and since L and ) are fixed, we simply

say that w is an eigenfunction with respect to X .

Our aim is to prove the existence of eigenvalues and to show that the corresponding eigenfunctions
span the whole space in the case L = L* . Before doing so, we need some results on orthonormal

systems in Hilbert spaces.



Chapter 7

Orthonormal Systems

In chapter 6 we already constructed orthonormal sequences with the help of E. Schmidt’s orthogo-
nalization process. Generally it can be shown that any Hilbert space H contains an orthonormal
system which spans a dense subspace of H . The proof requires a set theoretical tool, Zorn’s
lemma, which is equivalent with the axiom of choice. However if one confines oneself to the case

of separable Hilbert spaces, E. Schmidt’s process suffices.

Definition 7.1 A metric space (and whence a Hilbert space) is separable if it contains a countable

(or finite) dense subset.

Definition 7.2 An orthonormal system in a Hilbert space H is a subset S C H such that for all
u,v € S

{0 if uw#v
(u,v) = )
1 if u=w.

An orthonormal system S is called complete if it is mazximal, i.e. if no nonzero vector x exists
which is orthogonal to every u € S, i.e. if S* = {0}. An orthonormal sequence (uy), N in H is

a sequence in H such that {uy, , Um ) = dpm for all n,m € N.
From now on let H denote a Hilbert space of infinite dimension.
Theorem 7.1 H is separable if and only if it contains a countable complete orthonormal system.

Proof: To prove the ‘if’ part, assume that H contains a complete orthonormal system S which

can be written as

S = {up: n € N}

76
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with an orthonormal sequence (Un)neN' Let M denote a countable subset of K, for example Q
if K=Ror Q+iQ if K= C. We show that the set T of all (finite) linear combinations of S

with coefficients in M

k
T:= {'T € H: erN EINL---:L%GM L= Z Nnun}

n=1
is dense in H . As Cantor’s diogonal argument shows, 7' is countable, and whence the ‘if’ part

will follow.

To prove the density of T let y € H and € > 0 be given. Since S is complete we have S+ = {0}
and whence span S is dense in H . Thus there exists a £ € N and numbers k1,...,x; € K such
that

k
lly — Z Knun|| < €/2 .
n=1
Now choose p1, ..., pur € M such that
|6 — pin| < €-27"70 .

Then z := 22:1 tnty € T and
k k
ly =2l < lly =D fawall + 1D (Fn = pa) al]
n=1 n=1

k
9
< §+nz::l|“"n_l/’n|§5-

Thus T is dense in H .

Suppose on the other hand that H contains a countable dense subset T' := {v,: n € N}. The-
re exists a subsequence (vp) of (v,) such that 7" := {v,: n € N} is linear independent and
X :=span T" is dense in H : choose 1’ as the smallest index such that v, # 0, then choose 2' as
the smallest index for which {vy:, vo} is linear independent etc. The E. Schmidt orthonormalizati-
on process, applied to the sequence (vn/)neN, yields the complete orthonormal system (c.f. Proof

of Lemma, 5.6). q.e.d.

Bessel’s inequality is an essential tool when working with orthonormal systems. In particular it can

be used to show that any complete orthonormal system in a separable space must be countable.

Theorem 7.2 Let S denote some orthonormal system in H and x € H. Then the following

assertions are true:

(i) For any finite subset S' C S

Y e, o) < lla)®

seS!
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(ii) The subset

S, ={se€S: (z,s)#0}

18 at most countable.

(iii) Bessel’s inequality holds:
> Kz, ) < el
seS

This sum has to be interpreted to run over an enwmeration of S,. Since the sum contains

positive terms only, its value is independent of the choice of the enumeration

Proof:

(i) Let S" = {s1,...,ss} and put

J
E €, Sl S;
i=1

Then z —y € (S")*, since for any j € {1,...,J}

J
(x—y,s;) = (z,8)— Y (2,8)(si,8) =0,

i—1
Here we need (s; , s;) = 6;;. Since (S')* = (span S")*

the vectors y and x—y are orthogonal.
Hence by Pythagoras’ theorem

[Edl

J J
llz = ylI* + [lyll® > llyl* = (D (@, si)si, Y (@, 85)s5)
i=1 j=1

J J J
= E E (z,s;) a: , 85 (8i,85) E [{z, s;)
i=1

i=1 j=1

(ii) For n € N let

Sen={s€8S: [(z,s)|>1/n.}

Because of (i) any of the sets S, , must be finite, whence

is at most countable.

(iii) now follows from (i) and (ii). q.e.d.

From Theorem 7.2 one may prove that with respect to a complete orthonormal system S one can

develop any given x € H into a series of multiples of elements from S . More generally
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Theorem 7.3 Let S denote an orthonormal system in H . Then for any x € H

Z(m,s)s = Pz , (7.1)

seS

where P is the orthogonal projection of H onto (span S). The sum in (7.1) must be interpreted

as follows: Either S, defined in Theorem 7.2, is finite. Then Z(m, s)ys = Z (z,s)s. Or
s€S SESa
Sy is countable. Let (sn), .y denote an enumeration of S;. Then (7.1) means that

00 m
Z<$:Sn>5n ::n}i—I}loo Z<$:Sn>5n
n=1 n=1

exists and equals Pz (which implies that it is independent of the choice of the enumeration).

In particular , if S is complete then

r = Z(m,s)s (7.2)

seS
Iz = > Kz, ) (7.3)
seS

and for anyy € H

(e, y) =Y (e, s)(s,y) . (7.4)

seS
The equality (7.3) is called ‘Parseval’s identity’. Its validity for all x € H is necessary and sufficient
for the completeness of S .

