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1Dieses Skriptum ist f�ur eine summer{school entstanden, die im August 1993 an der Universit�atJyv�askyl�a, Finnland, stattgefunden hat. Es wird in die Theorie der Randwertprobleme f�ur lineareelliptische partielle Di�erentialgleichungen zweiter Ordnung eingef�uhrt, und die hierzu erforderlicheFunktionalanalysis wird bereitgestellt. Hier in Essen wird �ublicherweise die Vorlesung " PartielleDi�erentialgleichungen I" im Sommer als Vorlesung f�ur das 6. Semester angeboten, und es wirdempfohlen, im vorangehenden Wintersemester die Vorlesung "Funktionalanalysis I" zu h�oren. Die-ses Skriptum fa�t Teile einer Vorlesung "Funktionalanalysis I" und den Hauptteil einer Vorlesung"Partielle Di�erentialgleichungen I" zusammen.



Chapter -1
Introduction
The aim of this course is to introduce the basic methods for the treatment of boundary valueproblems for second order elliptic partial di�erential equations. Many physical applications aremodelled by equations of the type�u(x) = f(x) (�u := 3Xi=1 @2i u = @2@x21 u+ @2@x22 u+ @2@x23 u) (-1.1)(the potential equation), @@t u(x; t)��u(x; t) = f(x; t) (-1.2)(the heat equation), @2@t2 u(x; t)��u(x; t) = f(x; t) (-1.3)(the wave equation), i @u@t (x; t)��u(x; t) + p(x)u(x; t) = 0 (-1.4)(the Schr�odinger equation with a given potential p).Here u is a function de�ned in some domain 
 of Euclidean space R3, say, or in some \space-time"cylinder 
 � I , I an intervall on the real line. u should be considered as unknown while f isassumed to be a given function de�ned in the same domain as u . For example equation (�1:1)might be used to �nd a �eld ru = 2664 @1u@2u@3u 3775 of force from its sources f .Equation (�1:2) might describe the distribution of temperature u(x; t) at the point x and at timet from heat sources f(x; t). Equation (�1:3) might describe acoustic waves, and the Schr�odingerequation describes the evolution of a quantum mechanical particle in a potential. In case of theSchr�odinger equation, 
 is the whole space.Of course, the spatial domain 
 might also be of one, two and more than three dimensions.2



CHAPTER -1. INTRODUCTION 3As in the theory of ordinary di�erential equations neither of these three equations alone are su�-cient to describe its solutions uniquely: one has to add boundary conditions and initial conditions.A boundary condition is an equation for u and its derivatives on the boundary of the spatialdomain, e.g. u(x) = g(x) for x 2 @
 (-1.5)(in case of equ. (�1:1)) or u(x; t) = g(x; t) for x 2 @
 ; t 2 I (-1.6)(in case of equ. (�1:2) or (�1:3)). (�1:5) as well as (�1:6) is the so called \Dirichlet (boundary)condition", and due to lack of time we shall concentrate on this condition. This Dirichlet conditionsays that the unknown function is known on the spatial boundary @
 (in case of the potentialequation) at any time t (in case of the heat or wave equation). In the case of the two latterequations one also needs initial conditions for the determination of u , i.e. one has to describe uand | in case of the wave equation | also @u@t at time t = 0.Thus the typical problems with respect to potential{, heat{, and wave{equation are:(EBVP) For given functions f : 
! R ; g : @
! R �nd a function u : 
! R such that�u(x) = f(x) for x 2 
 (-1.7)u(x) = g(x) for x 2 @
 : (-1.8)(PIBVP) For given functions f : 
�(0; T )! R (here T > 0), g : @
�(0; T )! R and u0 : 
! R�nd u : 
� [0; T )! R such that@@t u(x; t)��u(x; t) = f(x; t) for (x; t) 2 
� (0; T ) (-1.9)u(x; t) = g(x; t) for (x; t) 2 @
� (0; T ) (-1.10)u(x; 0) = u0(x) for x 2 
 : (-1.11)(HIBVP) For given functions f : 
 � (0; T ) ! R ; g : @
 � (0; T ) ! R ; u0; u1 : 
 ! R �ndu : 
� [0; T )! R such that @2@t2 u(x; t)��u(x; t) = f(x; t) (-1.12)u j@
 �(0; T ) = g ; (-1.13)u(x; 0) = u0(x) for x 2 
 ; (-1.14)@@t u(x; 0) = u1(x) : (-1.15)(f; g) resp. (f; g; u0) resp. (f; g; u0; u1) are called the data of the respective problem.All three problems are linear problems: if u resp. v are solutions with respect to the data U resp.V , then �u+ �v is a solution with respect to the data �U + �V ; �; � 2 R.



CHAPTER -1. INTRODUCTION 4(EBVP) is a typical elliptic problem, while the two others are typical parabolic resp. hyperbolicproblems. The de�nition of an elliptic problem will be given later. The following example hopefullyexplains why we concentrate on elliptic problems.Example -1.1 (The vibrating string) Consider a string which is �xed at its two end points and afterhaving been extended vibrates in an (x; y){plane. At any time t the string may be modelled by thegraph of a real valued function u(�; t) on �
, the closure of the open intervall 
 = ( 0 ; L ) on the realline. u(x; t) describes the displacement of the point x at time t in the vertical direction.Under some idealizing assumptions (small amplitudes e.g.) one is lead to a hyperbolic initial boundaryvalue problem (HIBVP):@2@t2 u(x; t)� @2@x2 u(x; t) = 0 for (x; t) 2 
� I ; I := ( 0 ; 1 ) ; (-1.16)u(0; t) = u(L; t) = 0 for t 2 �I (-1.17)u(x; 0) = u0(x) for x 2 
 (-1.18)@u@t (x; 0) = u1(x) for x 2 
 : (-1.19)In order to make the formulation precise we have to say that we wish to �nd u as an element ofu 2 C2(
� I) \ C1(
� I) \ C0(
� I) ;which means: u is continuous in 
� I and has continuous partial derivatives in 
� I up to the secondorder, u and its �rst order partial derivatives can be extended to 
� I as continuous functions, u canbe extended as a continuous function to 
� I .We �rst of all look for \standing wave solutions". These are nontrivial solutions of (�1:16), (�1:17)of the special form u(x; t) = v(x) w(t)with v 2 C2(
) \ C0(
), w 2 C2(I) \ C1(I). Insertion into (�1:16) gives for all x 2 
 ; t 2 I :v(x) w00(t)� v00(x) w(t) = 0 ; (-1.20)and by (�1:17) v(0) = v(L) = 0 (-1.21)since w is assumed not a vanish identically. Fixing t in such a way that w(t) 6= 0 and putting � := w00(t)w(t)we �nd for all x 2 
 v00(x) = � v(x) : (-1.22)Together with (�1:21) and remembering v 6� 0, we conclude that� 2 f�(n�L )2: n 2 Ng ; N := f1; 2; 3 � � �g (-1.23)u 2 fvn: n 2 Ng ; vn(x) := sin(!nx) ; !n := n�L : (-1.24)



CHAPTER -1. INTRODUCTION 5We then obtain that w is of the formw(t) = An cos(!n t) +Bn sin(!nt)with An; Bn 2 R ; (An; Bn) 6= (0; 0).Thus standing waves are of the formu(x; t) = [An cos(!nt) +Bn sin(!nt)] vn(x) : (-1.25)Problem (�1:16) { (�1:19) may now be solved by the ansatzu(x; t) = 1Xn=1 [An cos(wnt) +Bn sin(wnt)] vn(x) (-1.26)i.e. a superposition of standing waves. Disregarding any questions about convergence, one expectsthat (�1:26) solves (�1:16) and (�1:17). To ful�ll (�1:18) and (�1:19) we have to choose An andBn such that u0(x) = 1Xn=1 An vn(x) (-1.27)u1(x) = 1Xn=1 (!n Bn) vn(x) : (-1.28)(�1:27), (�1:28) is just a Fourier-series expansion for u0 and u1 : continue u0; u1 as odd functionsinto the intervall [�L ; L ], then the Fourier series does not contain any cosine terms.One can make this procedure precise if one assumes some regularity of the data u0; u1 . By a similarprocedure one may treat the one-dimensional heat equation.Returning to the problems (�1:12) { (�1:15) resp. (�1:9) { (�1:11) one might ask if they can besolved by a similar procedure as sketched above. The key result was the existence of the sequences(�!2n)n2N and (vn)n2N (c.f. (�1:23), (�1:24)) of eigenvalues and eigenfunctions such that theinitial data u0; u1 resp. could be expanded into a series of the form P an vn .We are hence lead to the question whether there exist sequences (�n)n2N and (vn)n2N of numbersand functions resp. such that for any n : vn 6� 0 (-1.29)� vn = �nvn in 
 (-1.30)vn = 0 on @
 : (-1.31)�n and vn are then called an eigenvalue and a corresponding eigenfunction of the Laplace-operator� under the Dirichlet condition. Having found eigenvalues and eigenfunctions one has to check ifthere are enough eigenfunctions to expand any given initial data as a series of the formPn2N anvn .As in the theory of Fourier series it is convenient to work in L2(
), the space of (equivalence classesof) square integrable functions on 
 .



CHAPTER -1. INTRODUCTION 6In these lectures we shall consider elliptic boundary value problems as e.g. (�1:7), (�1:8) andthe elliptic eigenvalue problem as e.g. (�1:29), (�1:30), (�1:31). We shall introduce suitableHilbert spaces of square integrable functions and generalize the notion of partial derivation forsuch functions. It will be shown that the eigenfunctions form a complete orthonormal subset ofL2(
), which means that expansion theorems are valid.The solutions will be considered rather as points in a space than as functions on some domain.This point of view has lead to the development of Functional Analysis, and we shall use some of themethods of this large �eld of mathematical research. We shall restrict ourselves on those results offunctional analysis which are e�ectively needed for the treatment of our boundary value problem.



Chapter 0
Prerequisites
From now on, 
 will always denote some domain in Euclidean N -space RN , i.e. a connected opensubset of RN . Moreover we introduce the following spaces of complex valued functions on 
:Ck(
): (k 2 N0 := f0g [N) consists of all continuous functions on 
 which | in case k > 0 |have continuous partial derivatives up to the k-th order.Ck(
): consists of all functions in Ck(
) which together with its partial derivatives up to order kcan be continued to the closure 
 of 
 as continuous functions.C1(
) : = \k2N Ck(
)C10 (
): = f' 2 C1(
): supp ' �� 
g .Here supp ' := fx 2 
: '(x) 6= 0g (0.1)is the support of ' and for two subsets A;B � RN we writeA �� B :() A is compact and A � B :supp ' �� 
 then means that ' vanishes in a neighbourhood of the boundary @
 of 
 and |in case that 
 is unbounded | for su�ciently large argument. The elements of C10 (
) are calledtest-functions and are always assumed to be continued by 0 into the whole of RN .The elements ofLp(
), p 2 [1;1), are equivalence classes of (Lebesgue){measurable functions u, such that jujp isintegrable on 
. Two functions u1; u2 are equivalent if u1 and u2 di�er only on a Lebesguenull{set. The Lebesgue measure in RN will be denoted by �7



CHAPTER 0. PREREQUISITES 8L1(
) consists of all equivalence classes of measurable functions u such thatess sup
 juj := infM sup
nM juj <1 :Here the inf is to be taken over all Lebesgue null-sets M .We shall frequently speak somewhat losely about functions in Lp(
) hereby identifying an equi-valence class with one of its representants. For example: if we say that an element u 2 Lp(
)belongs to Ck(
) we mean that the equivalence class u contains a (unique) function in Ck(
),and this function in Ck(
) is meant by u in further calculations. Thus we may in future writeLp(
) \Ck(
) for example, and mean the space of all functions u in Ck(
) with Z
 jujp d� <1as well as the space of all equivalence classes in Lp(
) which contain an element of Ck(
).The following result should be known from the Calculus course:Lemma 0.1 For p 2 [1;1) the space C10 (
) is dense in Lp(
), i.e. for any u 2 Lp(
) and " > 0there exists a ' 2 C10 (
) with supp ' �� 
 such that(Z
 ju� 'jp d�)1=p < " : (0.2)The spaces Lp(
) ; p 2 [1;1], are Banach-spaces when they are equipped with the normskuk(Lp(
)) := (Z
 jujp d�)1=p (for p <1)respectively kuk(L1(
)) = ess sup
 juj (for p =1)A norm is a real valued function on a real or complex linear space X :k � k : X ! Rwith the properties kxk > 0 for all x 2 X n f0g (0.3)k�xk = j�j kxk for all x 2 X ; � 2 K (0.4)where K = R or K = C. Particularly: k0k = 0 .kx+ yk � kxk+ kyk for all x; y 2 X : (0.5)The last inequality is called the triangle inequality. A linear space in which a norm is de�ned is cal-led a normed space. In a normed space X one may consider convergence and Cauchy-convergence:A sequence (un)n2N in X converges to some element u 2 X iflimn!1 kun � uk = 0 : (0.6)



CHAPTER 0. PREREQUISITES 9We shall write un ! u or more precisely un X! u in this case. A sequence (un)n2N in X is calledCauchy convergent if there exists a null{sequence ("n) of positive real numbers such that8n2N 8m�n kun � umk � "n : (0.7)Convergent sequences are always Cauchy-convergent. However the converse might be wrong. Anormed space X where any Cauchy-convergent sequence is convergent (to some element of X) iscalled a complete normed space or a Banach space.It is assumed that you are familiar with the very basic notions of convergence in a Banach-space.For example, Lemma 0:1 expresses that C10 (
) is dense in Lp(
), if 1 � p <1 .The proof that Lp(
) is a Banach space may be found in many textbooks in analysis, e.g. in [5].In the special case of Lp(
) ; p 2 (1;1), the triangle inequality is called Minkowski's inequalityand follows from H�older's inequality: If f 2 Lp(
) ; g 2 Lq(
) and 1p + 1q = 1 then fg 2 L1(
)and Z
 jfgj d� � (Z
 jf jp d�)1=p (Z
 jgjq d�)1=q : (0.8)We shall frequently use a family of operators, called Friedrichs'- molli�ers: With the notationU(z; r) for an open ball in RN of radius r and with centre z we choose some j 2 C10 (U(0; 1)) suchthat R j(x)d�(x) = 1 and j � 0 . For example with some R < 1 and a suited c > 0 one mightchoose j(x) := ( c exp [1=(jxj2 �R2)] if jxj < R0 if jxj � RFor " > 0 ; x 2 RN put j"(x) := "�N j("�1x) :Then j" 2 C10 (U(0; ")) (0.9)ZRN j"(x) dx = 1 (0.10)j" � 0 in RN (0.11)hold. The Friedrichs' molli�ers assign to any f 2 Lp(
) ; p 2 [1;1) a family (j" � f)0<"<"0 offunctions given by (j" � f)(x) = Z
 j"(x� y) f(y) d�(y) ; (0.12)the convolution of j" with f . Its result j" � f is in C1(RN ) since any di�erentiation may becarried out under the integral by Lebesgue's theorem:[@� (j" � f)](x) = Z
 (@� j")(x � y) f(y) d�(y) : (0.13)Here � denotes a multi-index � = (�1; : : : ; �N ) 2 NN0 and@� := @�11 � � � @�NN := @j�j@x�11 � � � @x�NN ; j�j := �1 + � � �+ �N : (0.14)



CHAPTER 0. PREREQUISITES 10j�j is called the order of � .Friedrichs' molli�er may be used to approximate Lp-functions by C1 functions:Lemma 0.2 Let p 2 [1;1) ; u 2 Lp(
). Thenlim"&0 kj" � u� uk(Lp(
)) = 0 :Proof: It su�ces to consider the case where 
 = RN , since any element of Lp(
) may be identi�edwith an element in Lp(RN ) by continuation by 0. Hence if the lemma is proven for RN then it isobtained for 
 by the estimate kj" � u� uk
 � kj" � u� ukRNIn this proof norms will now be norms in Lp(RN ) Later we will see that the proof follows a schemewhich can be sketched as: \Stability and consistency yields convergence". In the case of Lemma0:2 stability means: 8u2Lp(RN ) 8">0 kj" � uk � kuk : (0.15)This can be seen with the help of H�olders inequality (H) and the Fubini-Tonelli Theorem (F):jj" � u(x)jp = ����Z j"(x� y) u(y) d�(y)����p� (Z j"(x� y)1=p ju(y)j � j"(x� y)1�1=p d�(y))p(H)� [(Z j"(x� y) ju(y)jp d�(y))1=p(Z j"(x� y)d�(y))1�1=p]p= Z j"(x � y) ju(y)jp d�(y) � 1 :Now integration with respect to x yieldsZ j(j" � u((x)jp d�(x) � Z Z j"(x� y) ju(y)jp d�(y) d�(x)(F )= Z (Z j"(x� y) d�(x)) ju(y)jp d�(y)= Z ju(y)jp d�(y) ;for R j"(x � y) d�(x) = 1 .Consistency means here that one can exhibit a dense subset of Lp(RN ) | namely C10 (RN ) 1 forwhose elements the assertion of the lemma holds:Notice that for any continuous function ' the value j" � '(x) is equal to some value of ' at somepoint in the "-neighbourhood U(x; ") of x . Since the elements of C10 (RN ) (or C00 (RN )) are1If su�ces to take C00 (RN ) := fu 2 C0(RN ): supp u ��RNg instead



CHAPTER 0. PREREQUISITES 11uniformly continuous functions, j" � ' tends to ' uniformly, thus in Lp(RN ) . For the supports ofthe functions j" � ' are contained in a compact subset K of RN for all " < "0 | namelysupp (j" � ') � [x2supp' U(x; "0)� fx 2 RN : dist (x; supp ') � "0g =: K :Now for any " the application f 7! j" � f is linear. So let u 2 Lp(RN) and � > 0 given. Find' 2 C10 (RN ) (or C00 (RN )) such that ku� 'k < �=3 :Then kj" � u� uk� kj" � (u� ')k+ kj" � '� 'k+ ku� 'k� 2ku� 'k+ kj" � '� 'kFor su�ciently small " we have kj" � '� 'k < �=3 , thus kj" � u� uk < � . q.e.d.Friedrichs' molli�ers can also be used to show that for any 
 � RN and any compact subsetK �� 
 there exists ' 2 C10 (
) with ' � 1 in K: Let 
0 �� 
 such that K �� 
0 , let �denote the characteristic function of 
0 , i.e. � � 1 on 
0 ; � � 0 in RN n
0 and put ' := j" �� .When " is su�ciently small this ' will do.To formulate the Fundamental Lemma of the Calculus of Variations we introduce for 1 � p � 1,the space Lploc(
) of (equivalence classes of) functions u such that jujp is integrable over anycompact subset K �� 
 .Evidently for all p 2 [1;1] Lp(
) � Lploc(
) � L1loc(
) (0.16)holds.Lemma 0.3 Let u 2 L1loc(
) and suppose thatZ
 u � 'd� = 0for any ' 2 C10 (
). Then u = 0 or | if you rather look at u as a function than as an elementof L1loc(
) | u(x) = 0 for almost every x 2 
.Proof: We identify u with one of its representatives and have to show that u vanishes a.e. insome neighbourhood of any point z 2 
. Thus let z 2 
 and R > 0 such that U(z; 2R) �� 
.For any " < R and x 2 V := U(z;R) we havej" � u(x) = Z u(y) j"(x � y) d�(y) = 0 ;



CHAPTER 0. PREREQUISITES 12since y 7! j"(x� y) is in C10 (
). Moreover, puttingv := ( u in U(z; 2R)0 in RN n U(z; 2R) ;v 2 L1(RN ) and j" � v ! v in L1(RN ) as "! 0 . Notice that j" � v = j" � u in V .Thus kuk(L1(V )) = ku� j" � uk(L1(V )) = kv � j" � vk(L1(V ))� kv � j" � vk(L1(RN ))! 0 :Whence kuk(L1(V )) = 0 which proves the lemma.Several times we shall use a method, called partition of unity. By this we mean:Lemma 0.4 and De�nitionLet K denote some compact subset of RN and U1; : : : ; UL �nitely many open sets which coverK : K � SLl=1 Ul . Then there exist L functions �1 � � � �L 2 C10 (RN ) such that for all l = 1; : : : ; L(i) supp �l �� Ul(ii) 0 � �l � 1(iii) LXl=1 �l(x) = 1 for x 2 K :The family f�1; : : : ; �Lg is called a partition of unity2 onK subordinate to the covering fU1; : : : ; ULg.Proof: We �rst construct an open covering fV1; : : : ; VLg of K with Vl �� Ul for any l = 1; : : : ; L.Fix n 2 f1; : : : ; Lg and assume that we have found n� 1 open sets V1 �� U1; : : : ; Vn�1 �� Un�1such that fV1; : : : ; Vn�1; Un; : : : ; ULg covers K. The case n� 1 = 0 is included and in the followingSml=k : : : := ; if m < k. Now Kn := K n �Sn�1l=1 Vl [SLl=n+1 Ul� is compact and contained in Un.There exists an open set Vn such that Kn � Vn �� Un. Hence fV1; : : : Vn; Un+1; : : : ULg covers K,and having reached n := L we are done.Let us de�ne U0 := SLl=1 Vl. For l := 0 : : : ; L we now chose nonnegative functions 'l 2 C10 (RN )with supports in Ul resp., which are equal to 1 in K (for l = 0) resp. in �Vl (for l > 0). Then := (1� '0) + LXl=1 'lis a positive C1{function on RN and the functions�l := 'l ; l = 1; : : : ; L2Some authors do not require (ii) for the notion of a partition of unity.



CHAPTER 0. PREREQUISITES 13yield a partition of unity on K subordinate to fU1; : : : ; ULg . q.e.d.We conclude this chapter with some remarks on the multiindex notation, de�ned in (0:14). Wede�ne for x 2 RN ; � 2 NN0 ; � 2 NN0 x� := NYn=1 x�nn (0.17)� � � :() �n � �n for all n = 1; : : : ; N (0.18)� < � :() � � � and � 6= � (0.19)� ! := NYn=1 (�n!) (0.20) �� ! := �!�!(�� �)! = NYn=1  �n�n ! for � � � : (0.21)Then in generalization of the binomial we have the polynomial formula NXn=1 xn!k = Xj�j�k k!�! x� : (0.22)For a function u 2 Cm(
) Taylor's formula at some point y 2 
 readsu(x) = Xjxj�m 1�! (@�u)(y) (x� y)� + R(x; y) ; limx!y jx� yj�m R(x; y) = 0 : (0.23)If u 2 Cm+1(
) we have for example the representationR(x; y) = Xjxj=m+1 1�! @�u(z)(x� y)� ; (0.24)where z is some point on the line segment between y and x, provided that this segment belongsto 
.If u and v belong to Cm(
), we have Leibniz' rule:@�(u � v) = X���  �� ! @�u @���v : (0.25)Moreover we shall use the identityX0���� (�1)j�j  �� ! = 0 : (0.26)(0:22) { (0:26) may be proved by induction on the dimension N .