Example 7.1 It is known from the Calculus course that with I := (—m,7) any ¢ € C§°(I) can

be written as a uniformly convergent Fourier series

pa) = Y an e

nel
where
1 i
a = 50 [ e du)
The functions u,, given by
up(z) = L e” " g€ (-mm), n€k

form an orthonormal system S in L?(I). The starting remark shows that

m
span S = {u € L*(I): Jyucm(n) Jacm,.a0,nam &= Z Anln}
is dense in L?(I), for C§°(I) is dense in L?(I) and uniform convergence in I implies L*(I)-
convergence. Hence S+ = (span S)* = {0}, i.e. S is complete, and Theorem 7.3 just provides

the well known Fourier-expansion of L?(I)-functions.
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Proof of Theorem 7.3 If for x € H
Sy ={s€S: (z,s)#0}

is finite then we already found in the proof of Theorem 7.2i that Px =} s (x, s) s.

So let S; be countable and (s;), .y an enumeration of S;. By Bessel’s inequality,

o0

Y K, sl < llzl® (7.5)

n=1

whence the sum on the left hand side of (7.5) is convergent. Put

m
T ::Z(w,sn>sn )
n=1

Then for all m € N, k € N by Pythagoras’ theorem:

m+k m+k
: 2
lemir —zml® =11 D (@, sa)sall®= D Nz, sa)l” (7.6)
n=m-+1 n=m-+1

which by (7.5) implies that (x,,) is a Cauchy sequence. Denote its limit by y. Then for any m € N
k
<$_y75m> = lim <$_Z<$75j>5j75m>

k—o0 .
Jj=1

= (z,sm)—(z,sm)=0.
Moreover for any s € S\ S,
k
(x—y,s)= lim <$—Z<.’L‘,Sj)8j,8, y=0-0=0 .

k—o0 .
Jj=1

Thus z —y € S+, and y = Pz. If S is complete then S = {0} and P is the identity.

Parseval’s identity is a consequence of the more general equality

1Pzl* = (z, s) . (7.7)

seS

Letting (sn), N be any enumeration of S;. Then

[Pzl

m m
. . 2
Tim (132G, sndsalP = T D™ [, s0)]
n=1 n=1
2
= > Iz, )|
seS

Thus if S is complete Px = x.

If S is not complete there exists some x € H with ||z|| > 0 and Pz = 0. For this x Parseval’s
identity is wrong by (7.7). Hence the validity of Parseval’s identity for any « € H is necessary and

sufficient for the completeness of S .
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Finally, to prove (7.4) let {sp: « € N} denote an enumeration of S; U S,. Then

(z,y) = nli_{I;o(Z(w,Sk)Sk,ZW,Sz)Sz)
k=1 =1
= nli_{rgoZZ(%SH(Z/,SZ)(SI«;SZ)
k=1 =1
= nlijgoZ(ﬂﬁask)(yask):Z(%Sk)(y;8k>-
k=1 k=1

Since (y, sk ) = (sk, y) the assertion follows. q.e.d.



Chapter 8

Eigenvalues and Eigenfunctions

We start this chapter with the spectral theorem for self adjoint compact operators. To shorten
the exposition we shall consider only the case which will be interesting in connection with our

boundary value problems.

Theorem 8.1 Let K denote a compact operator in the infinite dimensional Hilbert space H and

assume that K is self adjoint, i.e. K* = K, and positive, i.e.
(Kx,z) > Oforall z € H . (8.1)

Then there exists a non increasing sequence ()‘n)neN (of eigenvalues) and an orthonormal sequence

(un), N (of eigenvectors) such that

(i) 0 < App1 < Ap forany neN

(ii) nli)néo A = 0

(iii) Ku, = Apun for any n €N

(iv) The orthonormal system {un: n € N} is complete.

(v) For any x € H and for any p € C\ {\,: n € N}

Kx = An

(z, up )uy, (8.2)
(e,

I-K) 'z =
(1 )T P

€L, Un >un (83)

n=1
n=1
(vi) y € H is in the range of K if and only if
> A Ky, un)* < oo .
n=1

82
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Any X # 0 which is not a value of the sequence (\,) belongs to p(K) (see Definition 8.1 below).

Before we start to prove this theorem we have to fix the notions of eigenvalues and eigenvectors,
of self-adjointness and prove some lemmata which are of general interest in connection with eigen-
values and eigenvectors. In this connection it is reasonable to deal with complex Hilbert spaces

only.

Definition 8.1 Let H denote a complex Hilbert space and T € B(H,H). T is called self-adjoint
if T =T*. An eigenvalue of T is a number X € C for which N(A\I —T) # {0}. Any nonzero

element in N (A — T) is called an eigenvector corresponding to the eigenvalue A .

A € C is called a spectral value of T if one of the three following conditions hold:

(1) A is an eigenvalue
(ii) X is not an eigenvalue and the range of (A —T') is not dense in H : R(A[ -T) # H

(iii) A is not an eigenvalue, the range of T is dense in H , but not equal to H: R(A —-T) # H,
ROM —T) = H.

The set of all spectral values is called the spectrum of T and is denotes by o(T). Its complement
C\ o(T) is called the resolvent set of T and is denoted by p(T). The spectrum decomposes into

three disjoint subsets:

op(T), the point spectrum of T, contains the eigenvalues
0.(T), the residual spectrum of T , contains all spectral values of type (ii)
0.(T), the continuous spectrum, contains all spectral values of type (iii)

o(T) = o0,(T)Uo,(T)Jo(T).

Remark 8.1 If A € 0,.(T) then by the basic relation
R -T)t = N(M -T)*) = NXI -T%)
we conclude
X €o,(T") .

Remark 8.2 From a basic theorem of Functional Analysis, the bounded inverse theorem one can

conclude that for an operator T € B(H,, Hs), (Hi,H, Hilbert spaces) with R(T) = Hy and with

N(T') = {0} the two following assertions are equivalent
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(i) R(T)=H,

(ii) 7' : R(T)CHy — Hy,, Tx > =z is continuous.

Therefore the resolvent set of T is the set of all A for which the inverse of (\I — T') exists and
belongs to B(H, H). The spectrum is the set of all A\ for which ‘something goes wrong’ with the
inverse of (\I —T).