Chapter 1
The Calculus of Weak Derivatives
The aim of this chapter is to introduce the notion of the weak (or distributional) derivative in L2(
)which is an essential tool for the treatment of elliptic boundary value problems. We study spacesof \weakly" di�erentiable functions and give some density results. For a detailed representationthe reader is referred to the book [1] by R. A. Adams.For u 2 C1(
) and ' 2 C10 (
) partial integration (Gau�-theorem) yieldsZ
 u @i' d� = � Z (@iu) ' d� :On the other hand: If there exists some ui 2 L1loc(
) such thatZ u @i' d� = � Z ui' d�holds for all ' 2 C10 (
) thenZ
 (@iu� ui) ' d� = 0 8'2C10 (
)and whence ui = @iu a.e. in 
 by Lemma 0:3This motivates the following generalization of the notion of a derivative:De�nition 1.1 Let u 2 L1loc(
) and � 2 NN0 a multiindex of order j�j > 0. Suppose that thereexists a u� 2 L1loc(
) such that8'2C10 (
) Z
 u@�' d� (�1)j�j = Z
 u� ' d� : (1.1)Then we say that @�u exists weakly in L1loc(
) and we de�ne@�u := u� :14



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 15(@�u is well de�ned: if (1:1) holds with u� and some v� instead of u�, then R
 (v��u�)' d� = 0for all ' 2 C10 (
) and whence v� = u� a.e. in 
 by Lemma 0:3)If it happens that @�u 2 Lp(
) resp. Lploc(
) ; p 2 [1;1), we say that @�u exists weakly inLp(
) resp. Lploc(
).In this case we shall simply write@�u 2 Lp(
) resp. @�u 2 Lploc(
) :If @�u exists in Lp(
) resp. Lploc(
) for any � with j�j � m ; m 2 N, then we say that uhas weak derivatives up to order m in Lp(
) resp. Lploc(
).We shall write @iu instead of @e(i)u where e(i) denotes the i{th unit vector.An example will be given after we will have stated some properties of the weak derivativeLemma 1.1(i) Let u 2 L1loc(
) and suppose that for some multiindex @�u exists weakly in L1loc(
). Then therestriction u j
0 of u onto any subdomain 
0 � 
 has weak derivative @�(u j
0) in L1loc(
0),namely the restriction of (@�u) onto 
0:@�(u j
0) = (@�u) j
0(ii) If u 2 Cm(
), then u has weak derivatives in Lploc(
) up to order m for any p � 1, and theweak derivative @�u coincides a.e. with the classical derivative @j�ju(@x1)�1 :::(@xN )�N :(iii) If u 2 L1loc(
) has weak derivative @�u 2 L1loc(
) and if @�u has weak derivative @�(@�u)in L1loc(
) , �; �: multiindices, then u has weak derivative @�+�u in L1loc(
), and@�+�u = @�(@�u) .We give a proof of (iii) only: Notice that for ' 2 C10 (
) ; @�+�' = @�@�', and @�' 2 C10 (
).Whence Z
 u(@�+�') d� = Z u @�(@�') d� = (�1)j�j Z (@�u) (@�') d�= (�1)j�j+j�j Z @�(@�u) ' d� :The second equality is due to the fact that @�u 2 L1loc(
) and the last equality follows from@�(@�u) 2 L1loc(
). The de�nition of the weak derivative now shows @�+�u 2 L1loc(
) and@�+�u = @�(@�u).



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 16Example 1.1 Let 
 := (�1; 1) � R1 and u the Heavyside function:u(x) = ( 0 f�ur x < 01 f�ur x � 0 :Then u 2 Lp(
) for any p , and from Lemma 1:1 we get: if @1u exists weakly in L1loc(
) then @1u = 0in (�1; 0) [ (0; 1), whence @1u = 0, since f0g is of measure 0. However, for ' 2 C10 (�1; 1)Z(�1;1) u '0 d� = Z 10 '0(t) dt = �'(0) 6= � Z 0 � ' d� ;provided that '(0) 6= 0 which may certainly happen. We conclude that u does not have weak derivativesin L1loc(
).Example 1.2 Let 
 = U(0; 1) and u(x) = ln jxj.u de�nes an element in Lp(
) for any p 2 [1;1). According to the previous lemma we must have@k u(x) = xkjxj2 ; (1.2)provided that @ku exists weakly in L1loc(
).In the case of N = 1, the function de�ned by (1:2) does not represent an element in L1loc(
). Whencein this case @ku does not exist weakly in L1loc(
).For N � 2, the function de�ned by (1:2) represents an element in L1(
), more precisely an element ofLp(
) with 1 � p < N . Thus @ku exists weakly in Lp(
) ; 1 � p < N , provided that8'2C10 (
) Z
 ln jxj @k '(x) d�(x) = � Z
 xkjxj2 '(x) d�(x) :Now with S(0; R) := fx: jxj = Rg and by the Gau�'s Theorem:Z
 ln jxj @k'(x) d�(x)= limR!0 Z
nU(0;R) ln jxj @k '(x) d�(x)= limR!0 "� Z
nU(0;R) xkjxj2 '(x) d�(x)� ZS(0;R) lnR � xkR '(x) d�(x)#= � Z
 xkjxj2 '(x) d�(x) ;since the surface integral may be estimated byZS(0;R) � � � d�(x) � (max j'j)!N RN�1 lnR! 0 as R! 0 :Here, !N denotes the surface of the unit sphere in RN .Remark 1.1 We immediately used the multiindex notation. Thus we did not attempt to de�ne forexample @1@2u in a di�erent way from @2@1u . This is justi�ed by the fact that for ' 2 C10 (
) :@1@2' = @2@1' and whence R
 u @1@2' d� = R u @2@1 ' d� .



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 17We shall however use the notation @i@j u := @e(i)+e(j) u :Also we shall use @0 u := u :We are now in a position to introduce the \Sobolev-spaces". These are Lp-spaces of functions withweak derivatives up to some order. We will however only consider the case p = 2 . This is due tothe fact that we only deal with linear problems.De�nition 1.2 Let m 2 N . By Hm(
) we denote the space those elements in L2(
) which haveweak derivatives in L2(
) up to order m :Hm(
) := fu 2 L2(
): @�u 2 L2(
) for j�j � mg :For u; v 2 Hm(
) ; m 2 N , we introducehu ; v i
 := hu ; v i0;
 := Z
 u �v d� ; kuk
 := (hu ; u i0;
)1=2 (1.3)hu ; v im;
 := X0�j�j�m h @�u ; @�v i
 ; kukm;
 := (hu ; u im;
)1=2 (1.4)We shall sometimes write hu ; v i0;
 resp. kuk0;
 instead of hu ; v i
 resp. kuk
 , and when noconfusion can arise, we omit the indication of the domain 
 .Theorem 1.1 The mappingh � ; � im;
 : Hm(
)�Hm(
) �! C ; (u; v) 7�! hu ; v im;
is a scalar product in Hm(
), and with this scalar product Hm(
) is a Hilbert-space.Remark 1.2 A scalar product on a real or complex vector space X is a mapping of X �X into thereal or complex �eld K, [�; �] : X �X �! K ; (x;y) 7�! [x;y]such that for all x; y; z 2 X ; �; � 2 K [x; x] = [y; x] (1.5)[�x+ �z; y] = � [x; y] + � [z; y] (1.6)[x; x] > 0 for x 6= 0 : (1.7)Notice that (1:5) and (1:6) imply[x; �y + �z] = �[x; y] + �[x; z] : (1.8)



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 18Also [x; x] must be real by (1:5). Thus a scalar product is a hermitian, positive de�nte sesquilinearform on X .Then kxk := [x; x]1=2k � k de�nes a norm in X .One easily veri�es the properties (0:3) and (0:4) of a norm. To show that the triangle inequality (0:5)holds one needs the Cauchy { Schwarz inequality8x;y2X j[x; y]j � kxk kyk : (1.9)To prove it one may assume y 6= 0. Then with� := � [x; y]kyk2one obtains (1:9) from the inequality0 � [x+ �y; x+ �y] = kxk2 + 2Re �[x; y] + j�j2 kyk2= kxk2 � j[x; y]j2kyk2 :Using (1:9) one obtains for x; y 2 X :kx+ yk = (kxk2 + 2Re hx ; y i+ kyk2)1=2 � (kxk2 + 2 kxk kyk+ kyk2)1=2= kxk+ kyk :A linear space with a scalar product is called an inner product space. Such an inner product space isalways considered a normed space with the norm, which is de�ned by the scalar product. If it happensthat with this norm X is a Banach space, then it is called a Hilbert space.Finally we mention that the scalar product is continuous, i.e. if xn ! x ; yn ! y with respect to thenorm in X , then [xn; yn]! [x; y] .Proof of Theorem 1:1:It is easy to show that h � ; � im de�nes a scalar product on Hm(
) . So we concentrate on thecompleteness of Hm(
). We already mentioned in chapter 1. that L2(
) = H0(
) is a Banach{space when equipped with the L2-norm. But this norm is exactly the norm which comes from thescalar product h � ; � i0 in H0(
). Thus it remains to consider the case m � 1.Let (uk)k2N denote a Cauchy sequence in Hm(
). Thus there exists a sequence "k of positivenumbers tending to 0 with8k2N 8l�k kuk � ulkm = 0@ X0�j�j�m k@�uk � @�ulk21A1=2 � "k :



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 19Now for any � 2 NN0 ; j�j � mk@�uk � @�ulk � kuk � ulkmholds. Putting � = 0 we �nd that (uk)n2N is a Cauchy sequence in L2(
) and whence convergesin L2(
) to some u 2 L2(
). Moreover, for any 0 < j�j � m ; (@�uk) converges in L2(
) to someu� 2 L2(
).But then u has weak derivatives in L2(
) up to order m , namely @�u = u�: For any ' 2C10 (
) ; � 2 NN0 ; j�j � mZ
 u @�' d� = hu ; @� ' i = limk!1 huk ; @�' i= (�1)j�j limk!1 h @�uk ; ' i = (�1)j�j hu� ; ' i= (�1)j�j Z u� ' d� :Thus u 2 Hm(
) and kuk � ukm ! 0 as k !1. q.e.d.Remark 1.3 In order to prove u� = @�u , one may prove hu ; @�' i = hu� ; ' i for any ' 2 C10 (
),since ' 2 C10 (
), if and only if ' 2 C10 (
).For functions in Hm(
) we have the following version of Leibniz' ruleTheorem 1.2 Let u 2 Hm(
) and a 2 Cm(
) such that a and its derivation up to order m arebounded. Then a u 2 Hm(
), and for any multiindex � ; j�j � m :@�(a u) = X���  �� ! (@���a)(@�u) : (1.10)Proof: Notice that the right hand side of (1:10) belongs to L2(
) since @���a is bounded and@�u 2 L2(
) for any j�j � m ; � � �. Whence we have to prove the equalityh au ; @�' i = (�1)j�jh (X���  �� ! @���a @�u) ; ' i (1.11)for any ' 2 C10 (
) and j�j � m .We proceed by induction on m and start the induction with the trivial case m = 0 where (1:11)reduces to h au ; ' i = h au ; ' i.Thus assume now that (1:11) holds for functions in Hm0(
) resp. Cm0(
) and any j�j � m0provided that m0 < m ; m � 1. Let u 2 Hm(
) ; a 2 Cm and j�j = m . Then for ' 2 C10 (
) and



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 20by (0:25)h au ; @�' i = hu ; a @�' i= hu ; @�(a') i �P
<�  �
 ! hu ; @��
 a � @
 ' i= hu ; @�(�a' i �P
<�  �
 ! h (@��
 a)u ; @
 ' i= hu ; @�(a') i �P
<�  �
 ! (�1)j
j h @
((@��
 a)u) ; ' i : (1.12)
This last equality follows from the induction hypothesis by which one may even write@
 ((@��
 a) u) =X��
  
� ! @��� a @� u : (1.13)The function a' has compact support in 
 and is of class Cm(
). Using molli�ers we see thatthere exists a sequence 'n 2 C10 (
), such that 'n and its derivatives up to order m tend to a'and its derivatives uniformly with respect to x .Whence hu ; @�(a') i = limn!1 hu ; @�'n i = (�1)j�j limn!1 h @�u ; 'n i= (�1)j�j h @�u ; a' i = (�1)j�j h a@�u ; ' i : (1.14)We insert (1:13) and (1:14) into (1:12) and then interchange the order of summation. This yieldsh au ; @�' i (1.15)= (�1)j�jh a@�u ; ' i �X
<� X��
  �
 ! 
� ! (�1)j
jh @���a @�u ; ' i= (�1)j�jh a@�u ; ' i �X�<�0@ X��
<� �
 ! 
� ! (�1)j
j1A h @���a @�u ; ' iTo calculate the sum in the parenthesis we write 
 := � + � and obtainX��
<�  �
 ! 
� ! (�1)j
j= X��
<� �! 
!
! (�� 
)! (
 � �)! �! (�1)j
j= (�1)j�j �!�! (�� �)! X�<���  �� �� ! (�1)j�j= (�1)j�j  �� ! 240@ X�����  �� �� ! (�1)j�j1A� (�1)j���j 35= �(�1)j�j  �� ! ;



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 21the last equality following by (0:26). Insertion into (1:15) yieldsh au ; @�' i = (�1)j�j 0@h a@�u ; ' i+X�<�  �� ! h @���a @�u ; ' i1A= (�1)� h (X��� @���a @�u) ; ' i : q.e.d.We introduce a subspace of Hm(
):Hmb (
) := fu 2 Hm(
): supp u is bounded.g (1.16)There are two remarks to be made in connection with the de�nition of Hmb (
). At �rst, the notionof the support is not yet de�ned for elements u 2 L2(
). Notice that (0:1) does not yield a correctde�nition since it is not clear which representant of u should be chosen. On the other hand forsmooth functions ' , de�ned on 
 , a point x 2 RN does not belong to the support of ' ifand only if either x does not belong to 
 or there exists an open neighbourhood U of x , suchthat ' vanishes in U \
. This can be carried over to de�ne the support of a measurable functionu : 
! C: We de�ne the complement of supp u by
 n supp u := fx 2 
: u = 0 almost everywhere in 
 \ U(x; �) for some � > 0g (1.17)and then put supp u := 
 n (
 n supp u) : (1.18)Thus | and this is the second remark |Hmb (
) = Hm(
)if 
 is bounded.Therefore the following Corollary to the Leibniz' rule is nontrivial only for unbounded domains 
 :Corollary 1.1 Hmb (
) is dense in Hm(
).Sketch of the proof: Let u 2 Hm(
). One has to show that a sequence (un)n2N exists withun 2 Hmb (
) for all n and limn!1 ku� unkm;
 = 0 : (1.19)For ' 2 C10 (U(0; 2)) with ' � 1 in U(0; 1) we put'n(x) := '( 1n x) ; n 2 N ; x 2 RN :Then with the help of Lebesgue's theorem and Leibniz' rule one obtains (1:19) for un := 'nu .Using Corollary 1:1 one obtains



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 22Theorem 1.3 C10 (RN) is dense in Hm(RN ) .Proof: Let u 2 Hm(RN ) and � > 0 be given. One has to show the existence of some ' 2 C10 (RN )such that ku� 'km;RN < � :Corollary 1:1 guarantees the existence of some v 2 Hmb (RN ) withku� vkm;RN < �=2 : (1.20)Then for any " > 0 , j" � v := v"belongs to C10 (RN ). Moreover for j�j � m@� v"(x) = Z @�x j"(x� y) v(y) d�(y)= (�1)j�j Z @�y j"(x� y) v(y) d�(y) (1.21)= Z j"(x � y) @� v(y) d�(y) :The last equality is due to the facts that for any �xed x the function j"(x��) belongs to C10 (RN )and that @�v exists weakly.Formula (1:21) may be expressed in the form@�v" = @�(j" � v) = j" � (@�v) : (1.22)Now by Lemma 0:2 for "! 0 kj" � (@�v)� @�vk0;RN ! 0 :This combined with (1:22) yields kv" � vkm;RN ! 0as "! 0. Thus for su�ciently small " > 0 we havekv" � vkm;RN < �=2and the assertion follows by (1:20). q.e.d.In particular the proof of Theorem 1:3 shows:Lemma 1.2 If u 2 Hm(RN ) has compact support then j" � u 2 C10 (RN ) and tends to u inHm(RN ) as "! 0 .



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 23The proof of the following density result is due to N. Meyers and J. Serrin [3]:Theorem 1.4 Hm(
) \ C1(
) is dense in Hm(
).Proof: We introduce a special partition of unity on 
 . Notice however, that 
 is not compactso that Lemma 0:4 does not hold. With
n := fx 2 
: dist (x; @
) > �n ; jxj < n� gwe have for some su�ciently small � > 0 and for all n 2 N
n 6= ;
n �� 
n+1 �� 
[n2N 
n = 
 :Moreover let 
0 := 
�1 := ; :De�ne Kn := 
n n
n�1 ; Zn := 
n+1 n
n�2 :Then any Kn is compact and each x 2 
 belongs to at least one of the sets Kn. Moreover x hasa neighbourhood Ux which has nonempty intersections with at most three of the sets Zn.Let now  n 2 C10 (Zn) such that n � 0 ;  n = 1 in Kn :Then we may de�ne  (x) := 1Xn=1  n(x) for any x 2 
 :Notice that in Ux (de�ned as above) at most three terms in the sum do not vanish. Thus  2C1(
). Moreover  > 0 in 
 , since x belongs to at least one Kn .Then �n :=  n 2 C10 (Zn)and 1Xn=1 �n(x) = 1for any x 2 
. The family (�n)n2N is the \partition of unity" which we wanted to construct.



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 24For u 2 Hm(
) let un := �n u 2 Hm(
) :Notice that supp un �� Zn �� 
 :For given " > 0 we may �nd a sequence ("n)n2N with"n > 0 ; j"n � un 2 C10 (Zn) ; kj"n � un � unkm;
 < "2n :Then u"(x) := 1Xn=1 (j"n � un)(x)de�nes a function in C1(
), andku� u"km;
 � 1Xn=1 kj"n � un � unkm;
 < " 1Xn=1 2�n = " :This proves the density of C1(
) \Hm(
) in Hm(
). q.e.d.Until now nothing is assumed about the domain 
 . If one assumes some regularity about 
 thenone can prove that even C10 (
) := f' j
 : ' 2 C10 (RN )g (1.23)is dense in Hm(
). For this the segment property is su�cient:De�nition 1.3 A domain 
 � RN is said to have the segment property i� for any x̂2 @
 thereexist a neighbourhood V of x̂ and a non-zero vector y 2 RN , such that for any x 2 
 \ U theopen line segment (x; x+ y) := fx+ ty: t 2 (0; 1)g (1.24)is contained in 
 .Notice that points in @
 do not belong to 
!Another assumption on 
 is the assumption of smoothness:De�nition 1.4 A domain 
 � RN is said to be of class Cm ; m 2 N, i� for any z 2 @
 thereexist a neighbourhood V of z and a Cm- Di�eomorphism � of V onto the unit ball U(0; 1) :=U � RN with the following properties:�(V \ 
) = U+ := fx 2 U : xN > 0g (1.25)�(V \ @
) = Uo := fx 2 U : xN = 0g : (1.26)



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 25Then �(V n
) = U� := fx 2 U : xN < 0g : (1.27)Moreover it is assumed that the components of � and of its inverse ��1 have bounded derivativesup to order m.One may prove that the boundary of a domain of class Cm (resp. with segment property) maylocally be written as the graph of a Cm-function (resp. a C0-function) of (N � 1) variables.Moreover, if 
 is of class Cm then there exists a vector �eld � on 
 with components in Cm�1(
)such that for any x 2 @
, �(x) is normal to @
 at x , has norm 1 , and \points into exterior of
", i.e. x+ t�(x) 62 
 for su�ciently small positive t . On @
, these three conditions de�ne �(x)uniquely, and � j@
 is called \the outward unit normal �eld on @
".It is then not di�cult to show that any domain of class Cm ; m 2 N, has the segment property:In the De�nition 1:3 choose y as some negative multiple of �(x̂). In the book by J. Wloka [6] thevarious conditions on the domains are discussed very carefully.Theorem 1.5 C10 (
) is dense in Hm(
) if 
 has the segment property.For the proof we use the following lemma which should be known from the Calculus courseLemma 1.3 For f 2 Lp(RN ) ; p 2 [1;1), and z 2 RN let fz be given byfz(x) = f(x� z) for almost all x 2 RN :Then fz tends to f in Lp(RN ) when z tends to 0 in RN .Proof of Theorem 1:5: By Corollary 1:1 and Theorem 1:4 it su�ces to show that for anyu 2 Hmb (
) \ C1(
) with bounded support and any " > 0 one may �nd some ' 2 C10 (RN )satisfying ku� 'km;
 < " : (1.28)Let U(0; R) denote a ball containing the support of u . For any z 2 @
 \ K(0; R) the segmentproperty guarantees the existence of some neighbourhood Vz and some non-zero vector yz 2 RNsuch that 8x2Vz\
 (x; x+ yz) � 
 :From the collection of the Vz choose �nitely many neighbourhoods V1 := Vz1 ; � � � ; VK := VzK ,say, which cover the compact set @
 \ K(0; R) . y1; : : : ; yK denote the corresponding non-zerovectors, yk := yzk . Put V0 := 
 and choose a partition �0; �1; : : : ; �K of unity on 
 \ K(0; R)



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 26subordinate to the covering V0; : : : ; VK of 
 \K(0; R). Since �0u 2 C10 (
), (1:28) will follow iffor any k = 1; : : : ;K one can �nd ' 2 C10 (RN ) such thatk�ku� 'km;
 < "=K : (1.29)Thus we �x a k 2 f1; : : : ;Kg and write � := �k , V := Vk ; y := y(k), and (with � 2 NN0 )v := ( �u in V \ 
0 elsewhere ; v� := ( @�v in V \ 
0 elsewhere :For 0 < h < 1 we introduce vh and v�;h byvh(x) := v(x+ hy) ; v�;h := v�(x+ hy) ;i.e. we translate v and v� by the vector �hy . Then vh 2 C1(RN n �h), where:�h := (@
 \ supp �)� hy = fx: x+ hy 2 @
 \ supp �g ;and @�vh = v�;h in RN n �h. Notice that by the segment property �h � RN n
 .Then with uh := vh j
 and with the help of Lemma 1:3 we obtain as h tends to 0 :kuh � �uk2m;
 = kuh � �uk20;
 + X1�j�j�m k@�uh � @�(�u)k2� kvh � vk20;RN + X1�j�j�m kv�;h � v�k20;RN ! 0 :Whence with su�ciently small h > 0 the function ' in (1:29) may be chosen as' = �huhwhere �h 2 C10 (RN n �h) is such that �h � 1 in 
 \ U(0; R): For then ' 2 C10 (RN) and' j
= Uh . q.e.d.The Sobolev spaces Hm(
) are the candidates where the solutions to problems like (�1:7), (�1:8)should be located. But these spaces contain classes of functions which equal to each other outsideof sets of measure zero. However, the boundary of a domain usually is a set of measure zero. So,what does it mean for an element of Hm(
) to satisfy (�1:8), i.e. to attain certain values on @
 ?The following theorem gives an answer to this question in the case of m = 1:Theorem 1.6 Let 
 denote a bounded domain of class C2. Then there exists a unique continuouslinear operator 
0 | the trace operator | mapping from H1(
) into L2(@
) such that 
0' = ' j@
for any ' 2 C10 (
).Remark 1.4 If X and Y are two Banach spaces1 over the same �eld K := R or K := C then alinear operator T from X to Y by de�nition is a linear mapping from a linear subspace D(T ) of X1One also could assume X and Y to be normed linear spaces only. However in our applications we only haveto consider Banach spaces, and there are some results on linear operators which do not hold if X or Y are notcomplete.



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 27| the \domain of T" | into Y . We express this by the following notation:T : D(T ) � X ! Y ; (1.30)which means that T is a linear operator from X to Y with domain D(T ).Since X and whence D(T ) and Y are normed it is clear what it means that T is continuous: if(xn) � D(T ) tends to any x 2 D(T ) (with respect to the norm in X), then this implies that Txntends to Tx with respect to the norm of Y .For a linear operator T : D(T ) � X ! Y the following properties are equivalent(i) T is continuous at some point x 2 D(T ), i.e. xn ! x implies Txn ! Tx (if xn 2 D(T )).(ii) T is continuous.(iii) supfkTxkY : x 2 D(T ) ; kxkX = 1g < 1 :Here k � kX resp. k � kY are the norms in X resp. Y .Because of (iii) \continuous linear operators" usually also are called \bounded linear operators". Dueto linearity condition (iii) may equivalently be expressed by(iv) There exists c > 0 such that kTxkY � c kxkX for all x 2 D(T ).The smallest possible constant c in (iv) is just the supremum appearing in (iii), and is called \the normof T": kTkX;Y := supfkTxkY : x 2 D(T ) ; kxkX = 1g : (1.31)In the sequel we leave the subscripts X and Y when no confusion may arrise.We are now in the strange position that we have de�ned a \norm" without having de�ned a space inwhich this \norm" is a norm. So let us introduce some agreements: Whenever we talk about linearoperators we will tacitly assume that D(T ) is dense in X ; (1.32)unless not stated otherwise.If then T : D(T ) � X ! Yis a bounded linear operator then there exists a unique bounded linear operator ~T from X to Y withdomain D( ~T ) = X and such that Tx = ~Tx for x 2 D(T ): If x 2 X nD(T ), then a sequence (xn)n2Nexists in D(T ) tending to x (with respect to the norm in X). By (iv) we �nd for n 2 N ; m � n:kTxn � Txmk = kT (xn � xm)k � c kxn � xmk � c "n (1.33)



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 28with some sequence "n ! 0, since (xn) is a Cauchy sequence. Whence (Txn) is a Cauchy sequence,and since Y is a Banach space, it converges to some y 2 Y . It is now easy to see that y does notdepend on the choice of the special sequence (xn), that necessarily ~Tx must be equal to y , and thatthis de�nition in fact leads to a bounded linear operator ~T with the asserted properties.We may now tacitly assume that continuous linear operators are de�ned on the whole spaceX unlessexplicitly stated otherwise, and accordingly write T : X ! Y instead of (1:30).Now for two bounded linear operators T1; T2 from X to Y and numbers �; � 2 K we may de�ne thelinear combination � T1 + � T2 : X �! Y ; x 7�! �(T1x) + �(T2x)yielding another bounded linear operator. Thus the set B(X;Y ) of bounded linear operators from Xto Y can be considered a linear space, and in fact (1:31) de�nes a norm in this space, i.e. B(X;Y )is a normed linear space.Accordingly we also have the notion of convergence resp. Cauchy-convergence of a sequence of boundedlinear operators (Tn). Notice that if a sequence of bounded operators is Cauchy-convergent with respectto the norm in B(X;Y ) then because of8x 2 X ; n;m 2 N kTnx� Tmxk = k(Tn � Tm)xk � kTn � Tmk kxk (1.34)the sequence (Tnx) is Cauchy convergent in Y . But Y is a Banach space, whence Tnx converges tosome y 2 Y .It may then be shown that T : X �! Y ; x 7�! limn!1 Tnxde�nes a continuous linear operator and that Tn actually tends to T in B(X;Y ). Thus B(X;Y ) is aBanach-space.The preceding consideration suggests that exept from the convergence of (Tn) in B(X;Y ) one mightalso consider another notion of convergence of linear operators: it may happen that for any x 2 Xthe sequence Tnx converges in Y to some Tx. In this case the sequence Tn is said to convergestrongly to T . Convergence in B(X;Y ) is also called uniform convergence, and clearly a uniformlyconvergent sequence of linear operators is strongly convergent. However the conversion is wrong: thereexist strongly convergent sequences of operators which do not converge uniformly.For example, let  denote a function in C0(RN ) with  (0) = 1 ; limx!1  (x) = 0 . Let for n 2 Nthe function  n be de�ned by  n(x) =  ( xn ) ; x 2 RN :Then Tn : L2(RN ) �! L2(RN ) ; f 7�!  nf



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 29de�nes a sequence of bounded linear operators. With the help of Lebesgue's Theorem we conclude thatfor any f 2 L2(RN ) ZRN j nf � f j2 d� ! 0as n!1. Thus Tn converges to the identity I strongly. However Tn does not converge uniformly toI : Choose some f 2 C10 (RN ) with kfk0 = 1 . For any given n one may �nd a translate fn of f ,given by fn(x) = f(x + �ne1) : �n 2 R. say, such that the support of fn is contained in the subset
n � RN , where j nj is less than 1=2. ThenkTn � Ik2 � kTnfn � fnk2 = ZRN j1�  nj2 jfnj2 d�� 34 Z jfnj2 d� = 34 :Using the Fourier transform and the above argument one can show that the sequenceJn : L2(RN ) �! L2(RN ) ; f 7�! j1=n � fof molli�ers converges strongly but not unifornmly to the identity.Remark 1.5 In Theorem 1:6 the space L2(@
) appears. For the reader who is not familiar withLebesgue spaces on manifolds, embedded into RN , we just recall the de�nition, taylored to �t oursituation. From De�nition 1:4 and since @
 is compact, it may be covered by �nitely many openneighbourhoods V1; : : : ; VK , and we have corresponding Cm-Di�eomorphisms �(1); : : : ;�(K) , �(k)mapping Vk onto U(0; 1) =: U with the properties (1:25) - (1:27). Now	(k) : D := fy 2 RN�1: jyj < 1g ! RN	(k)(y) = (�(k))�1 ((y; 0))is a parametrization of @
\Vk. We call a function f : @
! C measurable resp. integrable i� f �	(k)is mearsurable resp. integrable for any k 2 f1; : : : ;Kg. Letting (�k)k=1;:::;K denote a partition of unityon @
 subordinate to V1; : : : ; VK , the integral of an integrable f is de�ned byZ@
 f d� := KXk=1 ZD (�kf) �	(k)(y) �(	(k)(y)) d�N�1(y)where �N�1 is the Lebesgue measure in RN�1, and�(	(k)(y)) = (det(@i	(k) � @j	(k))i;j=1;:::;N�1)1=2 ;a � b denoting the scalar product in RN .It can be shown that the notions of measurebility, integrability and the value of the integral do notdepend on the special choice of the covering V1; : : : ; VK , the Di�eomorphisms �(1); : : : ;�(k), and thepartition of unity so that these notions are well de�ned.



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 30In particular, a subset M of @
 is a null-set with respect to the surface measure � (a �{null{set)i� (	(k))�1(M) is a null-set in RN�1 (with respect to �N�1) for all k. Then L2(@
) consists of allequivalence-classes of complex valued measurable functions f on @
, for which jf j2 is integrable on@
. Of course two functions f1; f2 are equivalent i� f1 and f2 di�er from each other nowhere buton a �{null{set. With the scalar producth f ; g i@
 := Z@
 f g d�L2(@
) becomes a Hilbert space.Of course any continuous function on @
 is integrable, and the reader should remember Gau�' Theorem:Z
 @nu d� = Z@
 �nu d� ; n = 1; : : : ; N (1.35)holds for any u 2 C1(
), if 
 is of class C1 and bounded, �n denoting the n-th component of theoutward unit normal �eld on @
.We are now ready to prove Theorem 1:6:Proof of Theorem 1:6: All which we have to show is that the restriction of a function ' 2 C10 (
)to the boundary @
, which is a linear operator from H1(
) into L2(@
) with domain C10 (
), infact is a bounded linear operator. Thus we have to prove the existence of a constant c > 0 suchthat k'k2@
 := Z@
 j'j2 d� � c k'k21;
holds for any ' 2 C10 (
).Let � denote a C1-extension into 
 of the outward unit normal on @
.Then by (1:35) k'k2@
 = NXn=1 Z@
 �n(�n j'j2) d�= NXn=1 Z
 @n(�n j'j2) d�= Z
 "( NXn=1 @n �n) j'j2 + �n 2Re (@n') '# d�� c k'k21;
 ;where c depends on bounds for the �n and its derivative. Now according to Remark 1:4 foru 2 H1(
), 
0u is the limit in L2(@
) of 'n j@
 where 'n 2 C10 (
) is such that ku� 'nk1 ! 0 .q.e.d.We call Theorem 1:6 the weak trace theorem. The attribute `weak' is due to the fact that Theorem1:6 does not characterize the range of the trace operator 
0. Indeed, this is not the whole of L2(@
)but a dense subspace, called H1=2(@
).



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 31As a corollary we obtain the rule of partial integration:Corollary 1.2 If 
 is a bounded domain of class C2 and 
0 denotes the trace operator, then forall u; v 2 H1(
) ; n = 1; : : : ; Nh @nu ; v i0;
 = � hu ; @nv i0;
 + h �n
0u ; 
0v i@
 :Proof:For u; v 2 C10 (
) the above formula is just (1:35) applied to uv instead of u . For u; v 2H1(
) let (un); (vn) denote sequences in C10 (
) which tend to u resp. v in H1(
). Then(@nuk); (vk); (uk); (@nvk); (
0uk) and (
0vk) tend to @nu; v; u; @nv; 
0u and 
0v respectively inL2(
) resp. L2(@
). The assertion follows by the continuity of the scalar products in L2(
) resp.L2(@
). q.e.d.Remark 1.6 For a linear operatorT : D(T ) � X ! Y ; X; Y Banach spacesthe kernel of T is denoted by N(T ):N(T ) := fx 2 X: Tx = 0g :N(T ) is always a linear subspace of X . It need not necessarily be a closed subspace, since xn ! x inX and Txn = 0 need neither imply x 2 D(T ) nor Tx = 0. However if T 2 B(X;Y ) then N(T ) is aclosed subspace of X .We now want to characterize the kernel of the trace operator:Theorem 1.7 Let 
 denote a bounded domain of class C2 and 
0 denote the trace operator. Thenu 2 N(
0) if and only if there exists a sequence ('n) in C10 (
) such thatku� 'nk1 ! 0 : (1.36)Proof: Since 
0('n) = 'n j@
= 0 for 'n 2 C10 (
), (1:36) implies that u belongs to N(
0).On the other hand, let u 2 N(
0). We let v denote the continuation of u by 0 into the wholeof RN . Then v 2 L2(RN ) and we claim that v 2 H1(RN). Indeed, for any ' 2 C10 (RN ) we haveby Corollary 1:2 for any u 2 f1; : : : ; Ng:h v ; @n' i0;RN = hu ; @n' i0;
 = � h @nu ; ' i0;
 :In the last equation we used 
0u = 0. Thus the continuation by 0 of @nu is the weak derivativeof v .



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 32We now introduce the �nite covering V1; : : : ; VK of @
 and the vectors y1; : : : ; yK 2 RN n f0gguaranteed by the segment property and the compactness of @
. With V0 := 
 let �0; : : : ; �Kdenote a partition of unity on 
 subordinate to the covering V0; : : : ; VK of 
 It su�ces to showthat �kv ; k 2 f0; : : : ;Kg, can be approximated in H1(RN ), by C10 (
)-functions. This is clear for�0v: Since supp (�0v) �� 
 we have j" � (�0v) 2 C10 (
) if " is su�ciently small and by Lemma1:2 j" � (�0v) tends to �0v in Hm(
) as "! 0.Thus let k 2 f1; : : : ;Kg, let us omit the index k from now on, and put ~v := �v . For any h > 0the translate ~vh given by ~vh(x) = ~v(x� hy)belongs toH1(RN ): By coordinate transformation one obtains for all ' 2 C10 (RN ) with '�h(x) :='(x+ hy): ZRN ~vh@n' d� = Z
 ~v@n'�h d� = � Z
 @n~v'�h d�= � ZRN (@n~v)h ' d� ;where (@n~v)h denotes the translate of @n~v. Thus ~vh 2 H1(RN ) ; @n~vh = (@n~v)h. It follows that~vn tends to ~v in H1(RN ) as h! 0. On the other hand, by the segment property,supp ~vh �� 
 if h < 1 :Thus, given " > 0 , �x 1 > h > 0 such that k~vh � ~vk1;RN < "=2 . Then for su�ciently small� > 0 ; j� � ~vh 2 C10 (
) and kj� � ~vh � ~vhkRN < "=2 . An application of the triangle inequalityconcludes the proof. q.e.d.If X is a Banach space and Z is some (linear) subspace of X , the closure Z of Z in X , i.e.Z := ZX := fz 2 X: kzn � zkX ! 0 for some sequence (zn) in Zg ;is a closed linear subspace. Forgetting about X , Z itself is a Banach space or even a Hilbertspace if X is a Hilbert space. Therefore the space (m 2 N)Hm0 (
) := C10 (
)Hm(
) ; (1.37)i.e. the closure of the linear subspace C10 (
) in Hm(
), is a closed linear subspace of Hm(
),and may be also considered a Hilbert space itself with h � ; � im as a scalar product. Evidently,au 2 Hm0 (
) if a 2 C10 (
) and u 2 Hm(
) or if a 2 C10 (
) and u 2 Hm0 (
).What we just proved can now be expressed asN(
0) = H10 (
) ; (1.38)provided that 
 and 
0 are as in Theorem 1:7. We take (1:38) as a motivation to de�neDe�nition 1.5 Let 
 denote any domain in RN . An element u 2 H1(
) is said to vanish at theboundary @
 , i� u 2 H10 (
).



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 33We conclude this chapter by a discription of the behavior of Hm(
) under di�eomorphismsDe�nition 1.6 Let m 2 N. By a regular Cm-di�eomorphism of some domain 
 � RN onto somedomain 
� � RN we mean an injective mapping� : 
! RNwith image �(
) = 
� , the components of which have bounded and continuous partial derivatives@� �n up to order m . Moreover the determinants of the Jacobian's �0(x) = (@1�; : : : ; @N�)(x)of � must be bounded away from 0 , independent of x:9c>0 8x2
 jdet� 0(x)j � c :If � is a regular Cm-di�eomorphism of 
 onto 
� then its inverse ��1 is a regular Cm-di�eomorphism of 
� onto 
 . With � a pullback operator �� is associated which maps the linearspace Cm(
�) onto Cm(
) by�� : Cm(
�) �! Cm(
) ; u 7�! u �� ; (1.39)i.e. ��u is just the composition of u with � . One may show by induction on the order j�j of � :Let Ak denote the number of multiindices of order less or equal to k . Then for all multiindices�; � with 1 � j�j � j�j � m there exist polynomials p�;� in N � Aj�j variables such that for allu 2 Cm(
�) @�(u ��) = X1�j�j�j�j p�� �f@��ng1�j�j�j�j;1�n�N� (@�u) �� : (1.40)This shows that in fact �� maps Cm(
�) into Cm(
). This mapping is bijective. Its inverse is(��1)� , the pullback of ��1. Finally �� is linear.From (1:40) we obtain for u 2 Cm(
) \Hm(
)k@�(u ��)k2
 = R
 ���P1�j�j�j�j p��(f@��ng)(@�u) �����2 d�= R
� ���h 1jdet� 0j1=2 P p��(@��n))i ���1(@�u)���2 d�� c kuk2m;
� (1.41)with some constant c depending on the bounds for the derivatives of � and on the lower boundfor jdet� 0j .(1:41) implies that �� : Cm(
�) \Hm(
�) � Hm(
�)! Hm(
)is a continuous linear operator from Hm(
�) into Hm(
) and whence can be continued to thewhole of Hm(
) as a continuous linear operator. If ~u denotes a representant of some element uin Hm(
�), then ~u �� is a representant of ��u 2 Hm(
).Altogether we have proved:



CHAPTER 1. THE CALCULUS OF WEAK DERIVATIVES 34Theorem 1.8 Let m 2 N and � denote a regular Cm-di�eomorphism of the domain 
 onto thedomain 
� . Then �� : Hm(
�) �! Hm(
) ; u 7�! u ��de�nes a bounded linear operator from Hm(
�) into Hm(
). This operator is bijective and itsinverse operator is (��1)� : Hm(
) �! Hm(
�) ; v 7�! v ���1 ;whence (��)�1 is a bounded linear operator, too.Remark 1.7 If T : D(T ) � X ! Y is an injective linear operator from the Banach space X intothe Banach space Y then the inverse mappingT�1 : R(T ) := T (D(T )) � Y �! X ; Tx 7�! xis a linear operator from Y to X with domain R(T ), which need not be dense in Y . T�1 is calledthe inverse of T . Notice that a linear operator T is injective i� N(T ) = f0g , i.e. x = 0 is the onlysolution of the equation Tx = 0 .A fundamental theorem of functional Analysis, the \Bounded Inverse Theorem" states, that the inverseof an injective bounded linear operator T : X ! Y is itself bounded, provided that the range R(T ) ofT is closed. For the proof of Theorem 1:8, however, the \Bounded Inverse Theorem" was not needed.



Chapter 2
Solutions of the Dirichlet problem
From now on we will consider boundary value problems of the typeLu := NXn;m=1 anm @n@m u+ NXn=1 bn @n u+ cu = f in 
 (2.1)u j@
 = g : (2.2)Here anm ; bn ; c ; f and g denote (given) measurable complex valued functions on some domain
 � RN and on @
 respectively. f and g are the data of the problem, anm ; bn , andc (n;m = 1; : : : ; N) are called the coe�cients of the di�erential expression L . Such a di�erentialexpression may be considered as a linear mapping of C2(
) into the space of measurable functionson 
: The value of Lu at the point x is the speci�c linear combinationP anm(x) @n@m u(x) +P bn(x) @n u(x) + c(x) u(x) of u and its derivatives up to the second order in x.When in Linear Algebra systems Ax = b of linear equations are discussed, one �rst of all thinksof A as a �xed given matrix and is interested in the dependence of the solutions x on the righthand side b . You may compare the di�erential expression with such a matrix and the data f; gwith the right hand side.It is crucial to be very precise about the notion of a solution of (2:1) and (2:2). In order to de�nethe various notions, it is important to make several assumptions on the coe�cients and on thedata: otherwise certain notions cannot be written down.We start with the de�nition of a classical solution:De�nition 2.1 Suppose that the coe�cients anm ; bn ; c belong to C0(
), and let the data f resp.g belong to C0(
) resp. C0(@
). By a classical solution of (2:1), (2:2) we mean some functionu 2 C2(
) \ C0(
) for which (2:1) and (2:2) hold.35



CHAPTER 2. SOLUTIONS OF THE DIRICHLET PROBLEM 36In the notion of a classical solution the derivatives @n@mu, @nu are (classical) partial derivativesas they had been de�ned in the Calculus course.We might as well assume that the solutions belong to some Sobolev space and the most naturalassumption is to assume them in H2(
). But then some di�culties arrise concerning the equation(2:2): It is obvious that the trace operator (c.f. Theorem 1:6) might be used to express (2:2). Butwe did not characterize the image of H1(
) under 
0. In fact, for solutions in H2(
) one wouldhave to characterize the image of H2(
) under 
0 as well, but one might express this within anexistence theorem. To avoid this di�culty one replaces in (2:2) g by the trace of some knownfunction from H1(
), again denoted by g :
0u = 
0g : (2.3)In order to write down (2:3) one has to assume that 
 is a bounded domain of class C2 . Thiscan be avoided by the diction from De�nition 1:5.De�nition 2.2 Suppose that the coe�cients anm ; bn ; c belong to L1(
), and let f resp. gbelong to L2(
) resp. H1(
). By a strong solution of the problemLu = f ; u j@
= g j@
 (2.4)we mean an element u 2 H2(
) for which (2:1) holds and u� g vanishes at the boundary @
 .Thus the boundary condition is expressed byu� g 2 H10 (
) ; (2.5)and in (2:1) the derivatives must be interpreted as the weak derivatives of u .Strong solutions have the disadvantage that because of (2:5) one can expect their existence only ifg 2 H2(
), and even then one needs additional assumptions on the smoothness of the coe�cientsand of the boundary @
 .The proof of an existence theorem is the easier the less properties of a solution one has to prove.Suppose therefore that u is a strong solution of the problem `Lu = f ; u j@
= g j@
' for somef 2 L2(
) ; g 2 H1(
). Now `Lu = f ' is equivalent withhLu ; ' i = h f ; ' i (2.6)for all ' 2 C10 (
) by Lemma 0:3.If anm 2 C1(
) for n;m = 1; : : : ; N and if anm and its derivatives are bounded then any of thefunctions anm @m u belong to H1(
) by Leibniz' rule. ThenZ
 anm @n@m u � ' d� (2.7)



CHAPTER 2. SOLUTIONS OF THE DIRICHLET PROBLEM 37= Z
 @n(anm@m u)' d�� Z
 (@nanm)@m u � ' d�= � Z
(anm@m u) � (@n') d�� Z
(@nanm)@n u ' d� :The second equality follows (by partial integration) from the de�nition of the weak derivatives ofanm @m u . Plugging (2:7) into the left hand side of (2:6) this formula may be written asB(u; ') := NXn;m=1h anm@nu ; @n' i � NXm=1h am@mu ; ' i � h cu ; ' i = �h f ; ' i ; (2.8)where we have put am := bm � NXn=1 (@nanm) : (2.9)Thus for a strong solution u the identity (2:8) must hold for all ' 2 C10 (
). Equation (2:8) canbe used to de�ne a notion of a solution without talking about its second derivatives:De�nition 2.3 Suppose that the coe�cients anm belong to C1(
). Assume further that anm, itsderivatives, bn and c are bounded (n;m = 1; : : : ; N), and that the data f; g belong to L2(
)and H1(
) respectively. By a variational solution of the problem (2:4) we mean an element u ofH1(
) for which u� g vanishes at the boundary, and (2:8) holds for any ' 2 C10 (
). B is calleda Dirichlet form for L .An approximation argument yields:Lemma 2.1 Under the assumptions of De�nition 2:3 the validity of (2:8) for all ' 2 C10 (
) isequivalent with the validity of (2:8) for all ' 2 H10 (
).Let L1; L2 denote two di�erential expressionsLj = NXn;m=1 a(j)nm @n@m + NXn=1 bn @n + c ;such that L1' = L2' for any ' 2 C1(
). This means that we must have a(1)nm+a(1)mn = a(2)nm+a(2)mn.The notion of a variational solution seems to depend on whether one deals with L1 or with L2.However, this is not true: According to (2:8) we formally have two di�erent forms B1 resp. B2 forL1 resp. L2 . But for any  2 C1(
) and ' 2 C10 (
) we haveBj( ; ') = �hLj ; ' i :Thus B1( ; ') = B2( ; ') for all  2 C1(
) and ' 2 C10 (
). A density argument then yieldsB1(u; ') = B2(u; ') for all u 2 H1(
) and ' 2 C10 (
).One can try to weaken the notion of a variational solution: if anm 2 C2(
) ; bn 2 C1(
) then in(2:8) another partial integration can be arried out which yieldshu ; L�' i = h f ; ' i (2.10)



CHAPTER 2. SOLUTIONS OF THE DIRICHLET PROBLEM 38with L�' := NXn;m=1 anm @n@m '+ NXn=1 b�n @n '+ c�' (2.11)b�n := ( NXm=1 @m(anm + amn)) � bn (2.12)c� := c� NXm=1 @m bm + NXn;m=1 @n@m anm : (2.13)L� is called the formal adjoint of L , and we introduce:De�nition 2.4 u 2 L2loc(
) is called a weak solution of Lu = f , if (2:10) holds for all ' 2 C10 (
).Here the coe�cients of L are assumed to satisfy anm 2 C2(
) ; bn 2 C1(
) ; c 2 L1l oc(
), andL� is given by (2:11), (2:12), (2:13).For our boundary value problem the notion of a weak solution will not be advantageous: In orderto express the boundary condition we have to assume a possible solution to belong to H1(
). Butthen the partial integration which led from (2:8) to (2:10) can be reversed and we end up with avariational solution.The name `variational solution' is due to the fact that in certain cases such a solution can becharacterized as the minimizer of some function from a subset of H1(
) into R . Such functionsare called functionals. For example in the case of the Laplace operator, i.e. amn = �mn ; bn = c = 0,the problem to �nd a variational solution for the data f 2 L2(
) ; g 2 H1(
) is equivalent withthe problem:(DP) Find the minimizer u 2 H1(
) of the functionalDf : H1(
) �! R ; v 7�! NXm=1 h @nv ; @nv i+ 2 Re h f ; v i (2.14)among all elements v of H1(
) for which v � g 2 H10 (
).To see this, assume �rst that u is a variational solution, then for any v 2 H1(
) with v�g 2 H10 (
):Df (v) = NXn=1 h @nu+ @n(v � u) ; @nu+ @n(v � u) i+ 2 Re h f ; u+ (v � u) i= Df (u) + NXn=1 h @n(v � u) ; @n(v � u) i+ 2 Re [ NXn=1 h @nu ; @n(v � u) i+ h f ; v � u i ]� Df (u) :For the second term is nonnegative and the third term vanishes by Lemma 2:1 because v � u =(v � g)� (u� g) 2 H10 (
).