The proof of the bounded inverse theorem will not be carried out here. However, with our tools we
may at least show that ‘\ € o.(T)’ implies that the inverse (\I — T)~! is not continuous. Notice
that for A € 0.(T)

MXM-T)"": RAM~-T)CH — H, M ~-T)x — z

is a linear operator defined on a dense subspace of H : A — T is injective since X & o,(T).
Lety € H\ R(AM —T) and (zn), N a sequence in H such that (A — T)z,, tends to y . Such
a sequence exists since R(A\I — T) is dense in H . If (Al — T)~! was a bounded operator then
Tp =N —T) Y (\I = T) z,, would be a Cauchy sequence and whence tend to some z € H. But
then (M — T)z =lim,, oo (Al = Tz, =y, ie. y € R(AI —T), a contradiction.

In the case, which we are interested in, the residual spectrum is empty:

Lemma 8.1 If T € B(H,H) is self adjoint then o,.(T) = (). Moreover the spectrum of T is
restricted to the real line: o(T) C R.

Proof: If T is self adjoint then for all z € H
(Tx,xz) = (x,Tz) , (8.4)
which means that (T'z, x) is real for any € H. Consider the sesquilinear form
t: HxH — C, (z,y) — (M -T)x,y)
t is bounded
[t(z, )| < (AL Nzl Nyl + 172 [yl < (A + 1T D] ]l

and satisfies the assumption (3.21) of the Lax-Milgram Theorem for non-real \:

|t(z, )] > [Im t(z, z)] = [Im A| [|z]]* . (8.5)
Hence for any z € H there exists a unique = € H such that

t(z,y) = (z,y) forall ye H . (8.6)

But this means that
MN-T)z = z . (8.7)
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On the other hand, any solution x of (8.7) satisfies (8.6). Whence the solutions of (8.7) are unique.

We have shown that for non real A the range of (AI —T') is the whole of H and that A is no
eigenvalue. Whence A € p(T'). (The continuity of (AI —T') can easily be deduced from the (8.5).)

Assume now that there exists A € 0,.(T). Then A is real and by Remark 8.1 A € g,(A\I —T%).
But T* =T, thus A € 0,(T'), a contradiction.

Lemma 8.2 If T € B(H,H) is self adjoint and X\, p are two different eigenvalues of T with

corresponding eigenvectors x resp. y , then x and y are orthogonal:

(z,y) =0

Proof: A and p are real by Lemma 8.1 Hence because of Az = Tx, py = Ty:

A=) (z,y) = (Az,y) —(z,py) =(Tz,y)—(z,Ty)=0 .

Lemma 8.3 If T € B(H, H) is self adjoint and V is a finite dimensional subspace of H which

is spanned by eigenvectors of T , then the restriction Tv of T to
H1 = VJ_

maps Hy into itself and is self adjoint on Hy. X is an eigenvalue of Th if and only if \ is an

eigenvalue of T with an eigenvector x ¢ V.

Proof: Notice that 7" maps V into itself since this is true on a basis of V . Whence for all
ze€V4tandyeV

<T$7y> = <$7Ty> =0 ;

i.e. Tz € Hy if x € Hy. Self adjointness is clear and it is also clear that an eigenvalue A\ of T} is
an eigenvalue of 7' with an eigenvector in H; and whence not in V' . To see the converse, let A
denote an eigenvalue of 7' with an eigenvector z ¢ V' . V has a basis consisting of eigenvectors
and by Lemma 8.2 z is orthogonal to any basis vector which is eigenvector with respect to an
eigenvalue p # A. If there exists some basis vectors, which are eigenvectors x1, ...,z with respect
to A one may find a linear combination Ele a;z; such that #:= z — Ele a;r; € Hy, and of

AR . .
course T is an eigenvector with respect to A . q.e.d.

We now start to consider compact operators. From Theorem 5.3 one obtains that non zero spectral

values must be eigenvalues.

Lemma 8.4 If K is a compact operator in B(H, H) then o(K)\ {0} C 0,(K) and 0 € o(K). In

particular: if K is injective and self adjoint then 0 € 0.(K) and K~ is not continuous.
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Remark 8.3 With the equivalence in Remark 8.2 one might prove that for any compact operator
K

0eo(K) .

Assuming that 0 € o,(K)Uo,(K), we obtain from Theorem 5.4 and Remark 8.2 i that 0 € o.(K).

We are now ready to start the

Proof of Theorem 8.1 The proof uses Rayleigh quotients.

Notice that for any eigenvalue g of K there exists a normalized eigenvector z for which

(Kz,z)=(pzx,z) =p. Thus any eigenvalue is nonnegative and is not greater than

AL = sup (Kz,z) . (8.8)
T€H ,||z||=1
The supremum exists since for ||z|| = 1 the quadratic form (Kx, z) is real and bounded from
above:
(Ko, ) < ||Kz|l[lo]] < [IK]||l=[I* = [IK]] . (8.9)
Hence A < ||K]|.
In fact,
A= K]

This can be seen as follows: let k denote the hermetian sesquilinear form
k: HxH — C, (u,v) — (Ku,v) .
An easy calculation shows for all u,v € H

Re k(u,v) = = [k(u+v, u+v) —k(u—v, u—"0)] .

NNy

With ||z|]| = 1 and
a = ||Kz||'? > 0

we replace u by az and v by * Kz . Since (Ky, y) < A1 [|y||* holds for any y € H we obtain:

. 1
|Kz||> = Re k(az, — Kx)
a
1 1 1
< Zk(am+—Kw,aaz+—Kw)
o o
A 1
< 5 llox+ ~ Kal?
At 1 2
< 2L(a* +2(Kr, )+ — |Kal)
Mo, 1 9 A
< g et S lKe)+ o
A1 A
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Hence

2
)‘1<0

AL
Kz||> - = ||Kz|| - =
5l = 5 1Kall = 5 <

from which
Kzl < M

follows. Thus ||K| = sup ;=1 [[Kz| < i

Suppose now that the supremum is attained at u, say. Then with
v:=(K—-MIu
we define the functions
F: R* — R, (s5,t) — (K(su+tv), su+tv),

G: R> — R, (s,t) — |lsu+tv]|>*—1.