CHAPTER 2. SOLUTIONS OF THE DIRICHLET PROBLEM 39On the other hand assume that u minimizes Df among all v 2 H1(
) for which v � g 2 H10 (
).Choose any ' 2 C10 (
). Then for any z := rei� 2 C ; � 2 [0; 2�) ; r � 0:0 � Df (u+ z')�Df (u)= ( NXn=1 h @n' ; @n' i ) � r2 + 2r Re [e�i� ( NXn=1 h @nu ; @n' i+ h f ; ' i)] :We now �x � such that the expression in the brackets is real, but not positive. However anypolynomial in r of the form Ar2 + Br with A;B 2 R ; B < 0 � A attains negative values forsome positive r . Whence NXn=1 h @nu ; @n' i + h f ; ' i = 0 :' was an arbitrary test-function. Therefore u is a variational solution.(DP) is called `Dirichlet's principle'. This name was introduced by B. Riemann (1826 - 1866)who | as a student | learnt to know it for f = 0 in Dirichlet's lectures. In those days, ofcourse, the space H1(
) was not yet known and classically di�erentiable functions were usedinstead. Nevertheless it was commonly accepted to use it in an existence proof for the Dirichletproblem `�u = 0 in 
, u j@
= g': In this case the Dirichlet functional is nonnegative and themathematicians did not hesitate to conclude that it must have a minimum. However Weierstrasspointed out that in this conclusion the notions of a minimum and an in�mum were interchanged.It lasted until 1900 that Hilbert was able to use Dirichlet's principle for an existence proof (undersuitable restrictions). His techniques were extented by R. Courant and his pupils to the directmethods of the Calculus of Variations.After what was said above it is easy to guess that our �rst aim is to look for variational solutions.We will then show that for g 2 H2(
) and smooth boundary @
 these variational solutions in factare strong solutions. For still smoother f , g and @
 they will even be classical solutions. Theoremsof this kind are called \regularity theorems".There is a crucial necessary condition for the existence proofs for the Dirichlet problem: thedi�erential operator L must be elliptic. The ellipticity allows to estimatePNn;m=1h anm@nv ; @mv ifrom below by PNn=1 k@nvk2 (times some constant). There are several notions of ellipticity. Forour approach we have to use a condition which in the literature is called strong, uniform ellipticity.Since we will not deal with any other concept of ellipticity we will not use these two adjectives.De�nition 2.5 A di�erential expression L =PNn;m=1 anm @n@m + bn @n + c in some domain 
is called (uniformly strongly) elliptic in 
 i� there exists a constant E > 0 such that for all x 2 
and all � 2 RN Re NXm;n=1 amn(x)�m�n � E j�j2 : (2.15)The largest constant E which �ts into (2:15) is called the ellipticity constant (of L in 
).



CHAPTER 2. SOLUTIONS OF THE DIRICHLET PROBLEM 40The condition says that any eigenvalue of the matrices A(x) with entries 12 Re (anm(x) + amn(x))is not less than E . Whence the surfacesS(x) = f� 2 RN : Re NXm;n=1 amn(x)�m�n = 1gare ellipsoids and lie within the circle of radius 1=E.The notions of hyperbolicity and parabolicity are also de�ned in terms of the eigenvalues of thematrix A(x): One speaks of hyperbolicity at some x if A(x) has as well positive as negativeeigenvalues but not the eigenvalue 0 . Parabolicity means that all eigenvalues are nonnegative butat least one is 0 . However we shall not need these notions and so we kept them vague.



Chapter 3
Some Functional Analysis inHilbert Space
In this chapter we introduce some facts on Hilbert spaces which are needed for the solution of theDirichlet problem in the so called strongly coercive case. This is the case, in which����� NXn;m=1 h anm@nv ; @mv i+ NXn=1 h an@nv ; v i+ h cv ; v i����� � c+kvk21 (3.1)holds for all v 2 H10 (
) with some constant c+ > 0, independent of v .For this purpose we shall need the Riesz{representation theorem, the approximation theorem, theprojection theorem and the Lax{Milgram theorem. To formulate the Riesz{representation theoremwe needDe�nition 3.1 Let X be a Banach space over the �eld K = C or K = R. A linear functionalF on X is a linear operator from X into K:F : D(F ) � X ! K :D(F ) does not need to be dense or closed. However if we speak of a continuous linear functionalwe will assume that D(F ) = X, unless stated otherwise. The space B(X;K) of continuous linearfunctionals on X is denoted by X 0 and is called the dual space of X . If F is a linear functionaland K = C, then F : D(F ) � X �! C ; x 7�! F (x) is called an antilinear functional. F iscontinuous if and only if F is continuous.For example for any �xed u 2 H1(
) the mapping�F : H10 (
) �! Cv 7�! PNn;m=1 h anm@nu ; @mv i+PNn=1 h an@nu ; v i+ h cu ; v i (3.2)41



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 42is a continuous antilinear functional on H10 (
) if anm ; an ; c 2 L1(
).The representation theorem by F. Riesz (1880{1956) states that any linear functional on a Hilbertspace can be written as the scalar product with a �xed vector:Theorem 3.1 If H is a Hilbert space then for any linear functional F : H ! K there exists aunique vector v 2 H such that Fx = hx ; v i (3.3)for all x 2 H. Moreover, kvk = kFk :Here h � ; � i resp. k � k denote scalar product and norm in H . The norm in H 0 = B(H;K) isdenoted by k � k as well.Proof: The proof is carried out in a way which shows the relationship with variational problems.Let � : H �! R ; x 7�! kxk2 � 2 Re F (x) : (3.4)Then � is bounded from below:�(x) � kxk2 � 2kFk kxk � mint2R (t2 � (2kFk) t) = �kFk2 :We prove that � attains its minimum at some v 2 H and that with this v the representation(3:3) is valid.We make use of the parallelogram equalitykv + wk2 + kv � wk2 = 2kvk2 + 2kwk2 (3.5)which is valid for all v; w 2 H , as is proved by direct calculation. In fact the validity of (3:5) forall elements v; w from a normed space V characterizes V as an inner product space.Since � is bounded from below it has an in�mum , � 2 R say. There exists a sequence (vn) inH such that �(vn) tends to � . Assume that " > 0 is given and m;n 2 N are so large that�(vn) < �+ "=4 ; �(vm) < �+ "=4 :Then kvn � vmk2 = 2kvnk2 + 2kvmk2 � kvn + vmk2= 2�(vn) + 2�(vm)� 4 [ k12(vn + vm)k2 � 2 Re F (12(vn + vm)) ]< 4�+ "� 4 �(12(vn + vm)) � " :since �(y) � � for any y 2 H .



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 43Thus (vn) is a Cauchy sequence in H , and by the completeness of H , has a limit v 2 H . Since� is continuous we conclude �(v) = limn!1 �(vn) = � , whence v is a minimizer of � .Let now x 2 H be arbitrary and z := rei� 2 C ; r > 0 ; � 2 [0; 2�). (In case K = R we choose� = 0 or � = �).Then (c.f. the reasoning below the introduction of Dirichlet's principle):0 � �(v + zx)� �(v) = r2 kxk2 + 2r Re e+i�(hx ; v i � F (x)) : (3.6)Choose � such that Re �ei�(hx ; v i � F (x))� =: jhx ; v i � F (x)j :If hx ; v i � F (x) 6= 0 then there exists r > 0 such that the right side of (3:6) is less than 0 . Sincex was arbitrary we have just shown that for all x 2 Hhx ; v i = F (x) :By the Cauchy Schwarz inequality thenjFxj � kvk kxk ;whence kFk � kvk . On the other hand with x := v :kvk2 = h v ; v i = F (v) � kFk kvk :Thus kFk � kvk and we conclude kFk = kvk .If there is a second element w 2 H such that for all x 2 Hhx ; w i = F (x) ;then kv � wk2 = h v � w ; v i � h v � w ; w i = F (v � w) � F (v � w) = 0 ;i.e. v = w . This proves the representation theorem. q.e.d.Corollary 3.1 Let 
 denote any domain in RN ; f 2 L2(
) and g 2 H1(
). Then there existsa unique variational solution u of `�u� u = f ; u j@
 = g j@
 '.Proof: We have to show that there exists a unique u 2 H1(
) with u� g 2 H10 (
) andNXn=1 h @nu ; @n' i + hu ; ' i = � h f ; ' i (3.7)for all ' 2 H10 (
). Putting u � g =: v this is equivalent with the unique existence of v 2 H10 (
)such that for all ' 2 H10 (
) h v ; ' i1 = � h f ; ' i � h g ; ' i1 : (3.8)



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 44Instead of (3:8) we might as well writeh' ; v i1 = � h' ; f i � h' ; g i1 : (3.9)But F : H10 (
) �! C ; ' 7�! � h' ; f i � h' ; g i1is a continuous linear functional on H10 (
): Linearity is clear, continuity follows by the estimatejF (')j � jh' ; f ij+ jh' ; g i1j (3.10)� kfk k'k+ kgk1 k'k1� (kfk+ kgk1) k'k1 ;since k'k � k'k1 . By the Riesz representation theorem there exists a unique v 2 H10 (
) such thath' ; v i1 = F (')for all ' 2 H10 (
). q.e.d.Remark 3.1 We use the notations from the proof above. Notice, that by (3:10)kvk1 = kFk � kfk + kgk1 ;hence with u = v + g: kuk1 � kvk1 + kgk1 � kfk+ 2 kgk1 : (3.11)The Cartesian product of two Hilbert spaces ~H; Ĥ is a Hilbert space ~H � Ĥ itself, if one introducesthe scalar product h (~x; x̂) ; (~y; ŷ) i ~H�Ĥ := h ~x ; ~y i ~H + h x̂ ; ŷ iĤ :The data (f; g) of the Dirichletproblem are elements of the Cartesian product L2(
)�H1(
) and wemay de�ne G : L2(
)�H1(
) �! H1(
) ; (f; g) 7�! uwhere u is the variational solution of `�u + u = f ; u j@
= g j@
'. G is a linear operator as is easilychecked. (3:11) implies that G is continuous since the right hand side may be estimated further by51=2 � (kfk2 + kgk21)1=2, which is 51=2 times the norm of (f; g) in L2(
)�H1(
).We now use the representation theorem for a proof of the approximation theorem:Theorem 3.2 Let H be a Hilbert space and M some closed subspace of H . For any x 2 Hthere exists a unique v 2M such thatkx� vk = d = miny2M kx� yk : (3.12)This v is characterized by hx� v ; y i = 0 for all y 2M : (3.13)



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 45Proof: If v 2M satis�es (3:13), then for any y 2M :kx� yk2 = kx� v + (v � y)k2 = kx� vk2 + 2 Re hx� v ; v � y i+ kv � yk2= kx� vk2 + kv � yk2 :The last equality follows from (3:13) and the fact that v � y 2 M . From the equation above wesee that kv � yk will be larger than d unless y = v. This means that if v satis�es (3:13) it is theunique minimizer of (3:12).Thus we have to prove the existence of some v for which (3:13) or equivalentlyh y ; v i = h y ; x i (3.14)holds for all y 2M . But F : M �! K ; y 7�! h y ; x iis a continuous linear functional on M and by Theorem 3:1 one may �nd v 2M such that (3:14)holds for all y 2 M . Notice, that we used here that a closed subspace of a Hilbert space can beconsidered a Hilbert space itself. q.e.d.Theorem 3:2 was proved with the help of Theorem 3:1 One may as well do this the other wayround.From the approximation theorem we obtain the projection theorem. For this we introduce somenotations. For some subset S of a Hilbert space H letS? := fy 2 H: h y ; s i = 0 for all s 2 Sg :S? is called the orthogonal complement of S (in H ) and it is easy to see that S? is always aclosed linear subspace of H . Moreover, if S is a subspace of H then its orthogonal complementis the same as that of its closure: S? = ( S )? :The projection theorem now readsTheorem 3.3 Let M denote a closed subspace of the Hilbert space H . Then for any x 2 H thereexist a unique y 2M and a unique z 2M? such thatx = y + z :Moreover, Pythagoras' theorem kxk2 = kyk2 + kzk2is valid.



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 46Proof: For any x 2 H we can �nd some y 2M such thatkx� yk = minm2M kx�mk :Putting z := x� y we �nd z 2 M? by (3:13), and whence the existence of y 2 M ; z 2 M? withx = y + z is proved.Pythagoras' theorem is a direct consequence of the orthogonality of y and z :ky + zk2 = kyk2 + kzk2 + 2 Re h y ; z i = kyk2 + kzk2 :Now assume that there is a second pair ŷinM ; ẑ 2 M̂ with x = ŷ+ ẑ. Then y�ŷ 2M; z� ẑ 2M?and (y � ŷ) + (z + ẑ) = 0 . Consequently by Pythagoras' theorem ky � ŷk2 + kz � ẑk2 = 0 , i.e.y = ŷ and z = ẑ. This shows that the decomposition of x is unique. q.e.d.As a corollary we noteCorollary 3.2 For any subspace M of a Hilbert space H(M?)? = M :Proof: Of courseM � (M?)? and since orthogonal complements are closed, M � (M?)? . Since(M)? =M? , any x 2 (M?)? can be written asx = y + z ; thus 0 = z + (y � x)where y 2M and z 2M? . Since y�x 2 (M?)? we have by Pythagoras' theorem kzk2+ky�xk2 =0 which implies z = 0 and x = y 2M . q.e.d.Theorem 3:3 can be written in the formH = M � M? (3.15)for any closed subspace M of a Hilbert space H . (3:15) should be read: H is the direct sum ofM and M? .If M1 and M2 are subspaces of H , one de�nesM1 +M2 := fy + z: y 2M1 ; z 2M2g :The notation M1 �M2 means M1 +M2 and additionally expresses that M1 \M2 = f0g. ThusM1 +M2 = M1 �M2 :, M1 \M2 = f0g :The sum M1 +M2 always is a subspace of H .



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 47If M1 +M2 is direct, then the representation y + z of any x 2M1 +M2 is unique.Moreover if x1 = y1 + z1 ; x2 = y2 + z2 ; y1; y2 2M2 ; z1; z2 2M2 then for any �; � 2 K:� x1 + � x2 = (�y1 + �y2) + (�z1 + �z2) ;and �y1 + �y2 2M1 ; �z1 + �z2 2M2 . Thus, if H is a direct sum of two subspaces M1 and M2,then there exist two linear operatorsP1 ; P2 : H ! Hsuch that P1(y + z) = y ; P2(y + z) = zfor any y 2 M1; z 2 M2 . P1 and P2 are called projections of H onto M1 resp. M2 along M2resp. M1. Of course, P2 = I � P1 ; I : the identity ; (3.16)P1 P1 = P1 ; P2 P2 = P2 and (3.17)P1 P2 = 0 : (3.18)In the case of M1 :=M ; M2 :=M? these projections are called orthogonal projections onto Mresp. onto M? . Denoting the orthogonal projection onto M by P and putting Q := I � P , we�nd by Pythagoras theorem: kPxk2 + kQxk2 = kxk2 :Therefore kPxk � kxk ; kQxk � kxk (3.19)for all x 2 H which implies that P and Q are bounded linear operators H into H andkPk = kQk = 1 ;provided that neither M nor M? are the whole of H . Of course (3:19) only implies kPk; kQk � 1.However if M resp. M? contain a nonzero element y then Py = y resp. Qy = y which impliesthat kPk � 1 resp. kQk � 1 .Example 3.1 Let 
 denote some domain in RN . H10 (
) can be considered as a closed linearsubspace of H1(
). Thus by the projection theoremH1(
) = H10 (
)� (H10 (
))?and there exist orthogonal projections P;Q of H1(
) onto H10 (
) resp. (H10 (
))?. The space(H10 (
))? consists of those u 2 H1(
) for whichhu ; v i1 = 0 for all v 2 H10 (
)



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 48holds. This is nothing butNXn=1 h @nu ; @n' i + hu ; ' i = 0 for all ' 2 H10 (
) :Thus (H10 (
))? is the space of all variational solutions of the Dirichlet problems `�u�u = 0 ; u j@
=g j@
', when g varies over all of H1(
), and the orthogonal projection Q assigns to any g 2 H1(
)the variational solution of the Dirichlet problem above.To handle more general Dirichlet problems we need a slight modi�cation of the Riesz representationtheorem, the Lax{Milgram theorem. For this we needDe�nition 3.2 A sesquilinear form on a Hilbert space H over the �eld K , K = R or K = C,is a mapping B : H �H ! Ksuch that for all u; v; w 2 H ; �; � 2 KB(�u+ �v; w) = � B(u;w) + � B(v; w)B(u; �v + �w) = � B(u; v) + � B(u;w)hold. B is called \bounded" if with some c > 0:jB(u; v)j � c kuk kvk (3.20)holds for all u; v 2 H .As with linear operators, the bounded sesquilinear forms are exactly the continuous sesquilinearforms.Theorem 3.4 (P.D. Lax, A.N. Milgram, 1954) Let B denote a bounded sesquilinear form on aHilbert space K . Suppose that there exists some c+ > 0 such that for any u 2 HjB(u; u)j � c+ kuk2 : (3.21)Then for any continuous linear functional F on H there exist a unique u 2 H and a uniquev 2 H such that for all w 2 H B(w; v) = F (w) (3.22)B(u;w) = F (w) : (3.23)Proof:If B is a bounded sesquilinear form, which satis�es (3:21), then the same is true for ~B , given by~B : H �H �! K ; (u; v) 7�! B(v; u) :



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 49Therefore it su�ces to prove the existence of a unique v , such that (3:22) is valid for all w 2 H .For any g 2 H the mapping B(�; g) : H �! K ; w 7�! B(w; g) (3.24)is a linear functional which is continuous sincejB(w; g)j � c kwk kgk = cg kwk (3.25)holds for all w 2 H with cg := c kgk, c the constant from De�nition 3:2. Hence by the Rieszrepresentation theorem, there exists a unique ~g 2 H such that for all w 2 HB(w; g) = hw ; ~g i : (3.26)Thus we may de�ne an operator T : H ! H by this procedureT : H �! H ; g 7�! ~g ;where ~g is given by the validity of (3:26) for all w 2 H . T can easily be seen to be a linearoperator. For example, if ~g = Tg then for all w 2 H B(w;�g) = �B(w; g) = �hw ; ~g i = hw ; �~g i ,i.e. T (�g) = � Tg .T is a continuous operator: Putting w := Tg in (3:26) we �nd from (3:20)kTgk2 = hTg ; Tg i = B(Tg; g) � c kTgk kgkby which kTgk � c kgk follows.Suppose now that T�1 exists and is de�ned on whole H . Then if F is a linear functional, we�nd ~v 2 H such that hw ; ~v i = F (w) for all w 2 H . Hence with v := T�1 ~v we get B(w; v) =hw ; ~v i = F (w).It remains to show that T�1 exists, is de�ned on whole H , and that the v obtained above isunique. By (3:21) and the de�nition of T we obtain for any g 2 Hc+ kgk2 � jB(g; g)j = jh g ; Tg ij � kgk kTgk ;thus c+ kgk � kTgk : (3.27)This estimate shows(i) T is injective: For kTgk = 0 implies kgk = 0 .(ii) R(T ) is closed.(iii) T�1 : R(T ) � H ! H is continuous.



CHAPTER 3. SOME FUNCTIONAL ANALYSIS IN HILBERT SPACE 50To see (ii) let (Txn) tend to some y 2 H . Thenkxn � xmk � 1c+ kTxn � Txmk :Since (Txn) is a Cauchy sequence so is (xn), and there exists x 2 H withlimn!1 xn = x :But then Tx = limn!1 Txn = y , i.e. y 2 R(T ).To see (iii) let y 2 R(T ) ; g = T�1y . ThenkT�1yk = kgk � 1c+ kTgk = 1c+ kyk :Thus T�1 is bounded and de�ned on the closed subspace R(T ) of H .To see that R(T ) = H it su�ces to show R(T )? = f0g by Corollary 3:2. Let z 2 R(T )?, i.e.h z ; Tg i = 0 for all g 2 H :Then especially h z ; T z i = 0, and we get from the de�nition of T and by (3:21):0 = jh z ; T z ij = jB(z; z)j � c+ kzk2 ;thus z = 0 .It remains to show the uniqueness of v . Assume that v1; v2 2 H are such that B(w; vi) = F (w)for all w 2 H and i 2 f1; 2g. Then0 = F (v2 � v1)� F (v2 � v1) = B(v2 � v1; v2)�B(v2 � v1; v1)= B(v2 � v1; v2 � v1) :By (3:21) then v2 = v1 follows. q.e.d.