Then under the side condition G(s,t) = 0 the function F attains its maximum at the point
(s,6)=(1,0). By the Lagrangian rule there exists some real u such that 0,F(1,0) = pd,G(1,0) and
0:F(1,0) = u0G(1,0), i.e.

2(Ku, u)=2pulul”, 2Re (Ku,v)=2Re (u{u,v)).

Since ( Ku, u) = A1 and ||u]| = 1 the first equation yields u = A;. Then the second equation and
the definition of v give
I(K = MDul* =0,

i.e. uis an eigenvector for the eigenvalue A;.

We now prove that in fact the supremum is attained, at w; , say. Then it is the largest eigenvalue

with normalized eigenvector u; .

Choose a sequence (z,), N With ||z,[| = 1 and such that

lim (Kzp, xn) = A\ .

n—o0

We may without loss of generality assume that Kz, converges, otherwise we replace it by a

subsequence which has the desired property. Since ||z,|| = 1 we obtain

(A1 = K)znl? M =2\ (Kap, 2) + | Kag|®
20 (M = (Kan, @n)) + ([Kz|* = A7)
201 (M = (Kzn, a)) + (IK]P = A])

= 2)\1 ()\1_ <K£L“n,33n>) "

IN

The right hand side tends to 0. Thus

lim (Mz, — Kz,) =0,

n—o0
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and as (Kz,) converges so does (z,). But then

up = lim z,
n—roo

has norm 1 and (Kuy, u;) = Ap.

By Lemma 8.3 any other eigenvalue of K is an eigenvalue of K1, the restriction of K to Hy := {u;}+.
So we may construct a sequence (\,), N of eigenvalues and an orthonormal sequence (un), N of

eigenvectors by the recursion

Angp1 = max (Kz, x)
e€{ur,un}t, flzll=1

Upp1 ¢ amaximizer of (Kz, z)in {uy,...,u,} = N{z:||z|| =1} .

Of course the sequence A, is non increasing and by Lemma 8.3 any eigenvalue is a value in the
sequence. Also, the sequence attains any value at most finitely often: If A,, = A > 0 for all u > ug
then N(A — K) = N(I — £ K) would have infinite dimension which contradicts (5.12).

By construction A, > 0 for all n € N. We show that
lim A, =0 . (8.10)
n—o0
Assume that
lim A, = A>0 .
n—o00

Choose a subsequence (An/), N such that (Ku,), Ny converges to v, say. Then u, tends to

A" tv: By A\pup = Ku,y we have
Aun = oll = [[(A = An Jun: + (Kun: = 0)|| < [A = Awr| + [|[Kup —vf| = 0.
But this contradicts the fact that (u,), N form an orthonormal sequence, and (8.10) follows.
To show that {u,: n € N} is complete let w € H, ||u|| =1 and assume (u, u, ) =0 for all n € N.
By (8.1)
(Ku,u) > 0
and it exists n € N sich that
Ant1 < (Ku,u) <A, -
But
(Ku,u) < max (Kx,z) = Apt1,

T lz||=1, z€{ut,..un bt

a contradiction.

To prove (8.2) notice that

NE

Kz = (Kx, up) up -

3
I
-
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But
(Ko, up)y = (x, Kup) = M\ {(x,uy) ,

whence (8.2) follows.

Similarly
(H‘I_K) 133 = Z((H’I_K)_lmaun>un
n=1
o0
= Z(-T:(ﬁl_K) Y ) un
n=1
Now
_ 1 1 _
(rl—-K) — Un = = (Bt — A Up) = Uy
Thus
@I-K) " u, = 1 w
n H_)\n n
and

= 1 > 1
(/,L[—K)_l.’l}':Z(.’L',ﬁ_)\ Un)“nzz <$:un>un:

n=1 n=1

which is (8.3).

It remains to prove (v): If y = Kz,z € H, then

(yaun> = )‘n<m7un> .

Whence
o0
_ 2
0o > lzl” = > A% [(y, un)l
n=1

If, on the other hand, y is such that
YA Ky, un)l? < o
n=1

then (see the step from (7.5) to (7.6))

T = Z My, un) ug
n=1

defines an element in H for which y = Kz. q.e.d.

Combining Theorems 8.1 iv and 7.1 one obtains

Corollary 8.1 If H is a Hilbert space such that B(H,H) contains a compact, injective, self
adjoint operator K then H is separable.
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Proof: In this case K? satisfies the assumptions of Theorem 8.1 and whence H contains a

countable complete orthonormal system.

The problem to find eigenvalues and eigenfunctions of L in 2 under Dirichlet condition (c.f.
Definition 6.1) is directly connected with the problem of finding the eigenvalues and eigenvectors
of the solution operator G defined in Theorem 6.1 and by (6.10). Since we want to use the
compactness of G we assume henceforth that 2 is bounded. Also in addition to (4.3), (4.4), (4.5)
and the assumption below Corollary 4.1, the coefficients of L are assumed to be such that the

Dirichlet form B is hermetian, i.e.

B(u,v) = B(v,u) forall u,v € H}(Q) . (8.11)
For example,
N
b = Y Opapm for m=1,...,N (8.12)
n=1
Apm 5 ¢ real valued (8.13)

are sufficient for the validity of (8.11). Another sufficient condition is that the coefficients are so

smooth that one can write down the formal adjoint L* of L and
L* = L

holds.

Under the assumption (8.11) it follows from Theorem 6.3 and from Remark 6.1 that the solution
operator G is self adjoint. Moreover (6.1) implies B(Gu,u) = —||u||? for any u € L*(2). Thus
Gu # 0. Another application of (6.1) shows

—(Gu,u) = —(u, Gu) = B(Gu,Gu) > c; ||Gulli

for all u € L?(2). Since G is injective the far right hand side only vanishes if u = 0. Hence we

have shown:

Lemma 8.5 K := —G is an injective positive, self adjoint compact operator. Hence there exists
a non increasing sequence (An), N of eigenvalues and an orthonormal sequence (un), N of cor-

responding eigenvectors which satisfy the assertions of Theorem 8.1

Definition 6.1 and Lemma 6.1 imply that A € C is an eigenvalue of L with eigenfunction w if and
only if u € L?(Q) , u # 0 and

v —AGu = 0 (8.14)
holds. But (8.14) is equivalent with
1
(— X)u — Ku = 0. (8.15)

Notice, that A = 0 surely is not an eigenvalue of L .
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1
P

orthonormal sequence (u”)nGN asserted in Lemma 8.5, provides the sequence of eigenfunctions.

Thus the eigenvalues of L in € are just u, := — where A, are the eigenvalues of K and the

So we have partly proven:

Theorem 8.2 Under the conditions on L and ) stated above there exists a non increasing
sequence (pn), N of eigenvalues of L in Q and an orthonormal (in L?()) sequence (un), N

of corresponding eigenfunctions (U’n)nEN such that

() O>p > ... 2 pp > fpy1 — —00 GS N —> 00 .

(ii) w, is a variational solution of ‘L, u =0, uplog=0".
(iii) The orthonormal system {u,: n € N} is complete.
(iv) we HYQ) il X lul 1w, u) < o0

(v) Ifu,v € H}(Q) then
B(u,v) = Y |ual (u, un) (un, v)

(vi) u € L?(Q) is a variational solution of a Dirichlet problem “Lu = f in Q, u|pa= 0" for
some f € L2(), iff

o0
> lal” [, wn)l* < o0
n=1

(vii) If f € L*(Q) and p is not a value of the the sequence (1tn) e N then the solution u of
Lyu=f, ulsa=0"is given by

oo

W= Y (f )

el Hn — K

Proof:

(i) - (iii) is the part of the theorem which is already proven.

To prove (iv) notice that B(-,-) can be considered as a scalar product in Hg (). It then induces

anorm || ||, in H}(Q), and for any u € Hj ()

1/2
Al < lulls < 42 Jlulls

(c.f. (4.19), (4.12)). Thus convergence with respect to the original norm || - ||; is the same as
convergence with respect to the new norm |||, , and H3 () is a Hilbert space with respect to the

scalar product B( -, - ), too.

Now for any n,m € N

B(un:um) = _</1'nunaum> = _ﬂn<unaum>

= _un(snm = |/1'n| 6nm .
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2

Hence {|ptn| */* un: n € N} is an orthonormal system in HZ(€) (with respect to new the scalar

product B(-, - )).

This orthonormal system is complete: Let u € H}(Q) and B(u,,u) = 0 for all n € N. Since u,,

are the eigenvectors with respect to the nonzero eigenvelaues p,,:
0 = B(up,u) = — pin, (tp, u) = (u,,u)y =0 .

The latter is true for all n € N. Since {u,: n € N} is complete in L?({2) we obtain that u must
be 0, whence {|un|71/2 un: n € N} is complete in H} ().

Before going further we notice:
Remark 8.4 H}(Q) is separable.

We continue the proof of (iv). If u € Hg(f2) then by Parseval’s identity

2 > 5
= Z | [(w, un )
n=1

o0
oo > B(u,u) = Z ‘B(u, |un|_1/2 Up)
n=1
If on the other hand u € L?(Q2) and

o0
S fal [, un)l” < oo,
n=1

then the sequence (v,), . N, given by

3

v, = (u, uj)u;
j=1
converges in H}(Q2):
n+k
||Un_vn+k||g = || Z (U,U,j>uj||§
j=n+1
oo
2
< D K, u))? pe] = 0
j=n+1

as n — oo. Whence (v,), N is a Cauchy sequence in Hg (). Consequently it has a limit v in
H} (). Then

[l = ollo

IN

[l =vnllo + llvn = vllo

IN

lu = wvnllo + llvn = vl
< lu=wallo + ¢ flon —vlls = 0

asn — o0, i.e. u=v € Hi(Q).

v) follows from (7.4), applied to the complete B-orthonormal system {|u,, -1/ up: n € N}:
I

B(u,v) = > Bu, |l un) Bl un, v)
n=1

= > il (uyun) (un s 0)
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To prove (vii) let

Thus (u, un) = (un — 1)~ ([, un>-
Then u € H}(Q) because of (iv) and for any v € H} (Q)

Z —fin
+Zu
_qun un; >——<f,’l)>.

(f,un)(un,v)

B(u,v) + p{u,v)

Tl

(f,un) (un,v)

Hence u, given by (8.15), is the unique solution of ‘L,u = f, u|so=0".

Finally (vi) may be easily deduced from (vii).



Chapter 9

Regularity

To prove regularity results means to show that the solutions obtained in an existence theorem can
be differentiated more often then asserted in that theorem. Generally one distinguishes between
local regularity results and global regularity results. Local regularity means that additional diffe-
rentiability is proven in small neighbourhoods of any point in 2. Global regularity means that

additional differentiability is proven up to the boundary.

A typical global result of this kind is

Theorem 9.1 Let k € Ny and Q be a bounded domain of class C**2. Assume that the coefficients

Ay b and ¢ satisfy (m,n=1,...,N):
amn € CFTL(Q)
bm € CF(Q)
c € Ok
and that Gy, by, c and all their derivatives, the existence of which is assumed, are bounded. If u

is the variational solution of ‘Lyu= f, ulpo= 0" and if f € H*(Q) then u € H*T2(Q) and there

exists a constant, independent of f and u such that

lullkrz0 < c(lfllra +lulloq) -

For example, if & = 0 then under the assumptions of the theorem the variational solution of

‘Lyu=f, ulpo= 0’ is a strong solution.
There is another result which should be mentioned in this connection, namely Sobolev’s embedding

theorem. It states roughly that under mild assumptions on €2, any element in H™(Q) (with

m > N/2) has a representative which is in C'(Q) where [ is the largest integer less then k — N/2.