Chapter 4
Solution of Strongly CoerciveDirichlet Problems
To �nd a variational solution of the Dirichlet problemLu = f ; u j@
 = g j@
 (4.1)we may use the Lax{Milgram lemma in special cases.We shall from now on assume1 that 
 � RN is some domain andL(x; @) = NXn;m=1 anm @n@m + NXn=1 bn@n + c (4.2)where anm = amn 2 C1(
) (4.3)anm ; @k anm ; bn ; c 2 L1(
) ; (4.4)and L is elliptic, i.e. there exist some E > 0 such that for all x 2 
 ; � 2 RNRe NXn;m=1 anm(x) �n�m � E j�j2 : (4.5)Moreover we �x a Dirichet form for L , namelyB(u; v) := NXn;m=1 h anm@mu ; @nv i+ NXm=1 h am@mu ; v i+ h au ; v i ;where am := ( NXn=1 @nanm)� bm ; a := � c : (4.6)1After Corollary 4:1 we shall introduce another assumption51



CHAPTER 4. SOLUTION OF STRONGLY COERCIVE DIRICHLET PROBLEMS 52These notations and conditions will be always assumed, and will not be repeated if not necessary.Notice that (4:5) and (4:3) implyRe NXn;m=1 anm(x) �n �m � E j�j2 := E ( NXn=1 j�nj2) (4.7)for all x 2 
 ; � 2 CN .For the following lemma we introduce the notationjujm := jujm;
 := 0@ Xj�j=m k@�uk0;
1A1=2 (4.8)for u 2 Hm(
).Lemma 4.1 Let � := ess supx2
 ( NXm=1 jam(x)j2)1=2 (4.9)� := ess infx2
 (Re a(x)) = �ess sup(Re c(x)) : (4.10)Then for all u 2 H1(
) Re B(u; u) � E juj21 � � juj1 kuk0 + �kuk20 : (4.11)Moreover there exists a constant 
 > 0 such that for u; v 2 H1(
)jB(u; v)j � 
 kuk1 kvk1 : (4.12)From Lemma 4:1 one concludes that for certain di�erential expressions L the Dirichlet form Bsatis�es Re B(u; u) � c+ kuk21 (4.13)with some c+ > 0 for all u 2 H1(
).However, we only need with some c+ > 0jB('; ')j � c+ k'k21 for all ' 2 C10 (
) : (4.14)If (4:13) or (4:14) hold for all ' 2 C10 (
) then it also holds for all u 2 H10 (
) since (4:12) impliesthe continuity of B .Hence for the sesquilinear form B | restricted to H10 (
) | the assumptions of the Lax{Milgramtheorem hold, and we can use it to prove the unique existence of a solution of the Dirichlet problem:Theorem 4.1 Assume that the coe�cients of L are such that the Dirichlet formB : H1(
)�H1(
) ! C



CHAPTER 4. SOLUTION OF STRONGLY COERCIVE DIRICHLET PROBLEMS 53satis�es (4:14) for all ' 2 C10 (
). Then for any f 2 L2(
) and g 2 H1(
) there exists a uniquevariational solution u 2 H1(
) of the Dirichlet problem (4:1)Lu = f in 
 ; u j@
 = g j@
 :Proof: u solves (4:1) if and only if (u�g) =: ~u 2 H10 (
) and B(u; v) = �h f ; v i for all v 2 H10 (
),the latter being equivalent withB(~u; v) = � h f ; v i �B(g; v) for all v 2 H10 (
) : (4.15)Now F : H10 (
) �! C ; v 7�! [� h f ; v i �B(g; v)]is a continuous linear functional in H10 (
): Linearity is clear, and to prove continuity we estimatejFvj � kfk0 kvk0 + 
 kgk1 kvk1 � (kfk0 + 
 kgk1) kvk1for all v 2 H10 (
).By the Lax{Milgram theorem there exists a unique ~u such that B(~u; v) = F (v) for all v 2 H10 (
)which is (4:15). q.e.d.From Lemma 4:1 we see that the conditions of Theorem 4:1 are satis�ed if for example � = 0 and� > 0 , i.e. if bm = NXn=1 @n anmand if Re c is bounded from above by a negative constant.Notice however that (4:14) needs to be satis�ed for ' 2 C10 (
) only. So we may play around withpartial integrations. For example, for ' 2 C10 (
)Re B('; ') = NXn;m=1 Re h anm@n' ; @m' i+ 12 NXn=1 Re h an@n' ; ' i� 12 NXn=1 Re h an' ; @n' i+Re h a 12( NXn=1 @nan)' ; ' i :If therefore the coe�cients an are real valued C1(
)-functions then the second and the third termcancel each other, and (4:13) will hold ifess inf
 (a � 12 NXn=1 (@nan)) > 0 : (4.16)From Lemma 4:1 we also get for any " > 0:Re B(u; u) � E juj21 � 12 "� juj21 � 12" � kuk20 + � kuk20 (4.17)= (E � 12 "�) juj21 + (� � �2" ) kuk20 :



CHAPTER 4. SOLUTION OF STRONGLY COERCIVE DIRICHLET PROBLEMS 54Hence, if �2 < 4�E one may �nd " > 0 such that both E � 12 "� as well as � � �2" are positive,and (4:14) holds.De�nition 4.1 A sesquilinear form B on a closed subspace V of H1(
) is called coercive overV if there exist constants c+ > 0 and c� � 0 such that for all v 2 VRe B(v; v) � c+ kvk21 � c� kvk20 : (4.18)B is called strongly coercive over V if there exists c+ > 0 such thatRe B(v; v) � c+ kvk21 (4.19)holds for all v 2 V .Thus the essential condition (4:14) for Theorem 4:1 is satis�ed if B is strongly coercive overH10 (
). Notice however that strong coerciveness is su�cient but not necessary for (4:14). Lemma4:1 together with the calculation which led to (4:17) shows that the Dirichlet form B is coerciveon H1(
) and whence on H10 (
).If B is coercive on some closed subspace V of H1(
), and if c+ ; c� denote the constants,appearing in (4:18), then for any � > c� � c+ the form B�, given byB�(u; v) := B(u; v) + � hu ; v i0;
 (4.20)is strongly coercive. This is the reason why one rather deals with Re B than with jBj . Withrespect to our di�erential expression L this means:Corollary 4.1 For any � 2 C let L� denote the di�erential expressionL�(x; @) = NXn;m=1 anm(x)@n@m + NXm=1 bm(x)@m + (c(x)� �) : (4.21)There exists �0 2 R such that for any � with Re � � �0 and any f 2 L2(
) ,g 2 H1(
) the Dirichlet problem \L�u = f in 
 ; u j@
= g j@
" has a unique variational solution.Proof: Choose �0 such that B�0 is strongly coercive ! q.e.d.Up to now we are not yet able to solve the Dirichlet problem for the Laplace operator L = �. Infact the Dirichlet form for � is not strongly coercive for certain unbounded domains, includingthe whole space. For a counterexample in 
 := RN choose some nonzero ' 2 C10 (RN) and, withn 2 N, de�ne 'n(x) := '( 1n x) :



CHAPTER 4. SOLUTION OF STRONGLY COERCIVE DIRICHLET PROBLEMS 55Then k'nk20 = nN k'k20 ; j'nj21 = nN�2 j'j21 : (4.22)The Dirichlet form for � is given by B(u; v) :=P h @nu ; @nv i such that Re B(u; u) = B(u; u) =juj21. Inserting 'n for V in (4:19) would yieldnN�2 j'j21 � c+ nN k'k20with some c+ > 0. But this is impossible since k'k20 6= 0.In bounded domains, however, we can do better. This is due to the Poincar�e estimate:Lemma 4.2 Suppose that the domain 
 lies between two parallel hyperplanes of distance d . Thenfor all v 2 H10 (
) kvk0 � d jvj1 : (4.23)Remark 4.1 Estimate (4:23) may be sharpened to k'k0 � d� j'j1 .Proof of Lemma 4:2: Without loss of generality we may assume that 
 lies between the planesfx : x1 = 0g and fx : x1 = dg, i.e. 0 < x1 < dholds for any x 2 
. Moreover, it su�ces to prove (4:23) for each ' 2 C10 (
). Notice that weassumed elements of C10 (
) to be de�ned in the whole of RN , namely by ' = 0 outside of 
 ,and that they are in C1(RN ) then.An integration yields for x 2 
'(x) = '(x1; x2; : : : ; xN ) = Z x10 @1'(t; x2; : : : ; xN ) dt :From this we obtainj'(x)j2 � (Z d0 1 � j@1'(t; x2; : : : ; xN )j dt)2 � d Z d0 j@1'(t; x2; : : : ; xN )j2 dt :The last estimate follows by the Cauchy Schwarz inequality.Integrating this inequality with respect to x2; : : : ; xN we obtainZRN�1 j'(x1; x2; : : : ; xN )j2 d(x2; : : : ; xN ) � d j'j21 :Another integration with respect to x1 from 0 to d yields the desired estimate. q.e.d.With Poincar�e's estimate we obtain unique solvability for L = � , too:



CHAPTER 4. SOLUTION OF STRONGLY COERCIVE DIRICHLET PROBLEMS 56Theorem 4.2 Let 
 denote a domain in RN which lies between two parallel hyperplanes ofdistance d > 0, i.e. for each x 2 
 and some 
 2 R ; � 2 RN ; j�j = 1,
 < � � x < 
 + dholds. Assume that the coe�cients of L satisfy � = 0 and � > �d�2E, where �; � and Eare given by (4:9), (4:10) and (4:5) respectively. Then the Dirichlet form is strongly coercive overH10 (
).Proof: For all v 2 H10 (
) and with " = E�1d2�+ 1 > 0 Lemma 4:1 yieldsRe B(v; v) � E jvj21 + � kvk20= E �jvj21 � d�2(1� "=2) kvk20 + d�2 "=2 kvk20�� E �jvj21 � (1� "=2) jvj21 + d�2 "=2 kvk20� ;the last estimate following from Poincar�e's inequality. Thus with c+ = minf E"2 ; E"2d g inequality(4:19) follows. q.e.d.Remark 4.2 Di�erential expressions with � = 0 satisfybm = NXn=1 @nanm :They are usually written in the form NXn;m=1 @n(anm@m) + cand are said to be in `divergence form'.



Chapter 5
The Fredholm Alternative
If Ax = y denotes a system of linear equations in RN we know from Linear Algebra that thefollowing alternative is true:� Either the system Ax = y is uniquely solvable for all y 2 RN .� Or the homogeneous systemAx = 0 has nontrivial solutions. In this case the adjoint problem1A�x = 0 has nontrivial solutions, too, and the dimensions of the kernels of A and A� areequal (and �nite). The problem Ax = y can be solved if and only if y is orthogonal to anyvector in the kernel of A� .This alternative can be reformulated as (5:1), (5:2):dim N(A) = dim N(A�) <1 (5.1)R(A) = N(A�)? : (5.2)Here N(A) and R(A) denote the kernel and the range of A respectively. Also we did distinguishthe matrix A from the linear operator which is described by A with respect to the standard basisin RN .In the case of in�nite dimension the above alternative is usually wrong. The aim of this section isto exhibit a class of linear operators A for which it still holds. The above alternative carries thename of the Norwegian mathematician I. Fredholm (1866 - 1927) who was the �rst to obtain sucha result for an in�nitely dimensional problem.We will restrict ourselves to the case of operators in a Hilbert space H which makes some notionsand results easier. At �rst we have to de�ne the notion of the adjoint of a linear operator. Here1A� is the adjoint matrix of matrix A. 57



CHAPTER 5. THE FREDHOLM ALTERNATIVE 58we restrict ourselves to the case of a bounded operator A : H1 ! H2 , where H1; H2 are Hilbertspaces with scalar products h � ; � i1 resp. h � ; � i2 . These should not be confused with the scalarproducts in some Sobolev spaces. In the sequel H1; H2; H3; H always denote Hilbert spaces overthe same �eld K ; K = R or K = C.Theorem 5.1 (and De�nition) Let A 2 B(H1; H2) (de�ned on whole H1). Then there exists aunique linear operator A� 2 B(H2; H1) (de�ned on whole H2) such thathAu ; v i2 = hu ; A�v i1 (5.3)for all u 2 H1 ; v 2 H2 . This operator A� is called the adjoint of A .Proof: For any v 2 H2 the mappingFv : H1 �! K ; u 7�! hAu ; v iis a continuous linear functional on H1. The continuity follows from the estimatejFvuj � kAuk2 kvk2 � kAk kuk1 kvk2 ;whence kFvk � kAk kvk : (5.4)By the Riesz representation theorem (Theorem 3:1) there exists a unique f 2 H1 such that for allu 2 H1 hAu ; v i = Fv u = hu ; f i :Thus necessarily A�v := f , and it remains to prove that A� is linear and continuous.For the linearity let w = �v1 + �v2 ; v1; v2 2 H2 , �; � 2 K . Then for any u 2 H1Fwu = hAu ; �v1 + �v2 i = � hAu ; v1 i+ � hAu ; v2 i = � Fv1 + � Fv2 :Hence for all u 2 H1hu ; �A�v1 + �A�v2 i = � hu ; A�v1 i+ � hu ; A�v2 i = Fwu :On the other hand by the de�nition of A�Fwu = hu ; A�w i = hu ; A�(�v1 + �v2) ifor all u 2 H1 . Since the representation of Fw is unique we conclude� A�v1 + � A�v2 = A�(�v1 + �v2) :For the continuity notice that by Theorem 3:1 and by (5:4)kA�vk1 = kFvk � kAk kvk



CHAPTER 5. THE FREDHOLM ALTERNATIVE 59from which the continuity of A� and moreoverkA�k � kAk (5.5)follow. q.e.d.We did not yet consider the composition of two linear operators A 2 B(H1; H2) ; B 2 B(H2; H3).This yields a linear operatorBA : H1 �! H2 ; u 7�! B(Au)which is continuous and for which kBAk � kBk kAk (5.6)holds. If A is onto and has a bounded inverse A�1 then A�1A = I1 and AA�1 = I2 where I1; I2denote the identities in H1 resp. H2 : Of course I2A = AI1 = A and we have distributive lawsB(�A1 + �A2) = �(BA1) + �(BA2) (5.7)(�B1 + �B2)A = �(B1A) + �(B2A) (5.8)for A;A1; A2 2 B(H1; H2) ; B;B1; B2 2 B(H2; H3) and �; � 2 C . Because of (5:7) and (5:8) oneusually omits the parenthesis on the right hand side of (5:7), (5:8).We may now gather some properties of the adjoints:Lemma 5.1 Let A;A1; A2 2 B(H1; H2) ; B 2 B(H2; H3) and �; � 2 K . Then the followingassertions hold(i) A�� := (A�)� = A(ii) (�A1 + �A2)� = �A�1 + �A�2(iii) (BA)� = A�B�(iv) I� = I if I denotes the identity in H(v) (A�1)� = (A�)�1 .Assertion (v) is meant in the sense that whenever one of these two inverses exists and is de�nedon the whole space then so does the other and equation (v) holds.Remark 5.1 Assertion (i) and (5:5) imply kAk = kA�k for any A 2 B(H1; H2).



CHAPTER 5. THE FREDHOLM ALTERNATIVE 60Proof of Lemma 5:1: We only prove the �fth assertion, using (i), (ii) and (iv). If A�1 existsand is de�ned on the whole of H2 thenI�1 = I�1 = (A�1A)� = A�(A�1)�I2 = I�2 = (AA�1)� = (A�1)�A� :The �rst equation implies that A� is surjective, and the second equation yields that A� is injective.Whence (A�)�1 exists and is de�ned on the whole of H1. Then either of the two equations yields(A�1)� = (A�)�1 :On the other hand, if (A�)�1 exists and is de�ned on the whole of H1 , then the above argumentshows that (A��)�1 exists. But this is A�1 by (i). q.e.d.There is a fundamental relation between the range of A and the kernel of its adjoint:Theorem 5.2 For A 2 B(H1; H2) R(A)? = N(A�)holds for the range R(A) := fAx: x 2 H1g and the kernel N(A�) = fy 2 H2: A�y = 0g .Proof: y 2 H2 belongs to R(A)? if and only ifhAx ; y i = 0 (5.9)for all x 2 H1. By the de�nition of A� this is equivalent withhx ; A�y i = 0 (5.10)for all x 2 H1. Of course, A�y = 0 is su�cient for (5:10). That it is also necessary can be seen byspecializing x := A�y . q.e.d.It is usefull to abstract the above argument a little bit:Lemma 5.2 The vector z 2 H is 0 if and only ifhx ; z i = 0for all x 2 H (or for all x from a dense subspace of H ).Notice that by Corollary 3:2 and Theorem 5:2:N(A�)? = R(A) : (5.11)



CHAPTER 5. THE FREDHOLM ALTERNATIVE 61In order to obtain (5:2) for a continuous linear operator in an in�nitely dimensional Hilbert spaceit is therefore necessary and su�cient to prove that R(A) is closed!The operators A 2 B(H;H) for which we wish to prove Fredholm's alternative are of the typeA = I �K where I is the identity in the Hilbert space H and K is a compact operator, thelatter being de�ned as follows:De�nition 5.1 A linear operator C 2 B(H1; H2) is compact i� any bounded sequence (un)n2Nin H1 contains a subsequence (un0)n2N such that (Cun0)n2N converges.This means that the unit ball in H1 is mapped onto a precompact subset of H2, i.e. a subset theclosure of which is compact.2 It is well known that compact subsets of metric spaces are closedand bounded. Hence any compact operator is a bounded linear operator. Moreover in CN or RN ,N 2 N , the bounded closed subsets are exactly the compact subsets. From this we may concludethat any bounded linear operator with a �nite dimensional range is compact.More important, however, is the following property of compact operators.Lemma 5.3 Let A;C1 2 B(H1; H2) ; B; C2 2 B(H2; H3) and suppose that C1; C2 are compact.Then also BC1 and C2A are compact.Proof: Let (un)n2N denote some bounded sequence in H1. Since C1 is compact, (un) contains asubsequence (un0) for which C1(un0) converges to some v 2 H2, and the continuity of B implieslimn!1 BC1un0 = Bv . Thus BC1 is compact.To see that C2A is compact notice that (Aun) is bounded in H2, whence (un) contains a subse-quence (un0) such that C2(Aun0) = C2Aun0 converges. q.e.d.The adjoint of a compact operator is a compact operator, too:Lemma 5.4 If C 2 B(H1; H2) is compact then so is C� .Proof: By Lemma 5:3 the operator CC� is compact. So let (un)n2N denote a bounded sequencein H2 , kunk2 � 
 <1 say, and consider a subsequence (un0) such that (CC�un0) converges. Thenfrom kC�(un0 � um0)k21 = hCC�(un0 � um0) ; un0 � um0 i22Compactness of a subset S in a metric space may be de�ned by several equivalent properties of which one isthe property that any sequence (sn) in S contains a subsequence converging towards some element of S .



CHAPTER 5. THE FREDHOLM ALTERNATIVE 62� kCC�(un0 � um0)k2 kun0 � um0k2� 2
 kCC�(un0 � um0)k2we conclude that (C�un0)n2N is a Cauchy sequence and whence convergent. q.e.d.We are now ready to prove the main result of this section, namely the Fredholm alternative forthe solvability of the equation (I �K)x = y for compact operators K :Theorem 5.3 For a compact operator K 2 B(H;H)dim N(I �K) = dim N(I �K�) < 1 (5.12)and R(I �K) = N(I �K�)? (5.13)hold.The proof is divided into several lemmata.Lemma 5.5 For a compact operator K 2 B(H;H) the range R(I �K) of I �K is closed.Lemma 5.6 For a compact operator K 2 B(H;H) the kernel N(I �K) has �nite dimension.Lemma 5.7 For a compact operator K 2 B(H;H)dim N(I �K) � dim N(I �K�) :Assume that these three lemmata are proven. Then (5:13) follows by (5:11) and Lemma 5:5. FromLemma 5:6 and Lemma 5:4 one obtains that dimN(I � K) and dimN(I � K�) are �nite, andLemma 5:7 together with Lemma 5:1i and Lemma 5:4 yielddim N(I �K) � dim N(I �K�) � dim N(I �K��) = dim N(I �K)and whence (5:12). It remains to prove the lemmata.Proof of Lemma 5:5 Let y denote an accumulation point of R(I � K). Then there exists asequence (~xn)n2N with limn!1 (I �K)~xn = y : We have to show that some x 2 H exists withy = (I �K) x : (5.14)According to Theorem 3:3 we decompose any ~xn as~xn = xn + x̂n ; xn 2 (N (I �K))? ; x̂n 2 N(I �K) :



CHAPTER 5. THE FREDHOLM ALTERNATIVE 63Notice here that the kernel of a linear operator A 2 B(H1; H2) is always a closed subspace! Since(I �K)x̂n = 0 the sequence (xn) satis�eslimn!1 (I �K) xn = yxn 2 N(I �K)? for all n 2 N :Assume �rst that (xn) is a bounded sequence. Then it contains a subsequence (xn0 ) such thatKxn0 and whence xn0 = Kxx0 � (I �K)xn0 converge. Let x := limn!1 xn0 . Then(I �K) x = limn!1(I �K) xn0 = yby the continuity of I �K .It remains to lead the assumption, that (xn) is unbounded, to a contradiction. After an eventualpassage to a subsequence we may assume that kxnk tends to in�nity. Considerun := kxnk�1 xn ; n 2 N :Then for each n 2 N kunk = 1 ; (5.15)un 2 [N(I �K)]? ; (5.16)limn!1 (I �K) un = 0 : (5.17)As previously there exists a subsequence un0 converging to some u 2 H , and (I �K)u = 0 , i.e.u 2 N(I �K). By (5:16) u 2 N(I �K) \ N(I �K)? = f0g ;which contradicts (5:15). q.e.d.Proof of Lemma 5:6: If dimN(I�K) =1 then there exists a sequence (un) of by pairs distinctelements un 2 N(I �K) such that fun : n 2 Ng is linear independent3. Employing E. Schmidt'sorthogonalization process x1 := ku1k�1 u1xn+1 := k~xn+1k�1 ~xn+1 ; where~xn+1 := un+1 � Pnm=1 hun+1 ; xm i xm 9>>=>>; (5.18)one obtains a sequence (xn)n2N in N(I�K) of normalized vectors which are by pairs orthogonalhxn ; xm i = �nm := ( 1 for n = m0 for n 6= m : (5.19)The set fxn : n 2 Ng resp. the sequence (xn)n2N are called an orthonormal system resp. anorthonormal sequence. By the way, for any n0 2 N [ f1gspan fun: 1 � n < n0g = spanfxn: 1 � n < n0g ; (5.20)3this means that any nontrivial linear combination of �nitely many distinct vectors un is nonzero.



CHAPTER 5. THE FREDHOLM ALTERNATIVE 64where the span of a subset S of a vector space X is the subspace of all (�nite) linear combinationsof elements of S .Since xn 2 N(I �K) we have xn = Kxn and whence (xn)n2N must contain a convergent subse-quence. But this is impossible by Pythagoras' theorem:kxn � xmk2 = kxnk2 + kxmk2 = 2 for n 6= m : (5.21)Thus N(I �K) must be �nite. q.e.d.Proof of Lemma 5:7: The proof is in two steps. In a �rst step we show that surjectivety ofI �K implies injectivety. By Theorem 5:2 this means that the assertion of the lemma is true ifdimN(I �K�) = 0 .Thus assume that I �K is onto and consider the sequence of spacesNn := N((I �K)n) ; n 2 N0 : (5.22)Of course,(I �K)0 := I ; (I �K)n := (I �K)n�1 (I �K) = (I �K)(I �K)n�1 :These spaces Nn are closed subspaces of H and are nested as follows:Nn � Nn�1 for n 2 N : (5.23)Suppose now that I �K is not injective. We prove by induction that thenNn 6= Nn�1 (5.24)holds for all n 2 N. The assumption that I �K is not injective yields (5:24) for n = 1. Supposethat (5:24) holds for some n , then there exists y 2 Nn nNn�1 and by the surjectivity one �ndssome x such that (I �K) x = y :But then (I �K)n+1 x = (I �K)n y = 0 (since y 2 Nn)(I �K)n x = (I �K)n�1 y 6= 0 (since y 62 Nn�1) ;whence x 2 Nn+1 nNn, and (5:24) is proven.We may now construct a sequence (xn) such that for all n 2 Nkxnk = 1 (5.25)xn 2 Nn \ N?n�1 : (5.26)Choose un 2 Nn nNn�1 and according to Theorem 3:3 decompose un asun = ~xn + yn ; ~xn 2 N?n�1 ; yn 2 Nn�1 :



CHAPTER 5. THE FREDHOLM ALTERNATIVE 65Then (I �K)n ~xn = (I �K)n un � (I �K) ((I �K)n�1 yn) = 0and whence ~xn 2 Nn \N?n�1 . Moreover ~xn 6= 0 since un 62 Nn�1.Thus we may choose xn := k~xnk�1 ~xn :We now show that (Kxn) cannot contain a convergent subsequence, since for n 6= mkK xn � K xmk � 1 : (5.27)To show (5:27) assume that n > m. ThenK xn � K xm = xn � wwhere w := (I �K) xn + (I �K) xm + xm 2 Nn�1 :From Pythagoras' theorem we obtainkK xn �K xmk2 = kxn � wk = kxnk2 + kwk2 � 1 :Hence the assumption that I �K is not injective has been lead to a contradiction.In the second step the case dimN(I �K�) > 0 is reduced to the �rst step. Assume thatdim N(I �K�) < dim N(I �K) < 1 ; (5.28)the second inequality following from Lemma 5:6 Then there exists a (bounded) linear operatorE : N(I �K) ! N(I �K�)which is surjective. Since E maps into a �nite dimensional space it is compact. Let P denotethe orthogonal projection onto N(I �K).We consider ~K : H �! H ; x 7�! Kx�E(Px)and show that ~K is compact and I� ~K is surjective but not injective. This will yield a contradictionto what was proven in the �rst step.The compactness of ~K follows from the fact that K is compact and ~K �K is a bounded linearoperator with �nite dimensional range.For any y 2 H a solution of (I � ~K)x = y can be found as follows: decompose y according toTheorem 3:3 as y = y1 + y2 ; y1 2 N(I �K�)? ; y2 2 N(I �K�) :



CHAPTER 5. THE FREDHOLM ALTERNATIVE 66Since N(I �K�)? = R(I �K) there exists x1 2 H such that (I �K)x1 = y1 .The ansatz x := x1 + x2 ; x2 2 N(I �K)then leads to (I � ~K)x = y , E x2 = y2 �E(Px1) ;which by the surjectivity of E is solvable. Thus I � ~K is surjective.But I � ~K is not injective: Because of (5:28) E cannot be injective. Hence there exists x 2N(I �K) n f0g with Ex = 0. For this x(I � ~K)x = (I �K)x�Ex = 0 :This proves the lemma. q.e.d.I. Fredholm obtained his results for integral equations of the second kind. These are equations ofthe type (I �K)u = f in L2(
), say, where K is given by(Ku)(x) := Z
 k(x; y)u(y) d�(y) ;and k is some `kernel'{function. The conditions which one imposes on k guarantee that K is acompact operator. For example k 2 L2(
� 
) is such a condition, if 
 is bounded.By an integral equation of the �rst kind one means an equation of the type Ku = f , where Kis given as above. These are much more di�cult to handle. The following theorem contains anegative result in this direction.Theorem 5.4 Let K denote a compact operator in B(H;H).(i) If N(I �K) = f0g then (I �K)�1 2 B(H;H) .(ii) If N(K) = f0g and if dimH =1 then K�1 is not continuous.



CHAPTER 5. THE FREDHOLM ALTERNATIVE 67Proof:(i) By Theorem 5:3 (I � K)�1 is de�ned on the whole of H . Assume that (I � K)�1 is notbounded. Then a sequence (yn)n2N in H exists withkynk = 1 for all n ;k(I �K)�1ynk ! 1 as n!1 :Putting xn := k(I �K)�1ynk�1 (I �K)�1yn (5.29)we obtain kxnk = 1 for all n 2 N ; (5.30)limn!1 (I �K) xn = 0 :Choose a subsequence (xn0) for which Kxn0 converges to some x 2 H . Then alsoxn0 = K xn0 + (I �K) xn0 ! x as n!1 :Thus (I �K)x = limn!1 (I �K) xn0 = 0and whence x = 0. However, by (5:29) we obtain kxk = 1 | a contradiction.(ii) If N(K) = f0g and dimH = 1, the range R(K) cannot have �nite dimension: No injectivelinear operator exists from an in�nite dimensional space into a �nite dimensional space.Asin the proof of Lemma 5:6 we may construct an in�nite orthonormal sequence (yn)n2Nwith yn 2 R(K), and this sequence cannot contain a converging subsequence. However, thecontinuity of K�1 implies that the sequence (xn), given byxn = K�1 yn ;is bounded. This contradicts the compactness of K. q.e.d.



Chapter 6
Solution of the Dirichlet Problem
In Chapter 5 the Dirichlet problem was solved under the assumption that the Dirichlet form Bof L was strongly coercive on H10 (
). We remind the assumptions made on L at the beginningof that chapter. Moreover we always assume:Assumption:The coe�cients of L are such that the Dirichlet form B is strongly coercive onH10 (
).In this chapter we do not want to treat problems with strongly coercive1 Dirichlet forms only. Butif we have some di�erential expression, ~L say, which does not have a strongly coercive form wewill write it as ~L = L�� where L := ~L� is strongly coercive. So we still assume that the Dirichletform B is strongly coercive. But now we want to solveL� u = f ; u j@
 = g j@
 (6.1)for arbitrary � 2 C .From Theorem 4:1 we getTheorem 6.1 There exists a linear operator G0 2 B(L2(
) ; H10 (
)) which assigns to any f 2L2(
) the variational solution u of the Dirichlet problem ` Lu = f ; u j@
= 0 '. G0 is called the`solution operator'.Remark 6.1 Notice that for given f 2 L2(
) the value G0f is uniquely de�ned by the relationG0f 2 H10 (
) and B(G0f ; v) = �h f ; v i for all v 2 H10 (
) : (6.2)1If the subspace V , on which a form is (strongly) coercive, is not mentioned explicitely we assume it to be H10 (
).68



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 69Proof of Theorem 6:1 From Theorem 4:1 it is clear that G0f is well de�ned for each f 2 L2(
).MoreoverG0 is linear, since u := �u1+�u2 is the variational solution of `Lu = �f1+�f2 ; u j@
= 0'if the uj ; j = 1; 2, are the variational solutions of `Luj = fj ; uj j@
= 0 '.The continuity follows from the strong coercivity of B (c.f. (4:19)), the boundedness of B (c.f.(4:12)) and from (6:2):c+kG0fk21 � Re B(G0f;G0f) = �Re h f ; G0f i � 
kfk0kG0fk0 � 
kfk0kG0fk1 :Hence kG0 fk1 � (c�1+ 
) kfk0 (6.3)for any f 2 L2(
). q.e.d.Now let � 2 C be �xed and f 2 L2(
) ; g 2 H10 (
). By Theorem 4:1 there exists an h 2 H1(
)such that g � h 2 H10 (
) ; (6.4)B(h; v) = 0 for all v 2 H10 (
) : (6.5)By the ansatz u := ~u+ hproblem (6:1) is equivalent with the problem to �nd ~u satisfying~u 2 H10 (
) (6.6)B(~u; v) + � h ~u ; v i = � h f + �h ; v i for all v 2 H10 (
) ; (6.7)and (6:7) is equivalent with ~u = � G0 ~u + G0 (f + �h) : (6.8)Equation (6:8) may be considered as an equation in H10 (
) or in L2(
). The latter considerationis more usual because in this case it is easier to describe `the adjoint problem'.Let J : H10 (
) �! L2(
) ; u 7�! u (6.9)describe the canonic inclusion of H10 (
), into L2(
). J is a bounded linear operator de�ned onthe whole of H10 (
). The boundedness of J follows directly fromkuk1 � kuk0 for all u 2 H10 (
) :We then de�ne G := J G0 ; (6.10)i.e. we consider the solution operator as an operator into L2(
) instead of H10 (
). We then obtain



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 70Lemma 6.1 A function u 2 H1(
) solves (6:1) for given f 2 L2(
) ; g 2 H1(
) if and only ifu = ~u+ h (6.11)where h is given by (6:4), (6:5), and ~u 2 L2(
) solves~u� � G ~u = G(f + �h) : (6.12)Proof: The only thing which remains to be shown is that (6:12) is equivalent with (6:8). Clearly(6:8) implies (6:12): Apply J on both sides. On the other hand (6:12) implies ~u 2 R(G) � H10 (
)and thus (6:8). q.e.d.We want to apply the theory, provided in the previous section. For this we have to calculate theadjoint of G and to show that G is compact. The latter is not true for arbitrary 
 . However forbounded domains 
 it follows from Rellich's compactness theorem (F. Rellich (1906 - 1955)):Theorem 6.2 If 
 is a bounded domain in RN , then the operator J given by (6:9) is compact.Proof: We must show that any sequence (un) in H10 (
), for whichsupn2N kunk1 <1contains a subsequence which converges in L2(
).For each n 2 N let 'n 2 C10 (
) withk'n � unk1 � 1=n :If it is possible to extract a L2(
){convergent subsequence ('n0) from ('n) then the correspondingsubsequence (un0) converges, too. Whence it su�ces to show that any sequence ('n) in C10 (
),for which supn2N k'nk1 =: 
 <1 ; (6.13)contains a convergent subsequence.To do so we use the molli�er and put for n; k 2 N'n;k := j1=k � 'n :For any �xed k the sequence ('n;k)n2N is equicontinuous:For h 2 RN we have (with � := j1=k)j'n;k(x+ h)� 'n;k(x)j = Z [�(x + h� y)� �(x� y)] 'n(y) d�(y)� [Z j�(x + h� y)� �(x� y)j2 d�(y)]1=2 k'nk0� [Z j�(z + h)� �(z)j2 d�(z)]1=2 � 
 :



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 71The last term is independent of n and tends to zero as h tends to zero by Lebesgue's theorem.There exists a compact subset B of RN which contains the support of all the functions 'n;k .Whence we may apply Arzela's theorem and select a subsequence ('n1) of ('n) such that 'n1;1converges uniformly. From ('n1) we select a subsequence ('n2) such that ('n2;2) converges uni-formly. Proceeding in this manner we �nd for any k 2 N a subsequence ('nk+1) of ('nk ) suchthat ('nk+1;k+1) converges uniformly. Then the \diagonal" sequence ('n0), given by'n0 := 'nn ;has the property that ('n0;k) converges uniformly for any k 2 N. Moreover, the estimatek'n0;k � 'm0;kk0 � (�(B))1=2 sup j'n0;k � 'm0;kj ;(�(B) : the Lebesgue{measure of B ) shows that 'n0;k converges in L2(RN ) for any k 2 N.In a moment we shall prove that for all ' 2 C10 (RN) ; � > 0kj� � '� 'k0 � � j'j1 : (6.14)Assuming (6:14) it follows that ('n0) converges in L2(
). For all k 2 Nk'n0 � 'm0k0;
 � k'n0 � 'n0;kk+ k'n0;k � 'm0;kk+ k'm0;k � 'm0k� k'n0;k � 'm0;kk+ 2 
=k :Whence for given " > 0 we �rst choose k such that 2
=k < "=2, and then �x n0 such thatk'n0;k � 'm0;kk < "=2 for n;m > n0 . For these n;m then k'n0 � 'm0k0;
 < " .It remains to prove (6:14): Since j� � 0, since R j� = 1, and with the help of the Cauchy Schwarzinequality we obtain for any �xed x 2 RNjj� � '(x)� '(x)j2 = ����Z [j�(x � y)]1=2 [j"(x� y)]1=2 ('(y) � '(x)) d�(y)����2� Z j�(x� y)d�(y) � Z j�(x� y) j'(y)� '(x)j2 d�(y)= Z j�(x� y) j'(y)� '(x)j2 d�(y) : (6.15)The di�erence '(y)� '(x) may be written as an integral'(y)� '(x) = Z 10 ddt '(x + t(y � x)) dt = NXn=1 (yn � xn) Z 10 @n'(x + t(y � x)) dt :Notice that the integrals in (6:15) extend over U(x; �) which contains the support of j�(x � �).Thus for y 2 U(x; �) we may estimatej'(y)� '(x)j � jy � xj " NXn=1 ����Z 10 @n'(x+ t(y � x))dt����2#1=2� jy � xj Z 10 NXn=1 j@n'(x+ t(y � x)j2 dt!1=2� ��Z 10 jr'(x+ t(y � x)j2 dt�1=2 :



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 72The second inequality follows by the Cauchy Schwarz inequality. Insertion into (6:15) yieldsjj� � '(x) � '(x)j2 � �2 ZRN Z 10 j�(x� y) jr'(x + t(y � x))j2 dt d�(y)= �2 Z 10 ZRN j�(x� y) jr'(x + t(y � x))j2 d�(y) dt :The last equation follows by Fubini's theorem. We introduce new coordinates z := t(x�y); d�(y) =t�N d�(z) and obtainjj� � '(x) � '(x)j2 � �2 Z 10 ZRN t�Nj�(z=t) jr'(x� z)j2 d�(z) dt= �2 Z 10 hj(t�) � (jr'j2)i (x) dt :Integration with respect to x and another application of Fubini's theorem yieldskj� � '� 'k2 � �2 Z 10 � ZRN j(t�) � (jr'j)2(x) d�(x)� dt :By (0:15) the inner integral can be estimated byk jr'j2 k (L1(RN )) = j'j21 :Hence kj� � '� 'k2 � �2 Z 10 j'j21 dt = �2 j'j21 ;which is (6:14). q.e.d.Rellich's compactness theorem yields the compactness of the operator G (c.f. (6:10), Theorem 6:1and Lemma 5:3). We now �nd the adjoint of G . Assume for a moment, that the coe�cients ofL are so smooth that one can write down the formal adjoint operator L� (c.f. (2:10), (2:11)). Insome sense L is the inverse of G and we have for ';  2 C10 (
) ; hL' ;  i = h' ; L� i. So it isa good guess that G� might be the solution operator for the problem `L�u = f ; u j@
= 0'. Noticethat B� : H10 (
)�H10 (
) �! K ; (v; w) 7�! B(w; v) (6.16)is the Dirichlet form for L� . We obtainTheorem 6.3 Let G+0 2 B(L2(
) ; H10 (
)) be de�ned byB(v; G+0 f) = � h v ; f i (6.17)for all v 2 H10 (
). Then G� = JG+0 .Proof: The Lax-Milgram theorem 3:4 yields that there exists a unique G+0 f 2 H10 (
) such that(6:17) holds for all v 2 H10 (
). For v 7! h v ; f i is a continuous linear functional on H10 (
). Nowfor any f1; f2 2 L2(
)hGf1 ; f2 i = �B(Gf1; G+0 f2) = h f1 ; G+0 f2 i = h f1 ; JG+0 f2 i :



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 73Hence G�f2 = JG+0 f2. q.e.d.Remark 6.2 Of course, (6:17) is equivalent withB�(G+0 f; v) = � h f ; v ifor all v 2 H10 (
). Thus indeed G+0 is the solution operator for the `adjoint' Dirichlet problem` L�u = f ; u j@
= 0 ', provided that the coe�cients anm are in C2(
) with bounded secondderivatives. However, G+0 is de�ned even if L� is not.We now obtain:Theorem 6.4 Let � 2 C be given and 
 � RN be a bounded domain. Then either (i) or (ii)holds:(i) For all f 2 L2(
) ; g 2 H1(
) there exists a unique variational solution u of the Dirichletproblem ` L�u = f ; u j@
= g j@
 '.(ii) There exists a nontrivial variational solution of the homogeneous Dirichlet problem ` L�u =0 ; u j@
= 0 '. In this case the space N of all solutions of this homogeneous problem has �nitedimension. Then the space2N � := fw 2 H10 (
): B(v; w) + �h v ; w i = 0 for all v 2 H10 (
)ghas the same dimension. The problem ` L�u = f ; u j@
= g ' is solvable if and only ifh f ; w i+B(g; w) + �h g ; w i = 0for any w 2 N � . Then all solutions are obtained as the sum of one special solution and anyelement from N .Proof: Let h denote the variational solution of ` Lh = 0 ; h j@
= g j@
 ', i.e. h satis�es (6:4),(6:5). By Lemma 6:1 the solvability of \L�u = f ; u j@
= g j@
 " is equivalent with the solvabilityof (6:12): ~u� �G~u = G(f + �h) :Assume that the homogeneous problem ` L�u = 0 ; u j@
= 0 ' only admits the trivial solution.Then N(I � �G) = f0g :2This is the space of variational solutions to the homogeneous adjoint problem `L���w = 0 ; w j@
= 0', providedthat L� is de�ned.



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 74Since �G is a compact operator we conclude by Theorem 5:3 that R(I ��G) = L2(
) and whence(6:12) is solvable for any f and h .Assume now that the homogeneous problem ` L�u = 0 ; u j@
= 0 ' admits nontrivial solutions.Then N := fu: u solves \L�u = 0 ; u j@
= 000g = N(I � �G)and whence has �nite dimension, n say. Then by Theorem 5:3dim N(I � (�G)�) = n ;too. Now (�G)� = �G�, and of course � 6= 0. Thenw 2 N(I � (�G)�) , 1�w = G�w , 8v2H10 (
) 1� B(v; w) = �h v ; w i :This means that N(I � (�G)�) = N � ;and dim N � = dim N :Again Theorem 5:3 implies that ` Lu = f ; u j@
= g j@
 ' is solvable if and only ifhG(f + �h) ; w i = 0 (6.18)holds for all w 2 N � .Now hG(f + �h) ; w i = �B(G(f + �h); G�w) (by Theorem 6:3)= �B(G(f + �h); 1�w) (by (6:18))= 1� h f + �h ; w i (by (6:1)): (6.19)Moreover � hh ; w i = B(h;w) + � hh ; w i (by (6:5)) :However h 62 H10 (
) so that we cannot use the relation in the de�nition of N �. But h�g 2 H10 (
).Hence �hh ; w i = B(h� g; w) + �hh� g ; w i+B(g; w) + �h g ; w i= B(g; w) + �h g ; w i : (6.20)Now (6:19) and (6:20) imply that (6:18) is equivalent withh f ; w i+B(g; w) + �h g ; w i = 0for all w 2 N � . q.e.d.



CHAPTER 6. SOLUTION OF THE DIRICHLET PROBLEM 75De�nition 6.1 A complex number � is called an eigenvalue of L in 
 under the Dirichletcondition, if ` L�u = 0 ; u j@
= 0 ' has a nontrivial variational solution. Any such nontrivialsolution u is called a Dirichlet eigenfunction of L in 
 with respect to the eigenvalue � . Sinceit is clear that we only handle with the Dirichlet problem and since L and 
 are �xed, we simplysay that u is an eigenfunction with respect to � .Our aim is to prove the existence of eigenvalues and to show that the corresponding eigenfunctionsspan the whole space in the case L = L� . Before doing so, we need some results on orthonormalsystems in Hilbert spaces.