94
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For example, if N =3, f € H%(Q), then f € C°(Q), and the solution wof “L,u = f, u|po= 0"

belongs to H*(Q) and whence to C?(12), i.e. it is a classical solution.

We wish to prove Theorem 9.1 only in the case k¥ = 0. For this gives an idea how to prove such

theorems. We shall use the following result from Functional Analysis:

Theorem 9.2 (Weak compactness theorem)
Let H denote some separable! Hilbert space and (Yn),eN @ bounded sequence in H . Then (yn)
contains a subsequence (yn:)neN which converges weakly to some y € H, i.e. there exists some y

such that
lim (yu,z) = (y, z) (9.1)

n—o0

forallz € H.

As to the concept of weak convergence which is introduced by (9.1) we have to note that weak
limits are unique. To be precise: A weak limit of a sequence (y”)neN in H is an element y in H
such that (y,, «) tends to (y, x) for all z € H. If such a weak limit exists the sequence is said

to converge weakly (to y ). Assume that z is another weak limit of (y,). Then

ly =zl = (y,y—2)—(z,y—2)
= Jlim [(yn,y—2)=(yn,y—2)] = 0.

Hence weak limits are unique. Moreover, convergent sequences are always weakly convergent.

Proof of Theorem 9.2
We assume of course dim H = oo, since for finite dimension one may even select a convergent

subsequence from (y,,) .

Consider a complete orthonormal system {u,: n € N}. Find a subsequence (y,,) of (y,) for
which (y,, , u1 ) converges. From (y,,) one may select a subsequence (y,,) for which (y,, , u2)
converges. Proceeding in this manner we find for any k£ € IN subsequences (yy, ), such that (y,, )
is a subsequence of y,,_, (Yn, := yn) and (yp, , ux ) converges. Put y,s := y,, , the diagonal

sequence. This has the property that for any £ € N, (y,,, ug ) converges to ay, say.
We show that Y~ |y uy converges to some element y which is the weak limit of (yp,).

By construction of y,, we find that for any N € N the sequence
N

yno =Y (Y un ) ug

k=1

tends to

N

N . _ E

y = ap U .
k=1

L H needs not to be separable, however we need the result for separable spaces only. To obtain it for non-separable

spaces one has to proof it for separable spaces first and then provide an additional argument.
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Hence

M=

ly lim [yl < sup [[yNIl < sup |lyw|l = 7,
n—o0

nEN ne

and we conclude
N
Sl = V1P < A7
k=1

from which

o)
Yl <77 < oo
k=1

follows. But then Y ;2 ay ug converges and defines an element y € H, and (y, ug) = ay .

For any w € span {u,: n € N}, ie. for any w which is a linear combination of finitely many of

the u, , we obtain

lim <yn/,’LU> = <y7w> .

n—oo

Now let v € H and € > 0 be given: We may find w € span {u,: n € N} such that

Yl —wll < /4.

Whence
(yn, v) =(y,v) < Kynrv—w)|+ Ky, v—w)|+ [y, w) = (y, w)|
< 29fp—w|l+ [y, w) = (y, w)|
< e/2+ [yw,w) —(y, w)|

For sufficiently large n the last term is less than £/2, and hence y, tends weakly to y. q.e.d.

From now on let
E=RY ={zeR": 2y >0} or Z:=R" . (9.2)

Moreover we assume that
jef{l,...,N—-1}if Z=RY or je{1,...,N} if =:=R" , (9.3)
and define with h € R, h # 0:
o L2(B) = L*(2) , (rpu)(z) := u(z + heW)) . (9.4)

Of course, (9.4) has to be understood in the sense that whenever @ is a representant of « then
x +— @z + heV)) is a representant of 7,u . Ty, is a linear operator of L?(Z) into L?(Z) and for all
u € L*(2)

7 all = Jfull - (9-5)

Moreover T3, is surjective, since
ThT-n = 1 . (9.6)
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Remark 9.1 A surjective operator U of a Hilbert space H , into another Hilbert space Hs, for
which ||U ul|z = |Ju||y holds for any w € H; is called a unitary operator. Unitary operators can also

be characterized by the equation U* = UL,

We now introduce the difference quotionts.

on 0 IAE) — I2(E), u — %(Thu—u) , (9.7)

where h € R\ {0}. The following lemma decovers the connection between the difference quotients

and the weak derivative which in some sense is easier than for the classical derivative.

Lemma 9.1 Letu € L*(Z) and ho > 0. If {Spuz 0 < |h| < ho} is a bounded subset of L*(Z) then

Oju exists weakly in L*(Z), and

|0jull < sup  |[6pull -
0<|h|<ho

Ifu € HY(Z) then
10nulloz < l05ulloz (9.8)

and Spu converges in L?(2) to Oju .

Proof: Notice that by coordinate transformation for all u,v € L?(Z) and
he R\ {0}

(Thu,v) = /: u(z + hel) 5(x) du(z) = / u(2)0(z — hel)du(z) = (u, 7_pv) . (9.9)

This implies
(dpu,v) = —(u,0_pv) . (9.10)

To prove the first assertion we invoke Theorem 9.2 and select a sequence h,, — 0 such that Jp, u
tends weakly to some w € L?*(Z). For ¢ € C{°(Z) and h € R\ {0} we have §,p € C5°(Z) and

—

Snp — ;¢ in L*(Z) as h — 0 (by Lebesgue’s theorem for example). Hence for any ¢ € C§°

<6hnu7 ()0> = — lim <U'7 5—hn(p) :—<U, 6]()0> -

im
n—oo n—oo

(w, )=
This means that the weak derivative 9;u exists in L*(Z) (and is equal to w ).