Chapter 7
Orthonormal Systems
In chapter 6 we already constructed orthonormal sequences with the help of E. Schmidt's orthogo-nalization process. Generally it can be shown that any Hilbert space H contains an orthonormalsystem which spans a dense subspace of H . The proof requires a set theoretical tool, Zorn'slemma, which is equivalent with the axiom of choice. However if one con�nes oneself to the caseof separable Hilbert spaces, E. Schmidt's process su�ces.De�nition 7.1 A metric space (and whence a Hilbert space) is separable if it contains a countable(or �nite) dense subset.De�nition 7.2 An orthonormal system in a Hilbert space H is a subset S � H such that for allu; v 2 S hu ; v i = ( 0 if u 6= v1 if u = v :An orthonormal system S is called complete if it is maximal, i.e. if no nonzero vector x existswhich is orthogonal to every u 2 S, i.e. if S? = f0g. An orthonormal sequence (un)n2N in H isa sequence in H such that hun ; um i = �nm for all n;m 2 N.From now on let H denote a Hilbert space of in�nite dimension.Theorem 7.1 H is separable if and only if it contains a countable complete orthonormal system.Proof: To prove the `if' part, assume that H contains a complete orthonormal system S whichcan be written as S = fun: n 2 Ng76



CHAPTER 7. ORTHONORMAL SYSTEMS 77with an orthonormal sequence (un)n2N. Let M denote a countable subset of K , for example Qif K = R or Q + iQ if K = C. We show that the set T of all (�nite) linear combinations of Swith coe�cients in M ,T := fx 2 H: 9k2N 9�1;:::;�k2M x = kXn=1 �nungis dense in H . As Cantor's diogonal argument shows, T is countable, and whence the `if' partwill follow.To prove the density of T let y 2 H and " > 0 be given. Since S is complete we have S? = f0gand whence span S is dense in H . Thus there exists a k 2 N and numbers �1; : : : ; �k 2 K suchthat ky � kXn=1 �nunk < "=2 :Now choose �1; : : : ; �k 2M such thatj�n � �nj � " � 2�n�1 :Then x :=Pkn=1 �nun 2 T andky � xk � ky � kXn=1 �nunk+ k kXn=1 (�n � �n) unk< "2 + kXn=1 j�n � �nj � " :Thus T is dense in H .Suppose on the other hand that H contains a countable dense subset T := fvn: n 2 Ng. The-re exists a subsequence (vn0) of (vn) such that T 0 := fvn0 : n 2 Ng is linear independent andX := span T 0 is dense in H : choose 10 as the smallest index such that v10 6= 0, then choose 20 asthe smallest index for which fv10 ; v20g is linear independent etc. The E. Schmidt orthonormalizati-on process, applied to the sequence (vn0)n2N, yields the complete orthonormal system (c.f. Proofof Lemma 5:6). q.e.d.Bessel's inequality is an essential tool when working with orthonormal systems. In particular it canbe used to show that any complete orthonormal system in a separable space must be countable.Theorem 7.2 Let S denote some orthonormal system in H and x 2 H. Then the followingassertions are true:(i) For any �nite subset S0 � S Xs2S0 jhx ; s ij2 � kxk2 :



CHAPTER 7. ORTHONORMAL SYSTEMS 78(ii) The subset Sx := fs 2 S: hx ; s i 6= 0gis at most countable.(iii) Bessel's inequality holds: Xs2S jhx ; s ij2 � kxk2 :This sum has to be interpreted to run over an enumeration of Sx. Since the sum containspositive terms only, its value is independent of the choice of the enumeration.Proof:(i) Let S0 = fs1; : : : ; sJg and put y := JXi=1 hx ; si i si :Then x� y 2 (S0)?, since for any j 2 f1; : : : ; Jghx� y ; sj i = hx ; sj i � JXi=1 hx ; si i h si ; sj i = 0 :Here we need h si ; sj i = �ij . Since (S0)? = (span S0)? the vectors y and x�y are orthogonal.Hence by Pythagoras' theoremkxk2 = kx� yk2 + kyk2 � kyk2 = h JXi=1 hx ; si isi ; JXj=1 hx ; sj isj i= JXi=1 JXj=1 hx ; si ihx ; sj i h si ; sj i = JXi=1 jhx ; si ij2 :(ii) For n 2 N let Sx;n := fs 2 S: jhx ; s ij � 1=n :gBecause of (i) any of the sets Sx;n must be �nite, whenceSx = 1[n=1 Sx;nis at most countable.(iii) now follows from (i) and (ii). q.e.d.From Theorem 7:2 one may prove that with respect to a complete orthonormal system S one candevelop any given x 2 H into a series of multiples of elements from S . More generally:



CHAPTER 7. ORTHONORMAL SYSTEMS 79Theorem 7.3 Let S denote an orthonormal system in H . Then for any x 2 HXs2S hx ; s i s = Px ; (7.1)where P is the orthogonal projection of H onto (span S). The sum in (7:1) must be interpretedas follows: Either Sx, de�ned in Theorem 7:2, is �nite. Then Xs2Shx ; s i s := Xs2Sx hx ; s i s . OrSx is countable. Let (sn)n2N denote an enumeration of Sx. Then (7:1) means that1Xn=1 hx ; sn i sn := limm!1 mXn=1 hx ; sn i snexists and equals Px (which implies that it is independent of the choice of the enumeration).In particular , if S is complete then x = Xs2S hx ; s i s (7.2)kxk2 = Xs2S jhx ; s ij2 (7.3)and for any y 2 H hx ; y i = Xs2S hx ; s i h s ; y i : (7.4)The equality (7:3) is called `Parseval's identity'. Its validity for all x 2 H is necessary and su�cientfor the completeness of S .Example 7.1 It is known from the Calculus course that with I := (��; �) any ' 2 C10 (I) canbe written as a uniformly convergent Fourier series'(x) = Xn2Z an ein'where an = 12� ZI '(x) e�inx d�(x) :The functions un given byun(x) = 1p2� e�inx ; x 2 (��; �) ; n 2 Zform an orthonormal system S in L2(I). The starting remark shows thatspan S = fu 2 L2(I): 9m=m(n) 9a�m;:::;a0;:::;am u = mXn=�m anungis dense in L2(I), for C10 (I) is dense in L2(I) and uniform convergence in I implies L2(I)-convergence. Hence S? = (span S)? = f0g, i.e. S is complete, and Theorem 7:3 just providesthe well known Fourier-expansion of L2(I)-functions.



CHAPTER 7. ORTHONORMAL SYSTEMS 80Proof of Theorem 7:3 If for x 2 HSx := fs 2 S: hx ; s i 6= 0gis �nite then we already found in the proof of Theorem 7:2i that Px =Px2S hx ; s i s.So let Sx be countable and (sn)n2N an enumeration of Sx. By Bessel's inequality,1Xn=1 jhx ; sn ij2 < kxk2 ; (7.5)whence the sum on the left hand side of (7:5) is convergent. Putxm := mXn=1 hx ; sn i sn :Then for all m 2 N ; k 2 N by Pythagoras' theorem:kxm+k � xmk2 = k m+kXn=m+1 hx ; sn i snk2 = m+kXn=m+1 jhx ; sn ij2 ; (7.6)which by (7:5) implies that (xm) is a Cauchy sequence. Denote its limit by y . Then for any m 2 Nhx� y ; sm i = limk!1 hx� kXj=1hx ; sj isj ; sm i= hx ; sm i � hx ; sm i = 0 :Moreover for any s 2 S n Sxhx� y ; s i = limk!1 hx� kXj=1 hx ; sj isj ; s ; i = 0� 0 = 0 :Thus x� y 2 S?, and y = Px. If S is complete then S? = f0g and P is the identity.Parseval's identity is a consequence of the more general equalitykPxk2 = Xs2S jhx ; s ij2 : (7.7)Letting (sn)n2N be any enumeration of Sx. ThenkPxk2 = limm!n k mXn=1hx ; sn isnk2 = limm!1 mXn=1 jhx ; sn ij2= Xs2S jhx ; s ij2 :Thus if S is complete Px = x.If S is not complete there exists some x 2 H with kxk > 0 and Px = 0. For this x Parseval'sidentity is wrong by (7:7). Hence the validity of Parseval's identity for any x 2 H is necessary andsu�cient for the completeness of S .



CHAPTER 7. ORTHONORMAL SYSTEMS 81Finally, to prove (7:4) let fsn: x 2 Ng denote an enumeration of Sx [ Sy. Thenhx ; y i = limn!1 h nXk=1hx ; sk isk ; nXl=1 h y ; sl isl i= limn!1 nXk=1 nXl=1 hx ; sk i h y ; sl i h sk ; sl i= limn!1 nXk=1 hx ; sk i h y ; sk i = 1Xk=1 hx ; sk i h y ; sk i :Since h y ; sk i = h sk ; y i the assertion follows. q.e.d.



Chapter 8
Eigenvalues and Eigenfunctions
We start this chapter with the spectral theorem for self adjoint compact operators. To shortenthe exposition we shall consider only the case which will be interesting in connection with ourboundary value problems.Theorem 8.1 Let K denote a compact operator in the in�nite dimensional Hilbert space H andassume that K is self adjoint, i.e. K� = K, and positive, i.e.hKx ; x i > 0for all x 2 H : (8.1)Then there exists a non increasing sequence (�n)n2N (of eigenvalues) and an orthonormal sequence(un)n2N (of eigenvectors) such that(i) 0 < �n+1 � �n for any n 2 N(ii) limn!1 �n = 0(iii) Kun = �nun for any n 2 N(iv) The orthonormal system fun: n 2 Ng is complete.(v) For any x 2 H and for any � 2 C n f�n: n 2 NgKx = 1Xn=1 �n hx ; un iun (8.2)(�I �K)�1x = 1Xn=1 1�� �n hx ; un iun (8.3)(vi) y 2 H is in the range of K if and only if1Xn=1 ��2n jh y ; un ij2 <1 :82



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 83Any � 6= 0 which is not a value of the sequence (�n) belongs to �(K) (see De�nition 8:1 below).Before we start to prove this theorem we have to �x the notions of eigenvalues and eigenvectors,of self-adjointness and prove some lemmata which are of general interest in connection with eigen-values and eigenvectors. In this connection it is reasonable to deal with complex Hilbert spacesonly.De�nition 8.1 Let H denote a complex Hilbert space and T 2 B(H;H). T is called self{adjointif T = T �. An eigenvalue of T is a number � 2 C for which N(�I � T ) 6= f0g. Any nonzeroelement in N(�I � T ) is called an eigenvector corresponding to the eigenvalue � .� 2 C is called a spectral value of T if one of the three following conditions hold:(i) � is an eigenvalue(ii) � is not an eigenvalue and the range of (�I � T ) is not dense in H : R(�I � T ) 6= H(iii) � is not an eigenvalue, the range of T is dense in H , but not equal to H : R(�I �T ) 6= H,R(�I � T ) = H.The set of all spectral values is called the spectrum of T and is denotes by �(T ). Its complementC n �(T ) is called the resolvent set of T and is denoted by �(T ). The spectrum decomposes intothree disjoint subsets:�p(T ); the point spectrum of T , contains the eigenvalues�r(T ); the residual spectrum of T , contains all spectral values of type (ii)�c(T ); the continuous spectrum, contains all spectral values of type (iii)�(T ) = �p(T ) _[�r(T ) _[�c(T ).Remark 8.1 If � 2 �r(T ) then by the basic relationR(�I � T )? = N((�I � T )�) = N(�I � T �)we conclude � 2 �p(T �) :Remark 8.2 From a basic theorem of Functional Analysis, the bounded inverse theorem one canconclude that for an operator T 2 B(H1; H2) , (H1; H2 Hilbert spaces) with R(T ) = H2 and withN(T ) = f0g the two following assertions are equivalent



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 84(i) R(T ) = H2(ii) T�1 : R(T ) � H2 �! H1 ; Tx 7�! x is continuous.Therefore the resolvent set of T is the set of all � for which the inverse of (�I � T ) exists andbelongs to B(H;H). The spectrum is the set of all � for which `something goes wrong' with theinverse of (�I � T ).The proof of the bounded inverse theorem will not be carried out here. However, with our tools wemay at least show that `� 2 �c(T )' implies that the inverse (�I � T )�1 is not continuous. Noticethat for � 2 �c(T )(�I � T )�1 : R(�I � T ) � H �! H ; (�I � T )x 7�! xis a linear operator de�ned on a dense subspace of H : �I � T is injective since � 62 �p(T ).Let y 2 H n R(�I � T ) and (xn)n2N a sequence in H such that (�I � T )xn tends to y . Sucha sequence exists since R(�I � T ) is dense in H . If (�I � T )�1 was a bounded operator thenxn := (�I � T )�1 (�I � T ) xn would be a Cauchy sequence and whence tend to some x 2 H . Butthen (�I � T )x = limn!1(�I � T )xn = y , i.e. y 2 R(�I � T ), a contradiction.In the case, which we are interested in, the residual spectrum is empty:Lemma 8.1 If T 2 B(H;H) is self adjoint then �r(T ) = ;. Moreover the spectrum of T isrestricted to the real line: �(T ) � R.Proof: If T is self adjoint then for all x 2 HhTx ; x i = hx ; Tx i ; (8.4)which means that hTx ; x i is real for any x 2 H . Consider the sesquilinear formt : H �H �! C ; (x; y) 7�! h (�I � T )x ; y it is bounded jt(x; y)j � j�j kxk kyk+ kTxk kyk � (j�j+ kTk)kxk kyk ;and satis�es the assumption (3:21) of the Lax-Milgram Theorem for non-real � :jt(x; x)j � jIm t(x; x)j = jIm �j kxk2 : (8.5)Hence for any z 2 H there exists a unique x 2 H such thatt(x; y) = h z ; y i for all y 2 H : (8.6)But this means that (�I � T ) x = z : (8.7)



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 85On the other hand, any solution x of (8:7) satis�es (8:6). Whence the solutions of (8:7) are unique.We have shown that for non real � the range of (�I � T ) is the whole of H and that � is noeigenvalue. Whence � 2 �(T ). (The continuity of (�I � T ) can easily be deduced from the (8:5).)Assume now that there exists � 2 �r(T ). Then � is real and by Remark 8:1 � 2 �p(�I � T �).But T � = T , thus � 2 �p(T ), a contradiction.Lemma 8.2 If T 2 B(H;H) is self adjoint and �; � are two di�erent eigenvalues of T withcorresponding eigenvectors x resp. y , then x and y are orthogonal:hx ; y i = 0 :Proof: � and � are real by Lemma 8:1 Hence because of �x = Tx ; �y = Ty:(�� �) hx ; y i = h�x ; y i � hx ; �y i = hTx ; y i � hx ; Ty i = 0 :Lemma 8.3 If T 2 B(H;H) is self adjoint and V is a �nite dimensional subspace of H whichis spanned by eigenvectors of T , then the restriction T1 of T toH1 := V ?maps H1 into itself and is self adjoint on H1. � is an eigenvalue of T1 if and only if � is aneigenvalue of T with an eigenvector x 62 V .Proof: Notice that T maps V into itself since this is true on a basis of V . Whence for allx 2 V ? and y 2 V hTx ; y i = hx ; Ty i = 0 ;i.e. Tx 2 H1 if x 2 H1. Self adjointness is clear and it is also clear that an eigenvalue � of T1 isan eigenvalue of T with an eigenvector in H1 and whence not in V . To see the converse, let �denote an eigenvalue of T with an eigenvector x 62 V . V has a basis consisting of eigenvectorsand by Lemma 8:2 x is orthogonal to any basis vector which is eigenvector with respect to aneigenvalue � 6= �. If there exists some basis vectors, which are eigenvectors x1; : : : ; xk with respectto � one may �nd a linear combination Pki=1 �ixi such that x̂:= x �Pki=1 �ixi 2 H1, and ofcourse x̂ is an eigenvector with respect to � . q.e.d.We now start to consider compact operators. From Theorem 5:3 one obtains that non zero spectralvalues must be eigenvalues.Lemma 8.4 If K is a compact operator in B(H;H) then �(K) n f0g � �p(K) and 0 2 �(K). Inparticular: if K is injective and self adjoint then 0 2 �c(K) and K�1 is not continuous.



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 86Remark 8.3 With the equivalence in Remark 8:2 one might prove that for any compact operatorK 0 2 �(K) :Assuming that 0 62 �p(K)[�r(K), we obtain from Theorem 5:4 and Remark 8:2 i that 0 2 �c(K).We are now ready to start theProof of Theorem 8:1 The proof uses Rayleigh quotients.Notice that for any eigenvalue � of K there exists a normalized eigenvector x for whichhKx ; x i = h�x ; x i = � . Thus any eigenvalue is nonnegative and is not greater than�1 := supx2H ;kxk=1 hKx ; x i : (8.8)The supremum exists since for kxk = 1 the quadratic form hKx ; x i is real and bounded fromabove: hKx ; x i � kKxk kxk � kKk kxk2 = kKk : (8.9)Hence �1 � kKk.In fact, �1 = kKk :This can be seen as follows: let k denote the hermetian sesquilinear formk : H �H �! C ; (u; v) 7�! hKu ; v i :An easy calculation shows for all u; v 2 HRe k(u; v) = 14 [k(u+ v; u+ v)� k(u� v; u� v)] :With kxk = 1 and � := kKxk1=2 > 0we replace u by �x and v by 1� Kx . Since hKy ; y i � �1 kyk2 holds for any y 2 H we obtain:kKxk2 = Re k(�x ; 1� Kx)� 14 k(�x + 1� Kx ; �x+ 1� Kx)� �14 k�x+ 1� Kxk2� �14 (�2 + 2hKx ; x i+ 1�2 kKxk2)� �14 (�2 + 1�2 kKxk2) + �212= �12 kKxk+ �212 :



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 87Hence kKxk2 � �12 kKxk � �212 � 0from which kKxk � �1follows. Thus kKk = supkxk=1 kKxk � �1.Suppose now that the supremum is attained at u, say. Then withv := (K � �1I)uwe de�ne the functionsF : R2 �! R ; (s; t) 7�! hK(su+ tv) ; su+ tv i ;G : R2 �! R ; (s; t) 7�! ksu+ tvk2 � 1 :Then under the side condition G(s; t) = 0 the function F attains its maximum at the point(s,t)=(1,0). By the Lagrangian rule there exists some real � such that @sF (1; 0) = �@sG(1; 0) and@tF (1; 0) = �@tG(1; 0), i.e.2hKu ; u i = 2�kuk2 ; 2Re hKu ; v i = 2Re (�hu ; v i) :Since hKu ; u i = �1 and kuk = 1 the �rst equation yields � = �1. Then the second equation andthe de�nition of v give k(K � �1I)uk2 = 0 ;i.e. u is an eigenvector for the eigenvalue �1.We now prove that in fact the supremum is attained, at u1 , say. Then it is the largest eigenvaluewith normalized eigenvector u1.Choose a sequence (xn)n2N with kxnk = 1 and such thatlimn!1 hKxn ; xn i = �1 :We may without loss of generality assume that Kxn converges, otherwise we replace it by asubsequence which has the desired property. Since kxnk = 1 we obtaink(�1 �K)xnk2 = �21 � 2�1 hKxn ; xn i+ kKxnk2= 2�1 (�1 � hKxn ; xn i) + (kKxnk2 � �21)� 2�1 (�1 � hKxn ; xn i) + (kKk2 � �21)= 2�1 (�1 � hKxn ; xn i) :The right hand side tends to 0 . Thuslimn!1 (�1xn �Kxn) = 0 ;



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 88and as (Kxn) converges so does (xn). But thenu1 := limn!1 xnhas norm 1 and hKu1 ; u1 i = �1.By Lemma 8:3 any other eigenvalue ofK is an eigenvalue ofK1, the restriction ofK toH1 := fu1g?.So we may construct a sequence (�n)n2N of eigenvalues and an orthonormal sequence (un)n2N ofeigenvectors by the recursion�n+1 := maxx2fu1;:::;ung? ; kxk=1 hKx ; x iun+1 : a maximizer of hKx ; x i in fu1; : : : ; ung? \ fx : kxk = 1g :Of course the sequence �n is non increasing and by Lemma 8:3 any eigenvalue is a value in thesequence. Also, the sequence attains any value at most �nitely often: If �n = � > 0 for all u � u0then N(�I �K) = N(I � 1� K) would have in�nite dimension which contradicts (5:12).By construction �n > 0 for all n 2 N. We show thatlimn!1 �n = 0 : (8.10)Assume that limn!1 �n = � > 0 :Choose a subsequence (�n0)n2N such that (Kun0)n2N converges to v , say. Then un0 tends to��1v: By �n0un0 = Kun0 we havek�un0 � vk = k(�� �n0)un0 + (Kun0 � v)k � j�� �n0 j+ kKun0 � vk ! 0 :But this contradicts the fact that (un0)n2N form an orthonormal sequence, and (8:10) follows.To show that fun: n 2 Ng is complete let u 2 H ; kuk = 1 and assume hu ; un i = 0 for all n 2 N.By (8:1) hKu ; u i > 0and it exists n 2 N sich that �n+1 < hKu ; u i � �n :But hKu ; u i � maxkxk=1; x2fu1;:::;ung? hKx ; x i = �n+1 ;a contradiction.To prove (8:2) notice that Kx = 1Xn=1 hKx ; un i un :



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 89But hKx ; un i = hx ; Kun i = �n hx ; un i ;whence (8:2) follows.Similarly (� I �K)�1x = 1Xn=1 h (� I �K)�1x ; un i un= 1Xn=1 hx ; (� I �K)�1un i un :Now (� I �K) 1� � �n un = 1� � �n (� un � �n un) = un :Thus (� I �K)�1 un = 1� � �n unand (� I �K)�1 x = 1Xn=1 hx ; 1� � �n un i un = 1Xn=1 1�� �n hx ; un i un ;which is (8:3).It remains to prove (v): If y = Kx; x 2 H , thenh y ; un i = �n hx ; un i :Whence 1 > kxk2 = 1Xn=1 ��2n jh y ; un ij2 :If, on the other hand, y is such that1Xn=1 ��2n jh y ; un ij2 < 1then (see the step from (7:5) to (7:6))x := 1Xn=1 ��1n h y ; un i unde�nes an element in H for which y = Kx. q.e.d.Combining Theorems 8:1 iv and 7:1 one obtainsCorollary 8.1 If H is a Hilbert space such that B(H;H) contains a compact, injective, selfadjoint operator K then H is separable.



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 90Proof: In this case K2 satis�es the assumptions of Theorem 8:1 and whence H contains acountable complete orthonormal system.The problem to �nd eigenvalues and eigenfunctions of L in 
 under Dirichlet condition (c.f.De�nition 6:1) is directly connected with the problem of �nding the eigenvalues and eigenvectorsof the solution operator G de�ned in Theorem 6:1 and by (6:10). Since we want to use thecompactness of G we assume henceforth that 
 is bounded. Also in addition to (4:3), (4:4), (4:5)and the assumption below Corollary 4:1, the coe�cients of L are assumed to be such that theDirichlet form B is hermetian, i.e.B(u; v) = B(v; u) for all u; v 2 H10 (
) : (8.11)For example, bm = NXn=1 @nanm for m = 1; : : : ; N (8.12)anm ; c real valued (8.13)are su�cient for the validity of (8:11). Another su�cient condition is that the coe�cients are sosmooth that one can write down the formal adjoint L� of L andL� = Lholds.Under the assumption (8:11) it follows from Theorem 6:3 and from Remark 6:1 that the solutionoperator G is self adjoint. Moreover (6:1) implies B(Gu; u) = �kuk2 for any u 2 L2(
). ThusGu 6= 0. Another application of (6:1) shows� hGu ; u i = � hu ; Gu i = B(Gu;Gu) � c+ kGuk21for all u 2 L2(
). Since G is injective the far right hand side only vanishes if u = 0. Hence wehave shown:Lemma 8.5 K := �G is an injective positive, self adjoint compact operator. Hence there existsa non increasing sequence (�n)n2N of eigenvalues and an orthonormal sequence (un)n2N of cor-responding eigenvectors which satisfy the assertions of Theorem 8:1De�nition 6:1 and Lemma 6:1 imply that � 2 C is an eigenvalue of L with eigenfunction u if andonly if u 2 L2(
) ; u 6= 0 and u � � G u = 0 (8.14)holds. But (8:14) is equivalent with (� 1� ) u � Ku = 0 : (8.15)Notice, that � = 0 surely is not an eigenvalue of L .



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 91Thus the eigenvalues of L in 
 are just �n := � 1�n , where �n are the eigenvalues of K and theorthonormal sequence (un)n2N asserted in Lemma 8:5, provides the sequence of eigenfunctions.So we have partly proven:Theorem 8.2 Under the conditions on L and 
 stated above there exists a non increasingsequence (�n)n2N of eigenvalues of L in 
 and an orthonormal (in L2(
)) sequence (un)n2Nof corresponding eigenfunctions (un)n2N such that(i) 0 > �1 � : : : � �n � �n+1 ! �1 as n!1 :(ii) un is a variational solution of `L�nu = 0 ; un j@
= 0'.(iii) The orthonormal system fun: n 2 Ng is complete.(iv) u 2 H10 (
) i� P j�nj jhu ; un ij2 < 1 .(v) If u; v 2 H10 (
) then B(u; v) = 1Xn=1 j�nj hu ; un i hun ; v i :(vi) u 2 L2(
) is a variational solution of a Dirichlet problem \Lu = f in 
, u j@
= 0" forsome f 2 L2(
), i� 1Xn=1 j�nj2 jhu ; un ij2 < 1 :(vii) If f 2 L2(
) and � is not a value of the the sequence (�n)n2N then the solution u of`L�u = f ; u j@
= 0' is given byu = 1Xn=1 1�n � � h f ; un i un :Proof:(i) - (iii) is the part of the theorem which is already proven.To prove (iv) notice that B(�; �) can be considered as a scalar product in H10 (
). It then inducesa norm k kb in H10 (
), and for any u 2 H10 (
)c1=2+ kuk1 � kukb � 
1=2 kuk1(c.f. (4:19), (4:12)). Thus convergence with respect to the original norm k � k1 is the same asconvergence with respect to the new norm k � kb , and H10 (
) is a Hilbert space with respect to thescalar product B( � ; � ), too.Now for any n;m 2 N B(un; um) = � h�nun ; um i = � �n hun ; um i= � �n �nm = j�nj �nm :



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 92Hence fj�nj�1=2 un: n 2 Ng is an orthonormal system in H10 (
) (with respect to new the scalarproduct B( � ; � )).This orthonormal system is complete: Let u 2 H10 (
) and B(un; u) = 0 for all n 2 N. Since unare the eigenvectors with respect to the nonzero eigenvelaues �n:0 = B(un; u) = � �n hun ; u i ) hun ; u i = 0 :The latter is true for all n 2 N. Since fun: n 2 Ng is complete in L2(
) we obtain that u mustbe 0 , whence fj�nj�1=2 un: n 2 Ng is complete in H10 (
).Before going further we notice:Remark 8.4 H10 (
) is separable.We continue the proof of (iv). If u 2 H10 (
) then by Parseval's identity1 > B(u; u) = 1Xn=1 ���B(u; j�nj�1=2 un)���2 = 1Xn=1 j�nj jhu ; un ij2 :If on the other hand u 2 L2(
) and1Xn=1 j�nj jhu ; un ij2 < 1 ;then the sequence (vn)n2N, given byvn = nXj=1 hu ; uj i ujconverges in H10 (
): kvn � vn+kk2b = k n+kXj=n+1 hu ; uj i ujk2b� 1Xj=n+1 jhu ; uj ij2 j�nj ! 0as n ! 1 . Whence (vn)n2N is a Cauchy sequence in H10 (
). Consequently it has a limit v inH10 (
). Then ku� vk0 � ku� vnk0 + kvn � vk0� ku� vnk0 + kvn � vk1� ku� vnk0 + c�1=2+ kvn � vkb ! 0as n!1, i.e. u = v 2 H10 (
).(v) follows from (7:4), applied to the complete B-orthonormal system fj�nj�1=2 un: n 2 Ng:B(u; v) = 1Xn=1 B(u; j�nj�1=2 un) B(j�nj�1=2 un; v)= 1Xn=1 j�nj hu ; un i hun ; v i :



CHAPTER 8. EIGENVALUES AND EIGENFUNCTIONS 93To prove (vii) let u := 1Xn=1 1�n � � h f ; un i un : (8.16)Thus hu ; un i = (�n � �)�1 h f ; un i.Then u 2 H10 (
) because of (iv) and for any v 2 H10 (
)B(u; v) + � hu ; v i = 1Xn=1��n 1�n � � h f ; un i hun ; v i+X � 1�n � � h f ; un i hun ; v i= � 1Xn=1h f ; un i hun ; v i = � h f ; v i :Hence u , given by (8:15), is the unique solution of `L�u = f ; u j@
= 0'.Finally (vi) may be easily deduced from (vii).



Chapter 9
Regularity
To prove regularity results means to show that the solutions obtained in an existence theorem canbe di�erentiated more often then asserted in that theorem. Generally one distinguishes betweenlocal regularity results and global regularity results. Local regularity means that additional di�e-rentiability is proven in small neighbourhoods of any point in 
 . Global regularity means thatadditional di�erentiability is proven up to the boundary.A typical global result of this kind isTheorem 9.1 Let k 2 N0 and 
 be a bounded domain of class Ck+2. Assume that the coe�cientsamn; bm and c satisfy (m;n = 1; : : : ; N):amn 2 Ck+1(
)bm 2 Ck(
)c 2 Ck(
)and that amn; bm; c and all their derivatives, the existence of which is assumed, are bounded. If uis the variational solution of `L�u = f ; u j@
= 0' and if f 2 Hk(
) then u 2 Hk+2(
) and thereexists a constant, independent of f and u such thatkukk+2;
 � c (kfkk;
 + kuk0;
) :For example, if k = 0 then under the assumptions of the theorem the variational solution of`L�u = f ; u j@
= 0' is a strong solution.There is another result which should be mentioned in this connection, namely Sobolev's embeddingtheorem. It states roughly that under mild assumptions on 
 , any element in Hm(
) (withm > N=2) has a representative which is in Cl(
) where l is the largest integer less then k�N=2.94



CHAPTER 9. REGULARITY 95For example, if N = 3 ; f 2 H2(
), then f 2 C0(
), and the solution u of \L�u = f ; u j@
= 0"belongs to H4(
) and whence to C2(
), i.e. it is a classical solution.We wish to prove Theorem 9:1 only in the case k = 0. For this gives an idea how to prove suchtheorems. We shall use the following result from Functional Analysis:Theorem 9.2 (Weak compactness theorem)Let H denote some separable1 Hilbert space and (yn)n2N a bounded sequence in H . Then (yn)contains a subsequence (yn0)n2N which converges weakly to some y 2 H, i.e. there exists some ysuch that limn!1 h yn0 ; x i = h y ; x i (9.1)for all x 2 H .As to the concept of weak convergence which is introduced by (9:1) we have to note that weaklimits are unique. To be precise: A weak limit of a sequence (yn)n2N in H is an element y in Hsuch that h yn ; x i tends to h y ; x i for all x 2 H . If such a weak limit exists the sequence is saidto converge weakly (to y ). Assume that z is another weak limit of (yn). Thenky � zk2 = h y ; y � z i � h z ; y � z i= limn!1 [h yn ; y � z i � h yn ; y � z i] = 0 :Hence weak limits are unique. Moreover, convergent sequences are always weakly convergent.Proof of Theorem 9:2We assume of course dimH = 1, since for �nite dimension one may even select a convergentsubsequence from (yn) .Consider a complete orthonormal system fun: n 2 Ng. Find a subsequence (yn1) of (yn) forwhich h yn1 ; u1 i converges. From (yn1) one may select a subsequence (yn2) for which h yn2 ; u2 iconverges. Proceeding in this manner we �nd for any k 2 N subsequences (ynk), such that (ynk)is a subsequence of ynk�1 (yn0 := yn) and h ynk ; uk i converges. Put yn0 := ynn , the diagonalsequence. This has the property that for any k 2 N ; h yn ; uk i converges to �k, say.We show that P1k=1 �k uk converges to some element y which is the weak limit of (ym0).By construction of yn0 we �nd that for any N 2 N the sequenceyNn0 := NXk=1 h yn0 ; uk i uktends to yN := NXk=1 �k uk :1H needs not to be separable, however we need the result for separable spaces only. To obtain it for non-separablespaces one has to proof it for separable spaces �rst and then provide an additional argument.



CHAPTER 9. REGULARITY 96Hence kyNk = limn!1 kyNn0k � supn2N kyNn0k � supn2N kyn0k =: 
 ;and we conclude NXk=1 j�kj2 = kyNk2 � 
2 ;from which 1Xk=1 j�kj2 � 
2 < 1follows. But then P1k=1 �k uk converges and de�nes an element y 2 H , and h y ; uk i = �k .For any w 2 span fun: n 2 Ng , i.e. for any w which is a linear combination of �nitely many ofthe un , we obtain limn!1 h yn0 ; w i = h y ; w i :Now let v 2 H and " > 0 be given: We may �nd w 2 span fun: n 2 Ng such that
 kv � wk < "=4 :Whence jh yn0 ; v i � h y ; v ij � jh yn0 ; v � w ij+ jh y ; v � w ij+ jh yn0 ; w i � h y ; w ij� 2 
 kv � wk+ jh yn0 ; w i � h y ; w ij< "=2 + jh yn0 ; w i � h y ; w ij :For su�ciently large n the last term is less than "=2, and hence yn0 tends weakly to y . q.e.d.From now on let � := RN+ := fx 2 RN : xN > 0g or � := RN : (9.2)Moreover we assume thatj 2 f1; : : : ; N � 1g if � = RN+ or j 2 f1; : : : ; Ng if � := RN ; (9.3)and de�ne with h 2 R ; h 6= 0:�h : L2(�)! L2(�) ; (�hu)(x) := u(x+ he(j)) : (9.4)Of course, (9:4) has to be understood in the sense that whenever ~u is a representant of u thenx 7! ~u(x+ he(j)) is a representant of �hu . �h is a linear operator of L2(�) into L2(�) and for allu 2 L2(�) k�h uk = kuk : (9.5)Moreover �h is surjective, since �h ��h = I : (9.6)



CHAPTER 9. REGULARITY 97Remark 9.1 A surjective operator U of a Hilbert space H , into another Hilbert space H2, forwhich kU uk2 = kuk1 holds for any u 2 H1 is called a unitary operator. Unitary operators can alsobe characterized by the equation U� = U�1.We now introduce the di�erence quotionts.�h : L2(�) �! L2(�) ; u 7�! 1h(�hu� u) ; (9.7)where h 2 R n f0g. The following lemma decovers the connection between the di�erence quotientsand the weak derivative which in some sense is easier than for the classical derivative.Lemma 9.1 Let u 2 L2(�) and h0 > 0. If f�hu: 0 < jhj < h0g is a bounded subset of L2(�) then@ju exists weakly in L2(�), and k@juk � sup0<jhj<h0 k�huk :If u 2 H1(�) then k�huk0;� � k@juk0;� ; (9.8)and �hu converges in L2(
) to @ju .Proof: Notice that by coordinate transformation for all u; v 2 L2(�) andh 2 R n f0gh �hu ; v i = Z� u(x+ hej) v(x) d�(x) = Z u(z)v(z � hej)d�(z) = hu ; ��hv i : (9.9)This implies h �hu ; v i = � hu ; ��hv i : (9.10)To prove the �rst assertion we invoke Theorem 9:2 and select a sequence hn ! 0 such that �hnutends weakly to some w 2 L2(�). For ' 2 C10 (�) and h 2 R n f0g we have �h' 2 C10 (�) and�h'! @j' in L2(�) as h! 0 (by Lebesgue's theorem for example). Hence for any ' 2 C10hw ; ' i = limn!1 h �hnu ; ' i = � limn!1 hu ; ��hn' i = � hu ; @j' i :This means that the weak derivative @ju exists in L2(�) (and is equal to w ).We now prove (9:8) for u = ' j� ; ' 2 C10 (RN ). Notice that�h'(x) = Z 10 @j'(x + �he(j)) d� ;and whence by the Cauchy Schwarz inequalityj�h'(x)j2 � (Z 10 1 � ���@j'(x + �he(j)��� d�)2 � Z 10 ���@j'(x + �he(j)���2 d� :



CHAPTER 9. REGULARITY 98From this estimate we obtain by Fubini's theoremk�huk2 = Z� j�h'(x)j2 d�(x) � Z� Z 10 ���@j'(x + �he(j)���2 d� d�(x)= Z 10 [Z� ���@j'(x+ �he(j)���2 d�(x)]d� = Z 10 k@juk2d� = k@juk2 :A density argument now gives (9:8) for all u 2 H1(
): Let 'n 2 C10 (�) denote a sequence forwhich 'n j�! u in H1(
). Then �h('n j�)! �hu in L2(�), since �h is a continuous operator inL2(�), and @j 'n j� tends to @ju in L2(�).We obtain: k�huk0;� = limn!1 k�h'nk0;� � limn!1 k@j'nk0;� = k@juk0;� :The convergence of �hu to @ju now follows by a `stability and consistency yields convergence'{argument (see Lemma 0:2). q.e.d.By a partition of unity and by coordinate transforms according to Theorem 1:8 one can reduce theregularity question for functions in 
 to regularity questions in � . The idea then is to estimatethe di�erence quotients of the �rst derivatives. This will be done in the next lemma:Lemma 9.2 For n;m 2 f1; : : : ; Ng let bnm 2 C1(�) satisfybnm = bmn in � ; (9.11)Re NXn;m=1 bnm(x) �n�m � E j�j2 with some E > 0 for all x 2 � ; � 2 RN ; (9.12)bnm ; jr bnmj are bounded in � : (9.13)With some 
 � 0 let v 2 H10 (�) satisfy����� NXn;m=1h bnm@nv ; @m' i����� � 
 k'k0;� (9.14)for all ' 2 C10 (�) . Then v 2 H2(�), and there exists a constant c > 0 independent of v and 
 ,such that kvk2;� � c (
 + kvk1;�) : (9.15)Proof: We introduced �h and �h as operators acting in L2(�). However, we shall write �hf ; �hffor any function f de�ned on � to denote di�erence quotient and translation. Then one mayeasily deduce the following rules: �h(fg) = f(�hg) + (�hf) (�hg) (9.16)for all functions f; g on L2(�), and �h @n u = @n �h u (9.17)



CHAPTER 9. REGULARITY 99for all u 2 H1(�). The latter is true for ' 2 C10 (�) and henceh �hu ; @n' i = � hu ; ��h@n' i = � hu ; @n(��h') i = � h @nu ; ��h' i= h �h@nu ; ' i : (9.18)Here we used that with ' also �h' belongs to C10 (�). Now (9:18) implies that �hu 2 H1(�) and@n�hu = �h@nu .We use these rules to calculate h bnm@n(�hv) ; @m' i for ' 2 C10 (�):h bnm@n(�hv) ; @m' i = h bnm�h(@nv) ; @m' i= h �h(@nv) ; bnm@m' i= � h @nv ; bnm@m(��h') i � h @nv ; (��hbnm)�h@m' i= � h bnm@nv ; @m(�h') i � h @nv ; (��hbnm)��h@m' i :Using (9:14) we may estimate����� NXn;m=1h bnm@n(�hv) ; @m' i����� � 
 k��h'k0;� + c1 kvk1;� k'k1;� ;where c1 depends on bounds for the derivatives of bnm only. Notice that by (9:8) the right handcan be estimated further, and one gets����� NXn;m=1h bnm@n(�hv) ; @m' i����� � (
 + c1 kvk1;�) k'k1;� : (9.19)Now �h and whence �n maps H10 (�) into itself: If the sequence ('n) from C10 (�) approximatessome w 2 H10 (�) with respect to the k � k1;�{norm then (�h'n) is a sequence in C10 (�) which inH1(�) tends to �hw . An approximation argument shows that in (9:19) one may replace ' byany element of H10 (�), especially by �hv . Using (9:12) we obtainE ( k�hvk21 � k�hvk20) � Re NXn;m=1h bnm@n(�hv) ; @m(�hv) i � (
 + c1 kvk1;�) k�hvk1;� :Hence, using (9:8): k�hvk21 � 1E (
 + (c1 +E2) kvk1;�) k�hvk1;�from which with some c2 depending on E and c1 :k�hvk1 � 1E (
 + (c1 +E2) kvk1;�) � c2(
 + kvk1;�) :But then for any n 2 f1; : : : ; Ngk�h@nvk0;� � k�hvk1 � c2 (
 + kvk1;�) :From Lemma 9:1 it follows that @j@nv exists weakly in L2(�) andk@j@nvk � c2 (
 + kvk1;�) : (9.20)



CHAPTER 9. REGULARITY 100In the case � = RN therefore the lemma is proven.In the case � = RN+ we still have to show that @N@Nv exists weakly in L2(�) and can be estimatedby the right hand side of (9:20). Notice that (9:14) implies that byF : C10 (�) � L2(�) �! C' 7�! PNn;m=1 h bnm@nv ; @m' ia continuous linear functional is de�ned on C10 (�) which may be continued uniquely as a continuouslinear functional on the whole of L2(
) with norm not greater than 
 . The Riesz representationtheorem then yields the existence of a (unique) f 2 L2(�) such thatNXn;m=1 h bnm@nv ; @m' i = h f ; ' i (9.21)for all ' 2 C10 (
), and kfk � 
 :A density argument shows that (9:21) is true for all ' 2 H10 (�). Equation (9:21) means that v isthe variational solution of some Dirichlet problems with respect to the di�erential expressionNXn;m=1 bnm@n@m + ( NXm=1 @mbnm) @n :Notice that this expression contains @N@N with a non{vanishing factor bNN , since by ellipticityRe bNN = Re NXn;m=1 bnm �nN �mN � E :The idea now is that it should be possible to express @N@Nv by f and derivatives of v which arealready known to belong to L2(�).This can be done as follows. For ' 2 C10 (�) and with b := 1=bNN :h v ; @N@N' i = � h @Nv ; @N' i = � h bNN@Nv ; b@N' i= � h bNN@Nv ; @N (b') i+ h bNN@Nv ; (@Nb) � ' i= � NXn;m=1 h bnm@nv ; @m(b') i+ NXn;m=1; (n;m)6=(N;N)h @m(bnm@nv) ; b' i+ h (@N b)bNN@Nv ; ' i :Notice that b' 2 H10 (
). Hence by (9:21)h v ; @N@N' i = h g ; ' iwhere g := � bf +0@ Xn;m=1; (n;m)6=(N;N) b @m(bnm@nv)1A+ (@Nb)bNN@Nv



CHAPTER 9. REGULARITY 101belongs to L2(�) and can be estimated bykgk � c3 ( kfk+ c2 (
 + kvk1)� c4 (
 + kvk1)where c3 and c4 do not depend on v or 
 .Hence v 2 H2(�) and kvk2;� can be estimated as asserted. q.e.d.Remark 9.2 In the preceding Lemma 9:2 one may replace estimate (9:15) bykvk2;� � c (
 + kvk0;�) ; (9.22)where c does not depend von v and 
 . This follows from the coercivity of the Dirichlet formPNn;m=1 h bnm@n � ; @m � i:E(kvk21 � kvk20) � Re NXn;m=1 h bnm@nv ; @mv i � 
 kvk0 ;from which kvk21 � 
E kvk0 + kv0k2and hence kvk1 � 
2E + kvk0follows.We are now ready for theProof of Theorem 9:1 (in the case k = 0):Since 
 is a bounded domain of class C2 (c.f. De�nition 1:4) there exists a �nite open coveringV1; : : : ; VK of @
 and regular C2{di�eomorphism �1; : : : ;�K onto U = U(0; 1) such that (fork = 1; : : : ;K) �(k)(Vk \ 
) = U+ := fx 2 U : xN > 0g :We introduce V0 := 
 so that V0; : : : ; VK is an open covering of 
 and select a partition of unity(�k)k=0;:::;K on 
 which is subordinate to the covering V0; : : : ; VK , i.e. �k 2 C10 (Vk).If u is a variational solution of `L�u = f ; u j@
= 0' then u 2 H10 (
) and for all ' 2 H10 (
)NXn;m=1 h anm@nu ; @m' i = � h f ; ' i � NXn=1 h an@nu ; ' i � h (c+ �)u ; ' i� c1 
 k'k0 : (9.23)



CHAPTER 9. REGULARITY 102c1 depends on the coe�cients of L and � only, and
 := kfk0;
 + kuk1;
 :Using coercivity as in the preceding remark we may rede�ne c1 and 
 by replacing kuk1;
 bykuk0;
 
 := kfk0;
 + kuk0;
 : (9.24)For any k = 0; : : : ;K the function �ku belongs to H10 (
) and we obtain for any ' 2 H10 (
):NXn;m=1 h anm@n(�ku) ; @m' i= NXn;m=1 (h anm@nu ; @m(�k') i+ h anm(@n�k)u ; @m' i � h anm@nu ; (@m�k)' ig :The second term on the right can be integrated by parts. Using anm = amn one gets:NXn;m=1 h anm@n(�ku) ; @m' i= NXn;m=1 h anm@nu ; @m(�k') i+ NXn;m=1 h (@m(anm@n�k))u ; ' i � 2 NXn;m=1h anm@n�k@mu ; ' i :The modulus of the �rst term on the right hand side can be estimated by c1 
k�k'k and whenceby c1 
k'k0;Vk\
 . A similar estimate holds for the moduli of the two other terms. Hence withsome c2 independent of f and u :����� NXn;m=1 h anm@n(�ku) ; @m' i����� � c2 
k'k0;Vk\
 : (9.25)For �0u we may apply Lemma 9:2 with � = RN to obtain �0u 2 H2(RN ) and with some cindependent of u; f : k�0uk2;RN � c 
 : (9.26)Of course, we have continued �0u from 
 into RN by zero. It remains to prove �ku 2 H2(Vk \
)and the validity of (9:26) for k 2 f1; : : : ;Kg (instead of k = 0). Let us �x k and omit the indexk henceforth. Moreover let us put	 := ��1 ;  ij := @j	i ; 'ij = @j�i :Then NXj=1 ( ij ��) 'jl = �il :Consider the pull-back operators�� : H1(U+) �! H1(
 \ V ) ; w 7�! w ��	� : H1(
 \ V ) �! H1(U+) ; ~w 7�! ~w �	



CHAPTER 9. REGULARITY 103as de�ned in Theorem 1:8 and put v := 	�(� u) ;whence � u = �� v :Then supp v � U+ \ U(0; �) (9.27)with some � < 1. Moreover, v 2 H10 (U+) since 	� maps C10 (
 \ V ) into a space of continuouslydi�erentiable functions with compact support in U+ . Therefore we may continue v by 0 into RN+and obtain an element of H10 (RN+ ). An approximation argument shows that the chain rule can beapplied to v jU+= (�u) �� . Hence in U+ with � 2 C10 (R+N ):NXn;m=1 anm@n(�u) � @m(� ��) = NXn;m=1 anm@n(v ��)@m(� ��)= NXk;l=1 NXn;m=1 anm'kn(@kv) �� 'lm(@l�) �� (9.28)= NXk;l=1 (~bkl@kv@l�) �� jdet �0j ;where �0 = ('ij)i;j=1;:::;N ; 	0 = ( ij)i;j=1;:::;Nare the Jacobians of � resp. 	 , and~bkl = NXn;m=1 jdet 	0j (anm 'kn 'lm) �	 :Notice that ~bkl is in C1(U+), is bounded, and has bounded derivatives. Moreover for x 2 U+ ; � 2RN , and with y = 	(x)Re NXk;l=1 ~bkl(x)�k�l � jdet 	0j E j�0(y)�j2 � ~E j�j2with some ~E > 0.We now rede�ne the ~bkl in U+ n U(0; �) such that continuations bkl into whole of RN+ exist whichsatisfy the assumptions of Lemma 9:2 with � = RN+ . Let � 2 C10 (U) with 0 � � � 1 and � = 1 inU(0; �). Put bkl = ( � ~bkl + (1� �)�kl in U+�kl in RN+ n U+ :Then the bkl belong to C1(RN+ ) and satisfy (9:11), (9:12), (9:13). Since v vanishes where bkl and~bkl di�er from each other we get from (9:28) by a coordinate transformation for � 2 C10 (U+)NXk;l=1 h bkl@kv ; @l� i = 1Xn;m=1 h anm@n(�u) ; @m(� ��) i ;



CHAPTER 9. REGULARITY 104and whence from (9:25) and the continuity of the pull-back operators:���X h bkl@kv ; @l� i��� � c2 
 k� ��k
\V � c3 
 k�kU+ : (9.29)Because of (9:27), estimate (9:29) remains to hold for any � 2 C10 (RN+ ). An application of Lemma9:2 now proves the desired result.
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