We now prove (9.8) for u = ¢|z , ¢ € C°(RY). Notice that

1
dnp(z) = / ajtp(x+7'he(j))d7' ,
0

and whence by the Cauchy Schwarz inequality

1 . N L
|6n(a)]” < (/ 1 ‘33-90(30 + The(J)‘ dr)? < / ‘6j<p(:v + 1heD | dr .
0 0
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From this estimate we obtain by Fubini’s theorem

/|5th | du(x // jtpx+7'he(]‘ dr du(z

/ [/ ‘8¢p(az+*rhe”‘ dp(z ]dT_/ |0ul|*dr = ||0jul)* .
0o J= 0

[1dnull*

]

A density argument now gives (9.8) for all u € H'(Q): Let ¢, € C§°(Z) denote a sequence for
which ¢, |z— v in H'(Q). Then §,(pn|z) = dpu in L?(Z), since J, is a continuous operator in
L*(Z), and 0; ¢y, |= tends to dju in L3(Z).

We obtain:

[0nullo,g = lim [|dnpnlloz < lm |8jpnlloz = [19jullo=z
n—o0 n—o0

The convergence of dpu to Oju now follows by a ‘stability and consistency yields convergence’-

argument (see Lemma 0.2). q.e.d.

By a partition of unity and by coordinate transforms according to Theorem 1.8 one can reduce the
regularity question for functions in 2 to regularity questions in =. The idea then is to estimate

the difference quotients of the first derivatives. This will be done in the next lemma:

Lemma 9.2 For n,m € {1,...,N} let by, € C1(Z) satisfy

bum = bmn  in 2, (9.11)
N
2 . —_ N
Re Z brm (x) £n&m > E|E|° with some E >0 forallz €2, (€ RY (9.12)
n,m=1
bom , |V bum| are bounded in = . (9.13)
With some v > 0 let v € H}(Z) satisfy
N
Z (brmOnv, Omp)| < 7 llelloz (9.14)
n,m=1

for all p € C§°(Z) . Then v € H(Z), and there exists a constant ¢ > 0 independent of v and v,
such that
lollzz < ¢y +1lvlhz) - (9.15)

Proof: We introduced &, and 7, as operators acting in L?(Z). However, we shall write 6, f, 7 f

for any function f defined on = to denote difference quotient and translation. Then one may

easily deduce the following rules:

0n(fg) = f(Ong) + (Onf) (Trhg) (9.16)

for all functions f,g on L2(Z), and

(Sh 8n u = 8n (Sh u (9.17)
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for all u € H*(Z). The latter is true for ¢ € C§°(Z) and hence

(Onu, Onp) = —(u, 0 p0np) == (u, 0u(0-np)) == (Onu, 5-np)

= (6nOnu, @) . 019

Here we used that with ¢ also §5¢ belongs to C§°(Z). Now (9.18) implies that 6pu € H(Z) and
6n5hu = 6h8nu -

We use these rules to calculate (bpm0n(0pv), Oy ) for ¢ € C§°(E):

(bnmOn(0pV), Omp) = (bumOn(Onv), Omp)
= (0n(9nv) , bamOme)
= = (000, bamOn(0-np) ) = (Onv, (I-nbnm)ThOmp)
=~ (bamBnv, 9 (Onp) ) = (Onv s (I-nbum)T—nOmp) -

Using (9.14) we may estimate

N

Z (bnman((shv)a am<)0>

n,m=1

<7l10-nplloz + e vz llelhe

where ¢; depends on bounds for the derivatives of b,,,, only. Notice that by (9.8) the right hand

can be estimated further, and one gets

N

Z (bnmOn(0nv) , Omep)

n,m=1

<(v+albllz) llells - (9.19)

Now 75, and whence §,, maps H}(Z) into itself: If the sequence (yp,) from C§°(Z) approximates
some w € H}(Z) with respect to the || - |1, z=—norm then (7,4,) is a sequence in C§°(Z) which in
H'(Z) tends to 7w . An approximation argument shows that in (9.19) one may replace ¢ by

any element of H}(Z), especially by 6,v . Using (9.12) we obtain

N
E ([16no]lf — 110n0ll5) < Re D~ (bum8n(6n0) , 8 (0r0)) < (v + 1 [ollL2) Invlaz -

n,m=1

Hence, using (9.8):

1 ‘
10nollf < & (v + (e + E?) [lvllu.2) 16nv]l1.2

from which with some ¢» depending on E and ¢ :
10nolly < %(7-%(01 +E?) |olliz) < 2y +olliz) -
But then for any n € {1,...,N}
10n0nvlloz < llonvlls < 2 (v +[lvlliz) -

From Lemma 9.1 it follows that 8;0,v exists weakly in L?*(Z) and

00|l < e (v +vllz) - (9.20)
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In the case Z = R" therefore the lemma is proven.

In the case 2 = Rf we still have to show that OyOyv exists weakly in L?(Z) and can be estimated
by the right hand side of (9.20). Notice that (9.14) implies that by

F i CRE) CIXE) — c
' — Zimzl <bnmanva 6m90>

a continuous linear functional is defined on C§° (=) which may be continued uniquely as a continuous

linear functional on the whole of L?(2) with norm not greater than ~. The Riesz representation

theorem then yields the existence of a (unique) f € L*(Z) such that

N

Z (brmOnv, Omp) = (f, @) (9.21)

n,m=1

for all ¢ € C5°(Q), and

Il <~ -

A density argument shows that (9.21) is true for all ¢ € H}(Z). Equation (9.21) means that v is

the variational solution of some Dirichlet problems with respect to the differential expression

N N
> bumOnOm + (D Obum) O -
m=1

n,m=1

Notice that this expression contains Oy0Ox with a non—vanishing factor by, since by ellipticity

N
Rebyy =Re > bum un Oy > E .

n,m=1

The idea now is that it should be possible to express dyOnv by f and derivatives of v which are

already known to belong to L?(Z).

This can be done as follows. For ¢ € C§°(E) and with b:=1/byn :

(v, OnNONp) = —(0nv,ONp)=—(byvnONV, DONY)

= — (bNNan, 6N(b<,0)> + <bNNaN’U, (6Nb) . (p)
N N

= = Y (bum0uv, (b)) + > (O (brmOnv) , bp)

n,m=1 n,m=1, (n,m)#(N,N)
+ ((8N5)bNN8Nv, Lp) .
Notice that by € HE (). Hence by (9.21)
<U78N6N<p> = (g,g@)

where

g = —bf + > b O (bum@nv) | + (OND)bNNONV

n,m=1, (n,m)#(N,N)
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belongs to L?(Z) and can be estimated by

gl < es (ANl + ez (v +lvlln)
< ea (v +olh)

where c3 and c4 do not depend on v or 7.

Hence v € H*(Z) and ||[v]|2,z can be estimated as asserted. q.e.d.

Remark 9.2 In the preceding Lemma 9.2 one may replace estimate (9.15) by
lvllzz < ey + [Plloz) (9.22)

where ¢ does not depend von v and -y . This follows from the coercivity of the Dirichlet form
Zrl:r,mzl (bumOn , Om - ):

N

E(loll? = loll}) < Re Y (bamnv, dmv) < vlello,
n,m=1
from which
loll} < 2 lfollo + lvol
and hence
lelly < 5% + llello
follows.

We are now ready for the

Proof of Theorem 9.1 (in the case k = 0):

Since Q is a bounded domain of class C? (c.f. Definition 1.4) there exists a finite open covering
Vi,..., Vi of 09 and regular C?>—diffeomorphism ®!,..., ®¥ onto U = U(0,1) such that (for
k=1,...,K)

q)(k)(vk N =U":={zeU: oy >0} .

We introduce Vp := € so that Vj, ..., Vk is an open covering of 1 and select a partition of unity
(Ck)k=0.,....x on Q which is subordinate to the covering Vo, ..., Vi ,ie. ¢ € C5°(Vi).

If u is a variational solution of ‘L,u = f, u|po= 0" then u € H} () and for all p € Hj ()

N N
Z <anmanuaam‘zo> = —(f,w)—Z(ananu,np)—((c+u)u,<p)

IN

1y lleello - (9.23)
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c1 depends on the coefficients of L and p only, and

7= fllog + llullie -

Using coercivity as in the preceding remark we may redefine ¢; and v by replacing ||ul|1,o by
l[ullo.2
7 = lflloe + llullog - (9.24)

For any k = 0,..., K the function (yu belongs to H} () and we obtain for any ¢ € HE(Q):

N
Z (anman(Cku) ) am‘p)
n,m= N
= Z ((@rnmOnu , O (Ce) ) + (@nm (OnCr)t, Om@) — (@nmOnt, (OmCr)p)} -

The second term on the right can be integrated by parts. Using apm = amn One gets:

N
Z <anman(<ku) ) am‘P)
n,m=1
N N N
= Z (anmanua am(Qc‘P)) + Z ((am(anmangk))ua ‘P> -2 Z (anmangkamua ‘P) .
n,m=1 n,m=1 n,m=1

The modulus of the first term on the right hand side can be estimated by ¢; 7v||(x¢|| and whence
by ¢1 Y||ollo,Vine - A similar estimate holds for the moduli of the two other terms. Hence with

some ¢, independent of f and w:

N
Y (aumda(Geu) s dmp)| < e2vllelloving - (9.25)

n,m=1

For (pu we may apply Lemma 9.2 with £ = R to obtain (yu € H*(R") and with some c
independent of wu, f :

IGoull, gy < €7 - (9.26)

Of course, we have continued (ou from € into RV by zero. It remains to prove (pu € H?(V;NQ)
and the validity of (9.26) for k € {1,..., K} (instead of k£ = 0). Let us fix k¥ and omit the index

k henceforth. Moreover let us put
U= ¢! R ’(/)ij = 81\111 ,  Pij = afﬁl .

Then

Z (tij o ®) pji = dar .

N
=1

Consider the pull-back operators

®* : H'(U') — HYOQNV), w — wod

v HYOQNV) — HYUY), @ — wo¥
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as defined in Theorem 1.8 and put

v o= U (Cu)
whence
Cu = " v
Then
suppv C U+ N U(0,p) (9.27)

with some p < 1. Moreover, v € H}(U™) since ¥* maps C§°(2 N V) into a space of continuously
differentiable functions with compact support in Uy . Therefore we may continue vby 0 into Rf
and obtain an element of H}(RY). An approximation argument shows that the chain rule can be
applied to v |y+= (Cu) o ®. Hence in Ut with xy € C°(R}):

N N
Z UnmOn(Cu) - Om(X 0 ®) = Z ArmOn (v o ®)0m (X o @)
n,m=1 n,m=1
N N
= Z Z AnmPkn (6kv) o @ (@Y) o® (928)
k,Jl=1nm=1

= Z bklakvalx od |det @ |
k,l=1

where

' = (pij)ij=t1,.N, ¥ = (Yij)ij=1,. N

are the Jacobians of ® resp. ¥, and

N
bkl = Z |det \III| (anm Pkn ‘le) ovw .

n,m=1
Notice that by is in C*(U), is bounded, and has bounded derivatives. Moreover for z € U1, ¢ €
RY, and with y = ¥(x)

N
3" bu(@)r& > |det U] E 1@ (y)* > E gl
k=1

with some E > 0.

We now redefine the by in U+ \ U(0, p) such that continuations by into whole of Rf exist which
satisfy the assumptions of Lemma 9.2 with 2 = RY. Let n € C§°(U) with0 <p <1landn=1in
U(0,p). Put

b _ n IN)kl =+ (]. — n)ékl in Ut
. Sk in RY\U*

Then the by belong to C*(RY) and satisfy (9.11), (9.12), (9.13). Since v vanishes where by and
by differ from each other we get from (9.28) by a coordinate transformation for y € Cg°(U™)

o0

N
Z (bklakva 6lX) = Z <anman(Cu) ) am(X ° (I))> >
k,l=1

= n,m=1
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and whence from (9.25) and the continuity of the pull-back operators:
‘Z (briOkv, Oix )| < c2vlIx o @llenv < e Ixllo+ - (9.29)

Because of (9.27), estimate (9.29) remains to hold for any x € C5°(RY). An application of Lemma

9.2 now proves the desired result.
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